JPS6086789A - Meating or warming method of heat treating device or like - Google Patents

Meating or warming method of heat treating device or like

Info

Publication number
JPS6086789A
JPS6086789A JP19398383A JP19398383A JPS6086789A JP S6086789 A JPS6086789 A JP S6086789A JP 19398383 A JP19398383 A JP 19398383A JP 19398383 A JP19398383 A JP 19398383A JP S6086789 A JPS6086789 A JP S6086789A
Authority
JP
Japan
Prior art keywords
heat
plate
heating element
shaped heating
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19398383A
Other languages
Japanese (ja)
Inventor
平岩 侑
池田 定道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19398383A priority Critical patent/JPS6086789A/en
Publication of JPS6086789A publication Critical patent/JPS6086789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、化学工業、食品工業、機械工業、高分子工業
、繊維工業、包装工業等で使用する加熱処理装置等の加
熱部又は保温部を均一な温度で効率良く加熱又は保温す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for efficiently heating or insulating parts of heat treatment equipment used in the chemical industry, food industry, machinery industry, polymer industry, textile industry, packaging industry, etc. at a uniform temperature. It relates to a method of heating or keeping warm.

例えば、高分子工業で一般に使用されている射出成形機
、金型、押出機、各種成形用グイ、熱ロール、溶融紡糸
浴等の加熱又は保温には、電熱ヒーター、水蒸気又は油
や溶融塩類等の熱媒体を使用するジャケット加熱、電磁
誘導加熱、及び赤外線等の熱線を利用する方法が使用さ
れている。
For example, electric heaters, water vapor, oil, molten salts, etc. are used to heat or keep warm injection molding machines, molds, extruders, various molding guides, heat rolls, melt spinning baths, etc. commonly used in the polymer industry. Jacket heating using a heating medium, electromagnetic induction heating, and methods using heat rays such as infrared rays are used.

而して、上記電熱ヒーターは、通常100V以上の電源
を使用しているため、漏電防止及び安全対策上、それ自
体及びその周囲に十分な絶縁処理が必要であり、又発熱
線の占める面積が被加熱体の面積に比べ著しく小さいた
め、充分な熱量を補給するためには、局部的に高温にす
る必要があり、従って場所による温度差や熱歪が発生し
、更には目的物以外への伝熱、輻射による熱損失が多く
、火傷防止等の対策も必要である。
Since the above-mentioned electric heater usually uses a power source of 100V or more, sufficient insulation treatment is required for itself and its surroundings to prevent electrical leakage and for safety measures, and the area occupied by the heating wire is Because it is extremely small compared to the area of the object to be heated, it is necessary to locally heat it to a high temperature in order to supply sufficient heat, resulting in temperature differences and thermal distortion depending on the location, and furthermore, it may cause damage to objects other than the target object. There is a lot of heat loss due to heat transfer and radiation, and measures to prevent burns are necessary.

また、熱媒体を使用する方法は、ジャケット等の取付け
、並びに熱媒体の加熱及び循環装置が必要であり、又温
度を均一にすためには多量の熱媒体を循環させなければ
ならない。
Further, the method using a heat medium requires the installation of a jacket, etc., and a heating and circulation device for the heat medium, and a large amount of heat medium must be circulated in order to make the temperature uniform.

また、電磁誘導加熱には誘導コイルが必要であり、被加
熱体の形状や材質に制約がある。
Furthermore, electromagnetic induction heating requires an induction coil, and there are restrictions on the shape and material of the heated object.

また、赤外線等の熱線による加熱も、熱線発生装置及び
熱線を均一に受ける空間が必要である。
Furthermore, heating using heat rays such as infrared rays requires a heat ray generator and a space that uniformly receives the heat rays.

本発明は、叙上の如き従来の加熱又は保温方法の問題点
を解消した加;;1シ処理装置等の加熱又は保温方法、
即ち加熱処理装置等の加熱部又は保温部を均一に加熱又
は保温する方法であって、上記加熱部又は保温部に、任
意形状に何形可能な板状発熱体を、耐熱性絶縁材料を介
在させて耐熱性接着剤により被覆固定し、上記板状発熱
体に商用周波数の交流又は直流の70V以下の電圧を印
加して該板状発熱体を発熱させることを特徴とする加熱
処理装置等の加熱又は保温方法を提供するものである。
The present invention solves the problems of conventional heating or heat retention methods as described above;
That is, it is a method for uniformly heating or keeping warm a heating part or a heat-retaining part of a heat treatment device, etc., in which a plate-shaped heating element that can be shaped into any shape is interposed in the heating part or heat-retaining part, and a heat-resistant insulating material is interposed therebetween. A heat treatment apparatus, etc., characterized in that the plate-shaped heating element is coated and fixed with a heat-resistant adhesive, and a commercial frequency AC or DC voltage of 70 V or less is applied to the plate-shaped heating element to generate heat. This provides a method for heating or keeping warm.

以下、本発明の加熱処理装置等の加熱又は保温方法を、
その好ましい実施態様について説明する。
Hereinafter, the method for heating or keeping warm using the heat treatment apparatus, etc. of the present invention will be described.
A preferred embodiment thereof will be described.

本発明において、発熱体としては任意形状に何形可能の
板状発熱体を用いる。かかる板状発熱体としては、鉄、
二、ケル、クロム、チタン、3同、アルミニウム等の金
属、それらの合金、及び黒鉛、カーボンファイバー等の
導電性材料の一種又は二種以上を、板、箔、多孔板、金
網、打抜金網、又は連続網状体に成形したものが挙げら
れる−0また、耐熱性絶縁材料としては、マイカ、石綿
、大理石、硫黄等の無機質材料、碍子、碍間、ステアタ
イト、ガラスセラミックス等の磁器系材料、石英ガラス
、ソーダガラス、鉛ガラス及びそのファイバー等のガラ
ス系材料、高珪酸ファイバー、セラミソクスファイハー
、アルミナファイバー、ムライトファイバー等の無機耐
熱繊維、木材、綿糸等の天然繊維紡糸、ポリオレフィン
、ポリスチレン、ポリ塩化ビニル、ポリエステル、ナイ
ロン、テフロン、ポリウレタン、ポリイミド、ポリアミ
ドイミド、ポリスルホン等のフィルム状、繊維状、成形
体状の合成樹脂材料、及び天然ゴム、エボナイト、ブチ
ルゴム、クロロプレン、シリコンゴム等のゴム系材料等
が挙シデられ、これらは、使用箇所や用途、被加熱体の
形状や必要とする耐熱性に応し単独又は組合せて使用す
る。
In the present invention, as the heating element, a plate-shaped heating element which can have any arbitrary shape is used. Such plate-shaped heating elements include iron,
2. Metals such as Kel, chromium, titanium, 3. Aluminum, alloys thereof, and one or more conductive materials such as graphite and carbon fiber are used as plates, foils, perforated plates, wire mesh, and punched wire mesh. In addition, heat-resistant insulating materials include inorganic materials such as mica, asbestos, marble, and sulfur, and porcelain materials such as insulators, insulators, steatite, and glass ceramics. , glass materials such as quartz glass, soda glass, lead glass and their fibers, inorganic heat-resistant fibers such as high silicate fibers, ceramic fibers, alumina fibers, and mullite fibers, wood, natural fiber spinning such as cotton yarn, polyolefin, polystyrene , polyvinyl chloride, polyester, nylon, Teflon, polyurethane, polyimide, polyamideimide, polysulfone, and other film-like, fibrous, and molded synthetic resin materials; and rubbers such as natural rubber, ebonite, butyl rubber, chloroprene, and silicone rubber. These materials are used alone or in combination depending on the location and purpose of use, the shape of the object to be heated, and the required heat resistance.

また、耐熱性接着剤としては、エポキシ樹脂、シリコン
樹脂、ホルマール樹脂、ポリイミド、ポリイミドアミド
、フェノキシ樹脂、ポリスルホン等を溶剤に溶解せせた
耐熱性接着剤、有機チタニ系接着剤、耐熱フェス、耐熱
セメント、ガラス系接着剤、リン酸アルミニウム、ケイ
酸ソーダ等の無機系接着剤、及びコーティング剤等が挙
げられ、これらは、使用箇所や用途、被加熱体の形状や
必要とする耐熱性、更には使用する耐熱性絶縁材料に応
じ単独又は組合せて使用する。
In addition, heat-resistant adhesives include epoxy resin, silicone resin, formal resin, polyimide, polyimide amide, phenoxy resin, polysulfone, etc., dissolved in a solvent, organic titanium adhesive, heat-resistant festival, and heat-resistant cement. , glass adhesives, inorganic adhesives such as aluminum phosphate and sodium silicate, and coating agents, and these are determined depending on the location and purpose of use, the shape of the object to be heated, the required heat resistance, and even Use either alone or in combination depending on the heat-resistant insulating material used.

而して、本発明の加熱処理装置等の加熱又は保温方法の
実施に際しては、先ず、加熱処理装置等の加熱部又は保
温部に、任意形状にイ1形可能な上記板状発熱体を、上
記耐熱性絶縁材料を介在させて上記耐熱性接着剤により
被覆固定する。板状発熱体を被覆固定すべき加熱処理装
置等としては、例えば、高分子工業の分野においては、
射出成形機、金型、押出機、各種成形用ダイ、熱ロール
、溶融紡糸浴等が挙げられ、その他、化学工業、食品工
業、機械工業、繊維工業、包装工業等で使用する各種の
加熱処理装置又は保温装置が挙げられる。板状発熱体の
被覆固定には制限はないが、加熱又は保温を必要とする
箇所、即ち加熱部又は保6M部(被加熱体)に板状発熱
体を均一に被覆固定するのが好ましい。又、板状発熱体
の被覆固定に際しては、通當、板状発熱体を加熱部又は
保温部の形状に対応させ屈曲させて使用する。
Therefore, when carrying out the heating or heat retention method of the heat treatment apparatus, etc. of the present invention, first, the above-mentioned plate-shaped heating element, which can be shaped into any shape, is placed in the heating part or heat retention part of the heat treatment apparatus, etc. Covering and fixing is performed with the heat-resistant adhesive with the heat-resistant insulating material interposed therebetween. In the field of polymer industry, for example, heat treatment equipment for covering and fixing plate-shaped heating elements include:
Injection molding machines, molds, extruders, various molding dies, heat rolls, melt spinning baths, etc., as well as various heat treatments used in the chemical industry, food industry, machinery industry, textile industry, packaging industry, etc. device or a heat-retaining device. Although there are no restrictions on how to cover and fix the plate-shaped heating element, it is preferable to uniformly cover and fix the plate-shaped heating element to a location that requires heating or heat retention, that is, a heating portion or a retaining portion (heated body). Furthermore, when covering and fixing the plate-shaped heating element, the plate-shaped heating element is generally bent to correspond to the shape of the heating section or the heat-retaining section.

尚、板状発熱体の加熱部又は保温部への固定に際しは、
耐熱性接着剤と共に抑え板を使用し、該抑え板が導電体
の場合は、該抑え板を上記板状発!゛ハ体との間に耐熱
性絶縁材料を介在させ、必要に応じこれらを耐熱性接着
剤により接着しても良い。
In addition, when fixing the plate-shaped heating element to the heating part or heat retention part,
If you use a holding plate together with a heat-resistant adhesive and the holding plate is a conductor, use the holding plate as described above! A heat-resistant insulating material may be interposed between the body and the body, and these may be bonded together with a heat-resistant adhesive if necessary.

又、加熱部又は保温部側とは反対例の板状発熱体の表面
には、安全対策等の観点から耐熱性絶縁材料を耐熱性接
着剤で被覆固定するのが好ましい。
Further, from the viewpoint of safety measures, it is preferable to cover and fix a heat-resistant insulating material with a heat-resistant adhesive on the surface of the plate-shaped heating element opposite to the heating section or the heat-retaining section.

次いで、上述の如く被覆固定した板状発熱体に、商用周
波数の交流又は直流の70V以下の電圧を印加して該板
状発熱体を発熱させる。この発熱により、加熱部又は保
温部を所望温度に均一に加熱又は保温される。本発明に
おいてこのように板状発熱体に印加する電圧を70V以
下としたのは、本発明によれば70V以下の電圧でも加
熱部又は保温部を充分に所望温度に均一に加熱又は保温
することができるからであり、且つ感電防止等の安全対
策等も考慮してのことである。板状発熱体に70V以下
の電圧を印加するためには、電源として一般には商用交
流電源の100V、200V或いはそれ以上の電圧のも
のを一次電源として使用し、これを変圧器により電圧降
下させ、変圧器の二次電源として70V以下の必要とす
る電圧が設定できるようにすれば良い。発熱に必要とさ
れる板状発熱体の全抵抗Rば、板状発熱体を発熱させる
のに必要な最大電力をW、設定する最大電圧を■とすれ
ば、(11式により計算される。
Next, a commercial frequency alternating current or direct current voltage of 70 V or less is applied to the plate-shaped heating element coated and fixed as described above to cause the plate-shaped heating element to generate heat. This heat generation uniformly heats or keeps the heating section or the heat retaining section at a desired temperature. The reason why the voltage applied to the plate-shaped heating element is set to 70V or less in the present invention is that, according to the present invention, the heating part or the heat-retaining part can be sufficiently uniformly heated or kept at the desired temperature even with a voltage of 70V or less. This is because it is possible to do so, and also takes into consideration safety measures such as preventing electric shock. In order to apply a voltage of 70V or less to the plate-shaped heating element, a commercial AC power source with a voltage of 100V, 200V or more is generally used as the primary power source, and the voltage is lowered by a transformer. What is necessary is to be able to set the required voltage of 70V or less as the secondary power source of the transformer. If the total resistance of the plate-shaped heating element required for heat generation is R, the maximum electric power required to generate heat in the plate-shaped heating element is W, and the maximum voltage to be set is .

R=V2/W 但し、V≦70V(11式叙上の如く、
本発明の加熱処理装置等の加熱又は保温方法によれば、
発熱体が板状であり、且っ任意の形状に骨形できるため
、複雑な形状を持つ加熱部又は保温部への発熱体の取付
けを容易に行うことができ、又板状発熱体の発熱面積が
大きいため、加熱部又は保温部を急速且つ効率的に加熱
して温度を均一にすることができ、更に板状発熱体自体
の発熱温度が従来の発熱体に比べて低いため、板状発熱
体の寿命を長くすることができる。
R=V2/W However, V≦70V (as described in Type 11,
According to the heating or heat retention method of the heat treatment apparatus etc. of the present invention,
Since the heating element is plate-shaped and can be bone-shaped into any shape, it is easy to attach the heating element to a heating part or a heat-retaining part that has a complicated shape. Because of its large area, it is possible to quickly and efficiently heat the heating part or heat retention part to make the temperature uniform.Furthermore, since the heat generation temperature of the plate-shaped heating element itself is lower than that of conventional heating elements, the plate-shaped The life of the heating element can be extended.

また、本発明の加熱処理装置等の加熱又は保温方法によ
れば、温度設定を容易に行うことができ、そのため、従
来のように温度センサーを使用して加熱部又は保温部の
温度を検出し、温度センサーの信号を電源にフィートハ
ックする制御装置を必ずしも必要とせず、加熱部又は保
温部の加熱熱量を大巾に変化させる要因が外部に存在し
ない場合は、設定電圧を一定にしておけば、電流を常時
流した状態で精密で均一な温度制御を行うことができ、
経時的にも温度変化の少ない加熱又は保温を行うことが
でき、消費電力も小ざくすることができる。
Furthermore, according to the method for heating or keeping warm in a heat treatment apparatus, etc. of the present invention, the temperature can be easily set. If you do not necessarily need a control device that hacks the temperature sensor signal into the power supply, and there are no external factors that can significantly change the amount of heat heated in the heating section or insulation section, you can keep the set voltage constant. , it is possible to perform precise and uniform temperature control with current constantly flowing.
Heating or heat retention can be performed with little temperature change over time, and power consumption can also be reduced.

さらに、本発明の加熱処理装置等の加熱又は保温方法に
よれば、低電圧を使用しているため、作業員に対する危
険を少なくすることができ、又耐熱性絶縁材料及び電気
関係の施工を簡便とすることができ、更に装置全体をコ
ンパクト化することができ、その結果、作業効率及び生
産性を向上させることができる等の多大な効果が奏され
る。
Furthermore, according to the heating or heat retention method of the heat treatment equipment, etc. of the present invention, since a low voltage is used, danger to workers can be reduced, and the construction of heat-resistant insulating materials and electrical equipment can be simplified. Furthermore, the entire device can be made more compact, and as a result, great effects such as improved work efficiency and productivity can be achieved.

以下、実施例を挙げて本発明の加熱処理装置等の加熱又
は保温方法を更に詳述する。
Hereinafter, the heating or heat retention method of the heat treatment apparatus, etc. of the present invention will be described in further detail by giving Examples.

実施例1 第1図に示す如く、ポリプロピレンのヤーン延伸用ロー
ルのスリーブ1の内側に、順次耐熱性絶縁材料7、板状
発熱体8、耐熱性絶縁材料9を重ね合わせ、これらをシ
リカを主成分とする無機系の耐熱性接着剤により接着し
た。板状発熱体8としては、第2図に示す如き形状に裁
断した42メソシユのステンレス金網を使用し、耐熱性
絶縁材料7としては厚さlll11のセラミックペーパ
ーを使用し、耐熱性絶縁材料9としては厚さ2mmのセ
ラミックペーパーを使用した。そして上述の如く板状発
熱体8を被覆固定したスリーブ1に中芯ロール2を嵌挿
し、両者を滑り止めビン(第6図の符号19参照)で固
定した。次いで、先ずヤーン延伸用ロールのロール軸に
絶縁スリーブ13を通した上、該絶縁スリーブ13に順
次絶縁リング12及び板状発熱体8の一端部8aを通し
た。次に、ロール軸に、銅板10を、又その外側に絶縁
リング11を、更にその外側に板状発熱体8の他端部8
bをそれぞれ通し、そして更に、その外側にスリップリ
ング3を、又その外側に絶縁リング4及びスリップリン
グ5を、更にその外側に絶縁リング6をそれぞれ重ねて
中芯ロール2に固定した。
Example 1 As shown in FIG. 1, a heat-resistant insulating material 7, a plate-shaped heating element 8, and a heat-resistant insulating material 9 are layered one after another on the inside of a sleeve 1 of a polypropylene yarn drawing roll. It was attached using an inorganic heat-resistant adhesive. As the plate-shaped heating element 8, a 42 mesh stainless steel wire mesh cut into the shape shown in FIG. used ceramic paper with a thickness of 2 mm. Then, the core roll 2 was inserted into the sleeve 1 covered with the plate-shaped heating element 8 as described above, and both were fixed with a non-slip pin (see reference numeral 19 in FIG. 6). Next, first, the insulating sleeve 13 was passed through the roll shaft of the yarn drawing roll, and then the insulating ring 12 and one end 8a of the plate-shaped heating element 8 were passed through the insulating sleeve 13 one after another. Next, the copper plate 10 is placed on the roll shaft, the insulating ring 11 is placed on the outside of the copper plate 10, and the other end 8 of the plate-like heating element 8 is placed on the outside of the copper plate 10.
b, respectively, and then a slip ring 3 was placed on the outside thereof, an insulating ring 4 and a slip ring 5 were placed on the outside thereof, and an insulating ring 6 was placed on the outside thereof, and then fixed to the core roll 2.

スリップリング3は、第3図に示す如く、銅合金製のリ
ングで構成し、スリップリング5を板状発熱体8の一端
部8aに導通させる目的でスリップリング5に突設した
銅合金製のリード端子18を導通させる孔15を4個穿
設した。又、他方のスリップリング5は、第4図及び第
5図に示す如く、銅合金製のリングで構成し、板状発熱
体8の一端部8aに導通させるリード端子18を4本突
設し、該リート端子18を絶縁スリーブ16で被覆して
形成した。
As shown in FIG. 3, the slip ring 3 is composed of a copper alloy ring, and a copper alloy ring protruding from the slip ring 5 is provided for the purpose of electrically connecting the slip ring 5 to one end 8a of the plate-shaped heating element 8. Four holes 15 were bored through which the lead terminals 18 were electrically connected. As shown in FIGS. 4 and 5, the other slip ring 5 is made of a copper alloy ring, and has four protruding lead terminals 18 connected to one end 8a of the plate-shaped heating element 8. , the lead terminal 18 was covered with an insulating sleeve 16.

また、上記ロールは直径300龍、中550龍であって
、その必要最高発熱量は3KWHであり、スリーブ1の
内側の表面ば、巾500mm、長さ942酊となってい
る。そして、板状発熱体8とし′て第2図に示す如く巾
約178龍、長さ約30001となるように裁断したも
のを使用すると、その全抵抗は0.267Ωとなるから
、3 K W Hの電力を得るためには28.3 Vの
電圧を印加すれば良いことが判明した。
The roll has a diameter of 300 mm and a medium size of 550 mm, the required maximum heat generation amount is 3 KWH, and the inner surface of the sleeve 1 has a width of 500 mm and a length of 942 mm. If the plate-shaped heating element 8 is cut to have a width of about 178 mm and a length of about 30,001 mm as shown in Fig. 2, its total resistance will be 0.267 Ω, so 3 KW. It was found that in order to obtain a power of H, it is sufficient to apply a voltage of 28.3 V.

尚、ロールの表面には、上述の如くロールを組み立て、
ロールの重心バランスを調整してから、クロームメッキ
を施した。
In addition, on the surface of the roll, assemble the roll as described above,
After adjusting the center of gravity balance of the roll, chrome plating was applied.

而して、上記ロールに対して、−次電源が商用交流の1
00Vで、二次電源が30Vの変圧器を使用し、且つ二
次電源を30V以下の任意の電圧として設定できるよう
に一次電源にスライダックを使用して板状発熱体8を発
熱させ、上記ロールを使用したところ、200Vの電源
により4本の750Wのシーズヒーターを使用した従来
のポリプロピレンのヤーン延伸用ロールに比較し、ロー
ル表面温度が必要とする均一温度に到達する時間が短く
、ロール表面温度が経時的に変化せず、消費電力が少な
く且つ安全であった。
Therefore, for the above roll, the -order power source is a commercial AC 1
00V, a transformer with a secondary power supply of 30V is used, and a slider is used as the primary power supply so that the secondary power supply can be set to any voltage below 30V, and the plate-shaped heating element 8 is made to generate heat. Compared to conventional polypropylene yarn drawing rolls that use four 750W sheathed heaters powered by a 200V power supply, the roll surface temperature takes less time to reach the required uniform temperature. did not change over time, had low power consumption, and was safe.

尚、本実施例においては、スライダックにより、二次電
圧を制御したが、スライダックを使用せずに、二次コイ
ルの取り出しタップを利用したり、或いは温度センサー
を使用し、ロール表面温度が所定温度となるように電源
をオン・オフしても同様な目的を達成することができた
In this example, the secondary voltage was controlled by a slider, but instead of using a slider, a tap for taking out the secondary coil or a temperature sensor was used to control the roll surface temperature to a predetermined temperature. The same purpose could be achieved by turning the power on and off.

また、上記実施例と異なり、両持ち式(両軸式)のポリ
プロピレンのヤーン延伸用ロール場合は、第6図に示す
如く、中芯ロール2に、順次耐 熱性絶縁材料7として
厚さ2龍の石綿紙、板状発熱体8及び耐熱性絶縁材料9
として厚さ1酊の石綿紙をポリイミドを用いた耐熱性接
着剤により接着し、この外側にスリーブ1を嵌装しても
良い。板状発熱体8の全抵抗は、使用目的に応じ前記(
1)式を満足する範囲で、金網等、板状発熱体8の加工
性、耐久性を考慮して選定すれば良い。
In addition, unlike the above embodiment, in the case of a double-sided (double-shaft type) polypropylene yarn drawing roll, as shown in FIG. asbestos paper, plate-shaped heating element 8 and heat-resistant insulating material 9
Alternatively, asbestos paper with a thickness of 1 mm may be adhered with a heat-resistant adhesive using polyimide, and the sleeve 1 may be fitted on the outside of the asbestos paper. The total resistance of the plate-shaped heating element 8 is determined according to the purpose of use as described above (
The material may be selected in consideration of the workability and durability of the plate-shaped heating element 8, such as a wire mesh, within a range that satisfies formula 1).

実施例2 第7図及び第8図に示す如く、押出機バレル20の外側
に、シリカを主成分とする無機系の耐熱性接着剤を使用
して厚さl mのセラミックペーパー(耐熱性絶縁材料
)7を貼着した。次いで、この表面に無機系の耐熱性接
着剤により板状発熱体8を被覆固定し、更にこの表面に
、無機系の耐熱性接着剤により、厚さ2部のセラミック
ペーパー(耐熱性絶縁材料)9を貼着した抑え板21で
固定した。そして、押出機バレル20の軸方向に関して
は、石綿スレート板リング22により、押出機バレル2
0両端のフランジと各ヒートゾーンとの間を絶縁し、板
状発熱体8の端部を石綿スレート板リング22と導電リ
ング23との間に嵌入し、導電リング23を更に石綿ス
レート板リング24により絶縁し、この外側を抑え板2
1で抑え、抑え板21をボルト及びナンドにより固定し
た。
Example 2 As shown in FIGS. 7 and 8, ceramic paper (heat-resistant insulating Material) 7 was pasted. Next, a plate-shaped heating element 8 is coated and fixed on this surface with an inorganic heat-resistant adhesive, and a ceramic paper (heat-resistant insulating material) with a thickness of 2 parts is further applied to this surface with an inorganic heat-resistant adhesive. It was fixed with a restraining plate 21 to which 9 was attached. Regarding the axial direction of the extruder barrel 20, the asbestos slate plate ring 22 allows the extruder barrel 20 to
0, the flanges at both ends and each heat zone are insulated, the end of the plate-shaped heating element 8 is fitted between the asbestos slate plate ring 22 and the conductive ring 23, and the conductive ring 23 is further inserted into the asbestos slate plate ring 24. Insulate the outside of this plate with plate 2.
1, and the holding plate 21 was fixed with bolts and NAND.

各ヒートゾーンの板状発熱体8の選定にあたっては、押
出機バレル20が必要とする最大発熱電力をめ、それを
必要とするヒートゾーンに分配し、前記(11式に従っ
てそれぞれのヒートゾーンで使用する全抵抗と電圧とを
め、各ヒートゾーンで使用する板状発熱体8を選定した
。即ち、本実施例の押出機バレル20は、スクリュー径
が501で、長さと直径の比が28であり、必要最大発
熱電力が9KWHで、必要ヒートゾーンが3ゾーンであ
るから、各ヒートゾーンに電力を等分に分配し、電源と
して20Vを使用すると、各ヒートゾーンの板状発熱体
8の全抵抗は、0.13Ωとなる。従って、各ヒートゾ
ーンの板状発熱体8の被覆固定面積は、rlJ285i
+■、長さ400 鳶璽であるから、直径0.252“
muのステンレス線が長さ方向には1 cM当たり2本
ある金網を板状発熱体8として使用すれば、この面積で
の長さ方向の全抵抗は0.12Ωとなるので、このよう
な板状発熱体8を使用した。
When selecting the plate-shaped heating element 8 for each heat zone, calculate the maximum heat generation power required by the extruder barrel 20, distribute it to the required heat zones, and use it in each heat zone according to the formula (11) described above. The plate-shaped heating element 8 to be used in each heat zone was selected based on the total resistance and voltage.That is, the extruder barrel 20 of this example has a screw diameter of 501 mm and a length-to-diameter ratio of 28. Yes, the maximum required heating power is 9KWH and the required heat zones are 3 zones, so if the power is distributed equally to each heat zone and 20V is used as the power supply, the entire plate-like heating element 8 of each heat zone can be used. The resistance is 0.13Ω.Therefore, the covered fixed area of the plate-shaped heating element 8 in each heat zone is rlJ285i
+■, length 400, diameter 0.252" since it is a hawk seal
If a wire mesh with two mu stainless steel wires per 1 cm in the length direction is used as the plate-shaped heating element 8, the total resistance in the length direction in this area will be 0.12Ω, so such a plate A shaped heating element 8 was used.

また、電源としては、100Vの交流電源を使用し、こ
れを変圧器により二次電圧として20V以下に設定して
使用した。
Further, as a power source, a 100 V AC power source was used, and this was set to 20 V or less as a secondary voltage using a transformer.

而して、上記条件下に、上記押出機バレル2゜ヲ高密度
ポリエチレンのインフレーションフィルム成形に使用し
たところ、200Vの電源を使用し合計10に’WHの
ハンドヒーターを保有する、大きさ形式が同一の従来の
押出機バレルとLヒ較し、押出機バレル20が必要とす
る温度に到達する時間が短く、消費電力が少なく、安全
であった。
Under the above conditions, when the extruder barrel 2゜ was used to form a blown film of high-density polyethylene, it was found that the size and format were 200V power supply, a total of 10'WH hand heaters, and Compared to the same conventional extruder barrel, the extruder barrel 20 took less time to reach the required temperature, consumed less power, and was safer.

尚、本実施例においてば、押出機バレル20の冷却は不
要であったが、スクリューの発熱により運転時に押出機
バレル20を冷却する必要がある場合にには、現行技術
であるブl:Iワ−による空冷方式、水冷方式の何れも
適用可能である。また、必要電力が高く、20Vでは高
電流となり、変圧器やり一ト線の取り扱いが困9Ifで
あり、経済性が低下する場合には、10Vに)下の適当
な電圧を選定すれば良く、又板状発熱体8の全抵抗を」
二げるためには、板状発熱体8の材料として、ニラロム
線やカーボンファイバー等の電気抵抗の高いものを使用
するか、或いは板状発熱体8の中を限定する一方その長
さを長くすれば良く、更に又板状発熱体8としては、用
途及び加熱部及び保温部の形状をに応して適当なものを
選定すれば良い。また、抑え板21には実施例5と同様
に板状発熱体8を接着しても良い。
In this example, cooling of the extruder barrel 20 was not necessary, but if it is necessary to cool the extruder barrel 20 during operation due to heat generation of the screw, the current technology BL:I Either an air-cooled system using a power supply or a water-cooled system can be applied. In addition, if the required power is high and 20V results in a high current, making it difficult to handle a transformer or one-to-one line, and reducing economic efficiency, you can select an appropriate voltage below 10V. Also, the total resistance of the plate-shaped heating element 8.
In order to increase the temperature, it is necessary to use a material with high electrical resistance such as Nirarom wire or carbon fiber as the material of the plate-shaped heating element 8, or to limit the inside of the plate-shaped heating element 8 while increasing its length. Further, as the plate-shaped heating element 8, an appropriate one may be selected depending on the application and the shapes of the heating section and the heat-retaining section. Furthermore, the plate-shaped heating element 8 may be adhered to the holding plate 21 as in the fifth embodiment.

実施例3 アルミニウム、銅、鉄、及びこれらの合金からなる製袋
機又は包装機等のピー1−シールバーに、実施例2と同
様に板状発熱体を被覆固定した。従来の100V又は2
00■の電源を使用したヒートシールバーは、中8II
111長さ550 m11で通常200 W Hの電熱
線ヒーターを使用しているが、本発明によれば、同し大
きさのピー1−シールバーについて100W+−1の板
状発熱体を使用すれば良かった。
Example 3 A plate-shaped heating element was covered and fixed in the same manner as in Example 2 to a P-1 seal bar of a bag making machine or a packaging machine made of aluminum, copper, iron, or an alloy thereof. Conventional 100V or 2
Heat seal bar using 00■ power supply is medium 8II
111 A 200 WH electric wire heater with a length of 550 m11 is normally used, but according to the present invention, if a 100 W+-1 plate heating element is used for a P1-seal bar of the same size, it was good.

而して、本発明に係る上記ヒートシールバー−を自動包
装機に適用して自動包装を行ったところ、ヒーi−シー
ル強度には部分的にも経時的にも変化がな(、消費電力
も少なく、且つ安全で、しかも包装速度を向上すること
ができた。また、この自動包装にあたっては、従来法と
異なり、温度センジー−を使用して電源をオン・オフす
ることによりピー1−シールバーの温度を制御せずに、
温度保持に必要な低電圧を富時ヒートシールバーに加え
たが、ヒートシールバーの温度は経時的に変化すること
がなく、且つヒートシールバーの温度は全体として均一
であった。又、これを板状にしたところ、シュリンク包
装用加熱板等にも使用できた。
When the heat-seal bar according to the present invention was applied to an automatic packaging machine for automatic packaging, the heat-seal strength did not change locally or over time (the power consumption did not change). It was possible to improve the packaging speed while reducing the amount of water and safety.Also, unlike the conventional method, this automatic packaging uses a temperature sensor to turn the power on and off, making it possible to without controlling the temperature of the bar,
Although a low voltage necessary for temperature maintenance was applied to the heat seal bar at many times, the temperature of the heat seal bar did not change over time, and the temperature of the heat seal bar was uniform as a whole. When this was made into a plate, it could also be used as a heating plate for shrink packaging.

実施例4 ポリプロピレン、ナイロン等のスリン1−ヤーン、パン
1−°テープの延伸装置加熱板の裏側に、実施例2と同
様に、耐熱性接着剤を用いて、先ず厚さ0゜5都のセラ
ミックペーパー(耐熱性絶縁材料)を貼着し、その上に
板状発熱体を貼着し、更にその上に厚さ10+=mのセ
ラミックペーパー(耐熱性絶縁材料)を貼着した。これ
らは更に必要に応して石綿ホード又は金屈板等の抑え板
で固定しても良い。
Example 4 Stretching device for stretching yarn and pan 1° tape made of polypropylene, nylon, etc. As in Example 2, a heat-resistant adhesive was first used on the back side of the heating plate to a thickness of 0°5. Ceramic paper (heat-resistant insulating material) was stuck, a plate-shaped heating element was stuck on top of it, and ceramic paper (heat-resistant insulating material) with a thickness of 10+=m was stuck on top of it. These may further be fixed with asbestos hoarding or holding plates such as metal bending plates, if necessary.

次いで、上記板状発熱体を発jハさせて」二足加熱板を
発熱させ、所定の作業を行った。
Next, the plate-shaped heating element was turned on to generate heat on the two-legged heating plate, and a predetermined work was performed.

尚、テープ延伸装置の加熱板は曲面で構成されており、
従来は縦100關、横100 m+i程度のプレートヒ
ーターを多数取付けてこれらに100■又は200V程
度の電圧を印加していたが、上述の如く板状発熱体を使
用することにより、上記加熱板を均−且つ連続的に加熱
することができた。
In addition, the heating plate of the tape stretching device is composed of a curved surface.
Conventionally, a large number of plate heaters measuring about 100 m long and 100 m+i wide were installed and a voltage of about 100 V or 200 V was applied to them, but by using a plate-shaped heating element as described above, the heating plate can be It was possible to heat evenly and continuously.

また、従来法によれば、必要電力はl cf当たり3゜
2WJ(であったが、本実施例では必要電力を1 c+
+1当たり2.5 W Hに減らずことができた。また
、冶【度制御は変圧器の二次側電圧を一定値に保持する
ことにより行ったが、従来と同様に温度センサー及び制
御装置を使用して電源をオン・オフさせても良い。
In addition, according to the conventional method, the required power was 3°2 WJ per l cf (but in this embodiment, the required power was 1 c+
It was possible to achieve 2.5 W H per +1 without decreasing. Furthermore, although the control was performed by maintaining the secondary voltage of the transformer at a constant value, it is also possible to turn the power on and off using a temperature sensor and a control device as in the past.

実施例5 外径250 mL高さ300 mff1のインアレーン
ヨンフィルム盟造装誼のタイを板状発熱体で囲れRして
保温するようにした。即ち、実施例2と同様に第9図に
示す如く、タイ (図示セず)の外周に、順次、厚さ1
01111のセラミックペーパー(耐熱性絶縁材料)7
、後述の板状発熱体8、及びセラミックフェルト(保温
材料兼耐熱性絶縁材料)9を耐熱性接着剤により接着し
、更にその外側を抑え板21により抑え、抑え板21を
絶縁月スリーフで被覆されたポルト及びナツト25によ
り結合した。そして、これらの部材7.8.9.21 
(以下本実施例ではヒーターという)は、第9図−ヒ、
上下に2つ割りにしてタイに被覆固定した。尚、第9図
において、26.26,26.26は、板状発熱体8,
8の両端部においてこれらとセラミックフェルト9,9
との間に配した耐熱性絶縁材料、27.27は板状発熱
体8,8の右端部に内側から当接させた銅板で、リーI
・線(図示−Uず)を接続してあり、且つ両銅板27.
27の間には絶縁材料28を介在させである。又、板状
発熱体8.8の左端部に介在さ−Uたのは、91m1及
29で、板状発熱体8.8の左端部同士はこの銅板29
を介して導通するようになしである。又、」二足ヒータ
ーには、ダイに付設する温度センサーのため孔を設しノ
でおいても良い。又、ヒーターとしては、内径250龍
強、高さ6011mのものを5個使用した。
Example 5 A tie made of an inner-layer film with an outer diameter of 250 mL and a height of 300 mff1 was surrounded by a plate-shaped heating element and rounded to keep it warm. That is, as in Example 2, as shown in FIG.
01111 ceramic paper (heat-resistant insulating material) 7
, a plate-shaped heating element 8, which will be described later, and ceramic felt (heat-retaining material and heat-resistant insulating material) 9 are adhered with a heat-resistant adhesive, and the outside thereof is further held down by a holding plate 21, and the holding plate 21 is covered with an insulating moon sleeve. They were joined by a porto and a nut 25. And these members 7.8.9.21
(hereinafter referred to as the heater in this embodiment) is shown in Fig. 9-H.
It was divided into two parts, top and bottom, and covered and fixed with ties. In addition, in FIG. 9, 26.26, 26.26 are plate-shaped heating elements 8,
These and ceramic felts 9, 9 at both ends of 8.
The heat-resistant insulating material 27.27 is a copper plate that is brought into contact with the right end of the plate-shaped heating elements 8, 8 from the inside.
・A wire (U shown in the figure) is connected, and both copper plates 27.
An insulating material 28 is interposed between 27. In addition, 91 m1 and 29 are interposed at the left end of the plate-shaped heating element 8.8, and the left ends of the plate-shaped heating element 8.8 are connected to this copper plate 29.
There is no conduction through. Further, the two-legged heater may be provided with a hole for a temperature sensor attached to the die. Furthermore, five heaters with an inner diameter of 250 mm and a height of 6011 m were used.

各ヒーターを発熱させるに必要な電力は、タイの必要最
大電力を、各ヒーターに配分して定まり、本実施例の場
合は必要最大電力がl0KWHであるから、これを5個
のヒーターに均等に配分すると、ヒーター1個当たりの
電力は2 K W I−1になる。
The power required to generate heat from each heater is determined by distributing the maximum required power of the tie to each heater. In the case of this example, the required maximum power is 10KWH, so this is distributed equally among the five heaters. Once distributed, the power per heater is 2 K W I-1.

従って、電圧を20Vとすると、前記(1)式により、
ヒーター1個当たりの板状発熱体8の全抵抗は0゜2Ω
とすれば良いから、ヒーター1(周当たりの板状発熱体
8としては、11360 mm、長さ785v11の大
きさで、上記の抵抗値を示ず42メツシユのステンレス
金網を使用した。
Therefore, if the voltage is 20V, then according to equation (1) above,
The total resistance of the plate-shaped heating element 8 per heater is 0°2Ω
Therefore, the heater 1 (the plate-shaped heating element 8 per circumference was 11,360 mm long, 785 V11 long, did not exhibit the above resistance value, and was made of a 42-mesh stainless wire mesh).

上記ヒーターを使用して高密度ポリエチレンのインフレ
ーションフィルムを製造したところ、100■又は20
0Vを電源とする従来のヒーターを使用したものに比べ
、厚さか均一なフィルムを製造できた。又、従来、割り
ヒーターを用いた場合、その結合部の温度むらによりフ
ィルムに縦すしが生しることが多かったが、本実施例に
おいては、そのような不都合が全く生しなかった。又、
本実施例においては、電源をタイの温度でフィードバッ
ク制御することなしに、タイの温度を所定の温度に容易
に保持すことができ、そのようにしても、良好な製品が
得られた。
When a high-density polyethylene blown film was manufactured using the above heater, it was found that
Compared to using a conventional heater powered by 0V, we were able to produce a film with a more uniform thickness. In addition, conventionally, when a split heater was used, the temperature unevenness at the bonding portion often caused vertical slits in the film, but in this example, such inconvenience did not occur at all. or,
In this example, the temperature of the tie could be easily maintained at a predetermined temperature without performing feedback control of the power supply based on the temperature of the tie, and a good product was obtained even in this case.

実施例6 縦250菖り横300 +*mのホットプレーl−の裏
側に、第10図に示す如き中40龍、長さ1500龍の
40メソシユのステンレス製金網からなる板状発熱体8
を、実施例2と同様に、上下に耐熱性絶縁材料を配して
耐熱性接着剤により貼着した。
Example 6 On the back side of a hot plate 1- with a length of 250 mm and a width of 300 +*m, a plate-shaped heating element 8 made of a stainless steel wire mesh with a diameter of 40 mm and a length of 1500 mm as shown in Fig. 10 was placed.
As in Example 2, heat-resistant insulating materials were arranged on the top and bottom, and they were attached using a heat-resistant adhesive.

板状発熱体8の全抵抗は、0.6Ωであり、その消費電
力は、24.5 Vの電圧印加で1.000WH119
Vの電圧印加で600WH813Vの電圧印加で300
WHであった。
The total resistance of the plate-shaped heating element 8 is 0.6Ω, and its power consumption is 1.000WH119 when a voltage of 24.5V is applied.
600WH when a voltage of V is applied 300WH when a voltage of 813V is applied
It was WH.

上記ホットプレー1・を使用したところ、100■の電
源を使用する従来品と比べ、鉄板の温度上昇速度が速<
、温度が均一で安全であり、省エネルギー的であった。
When using the above hot play 1, the temperature rise rate of the iron plate was faster than the conventional product that uses a 100μ power supply.
, the temperature was uniform, safe, and energy-saving.

尚、本実施例の板状発熱体8は、必ずしもステンレス製
金網でなくても良く、ニクロム線やカーボンファイバー
等の適当な電気抵抗を持つ材料からなる平面板を使用し
ても良い。又、本実施例の板状発熱体8は、この他、鍋
、釜、電気炊飯器等の料理用加熱器やアイロン等にも使
用することがテキ、更には大型の煮炊機等ケ1−ルのス
チームに代替する加熱源としても使用できるものであっ
た。
The plate-shaped heating element 8 of this embodiment does not necessarily have to be a stainless steel wire mesh, and may be a flat plate made of a material with appropriate electrical resistance, such as nichrome wire or carbon fiber. In addition, the plate-shaped heating element 8 of this embodiment can also be used in cooking heaters such as pots, pots, electric rice cookers, irons, etc., and even in large boiling machines, etc. - It could also be used as a heating source in place of steam.

実施例7 水道管の凍結防止を目的として、外径34龍の水道管の
外面の必要箇所に、順次、耐熱性絶縁材料として厚さl
 mmの石綿紙、板状発熱体として80メ、ツユの金網
、耐熱性絶縁材料としζ厚さ2關の石綿紙を貼着した。
Example 7 For the purpose of preventing water pipes from freezing, a heat-resistant insulating material with a thickness of l is sequentially applied to the necessary locations on the outer surface of a water pipe with an outer diameter of 34 mm.
Asbestos paper of 80 mm thick was attached as a plate-shaped heating element, wire mesh of 80 mm thick was attached as a heat-resistant insulating material, and asbestos paper of ζ 2 mm thick was attached as a heat-resistant insulating material.

而して、上記板状発熱体に5m当たり15Vの電圧を印
加したところ、外気温度が一30°Cになっても、水道
管内の水は凍結せず、電流を通すことによる危険は全く
生しなかった。
When a voltage of 15V was applied per 5m to the plate-shaped heating element, the water in the water pipes did not freeze even when the outside temperature reached 130°C, and there was no danger at all from passing the current. I didn't.

尚、耐熱性絶縁4A料としては、石綿紙に制限されず、
ポリオレフィン、ポリ塩化ビニル、ナイ1コン、ポリエ
ステル等のプラスチックフィルム等も使用することがで
き、その場合耐熱性接着剤も耐熱性絶縁材料に適合する
ものを選定すれば良い。
In addition, the heat-resistant insulation 4A material is not limited to asbestos paper,
Plastic films such as polyolefin, polyvinyl chloride, polyester, and the like can also be used, and in that case, a heat-resistant adhesive that is compatible with the heat-resistant insulating material may be selected.

又、水道管がポリオレフィンやポリ塩化ビニル等で既に
被覆されていれば、直接板状発熱体をその表面に被覆固
定すれば良い。又、ポリ塩化ビニル等の非導電体からな
る水道管の場合も、直接板状発熱体をその表面に被覆固
定して良い。又、水道管の保護を兼ねて、トタンやプラ
スチックテープの内側に、実施例5と同様に板状発熱体
及び耐熱性絶縁材料を貼着し、これらにより水道管を被
覆しても良い。又、温度センサー及び制御器を使用し、
水道管の周囲の温度が0 ’c辺下になったら、板状発
熱体に電流が流れるようなシステムを組め込んでも良い
。又、管内の流体は水に制限されJ”、上記の如き板状
発熱体の使用は、温度低下により固化したり、粘度が低
下したりする液体や、或いは水滴等を含む空気等のガス
体等を輸送する場合の低温化による問題点の対策にも有
用である。
Furthermore, if the water pipe is already coated with polyolefin, polyvinyl chloride, etc., the plate-shaped heating element may be directly coated and fixed on the surface. Also, in the case of a water pipe made of a non-conductive material such as polyvinyl chloride, a plate-shaped heating element may be directly coated and fixed on the surface of the water pipe. Further, in order to protect the water pipe, a plate-shaped heating element and a heat-resistant insulating material may be adhered to the inside of the galvanized iron or plastic tape as in Example 5, and the water pipe may be covered with these. Also, using temperature sensors and controllers,
It is also possible to incorporate a system that allows current to flow through the plate-shaped heating element when the temperature around the water pipe falls below 0'C. In addition, the fluid inside the pipe is limited to water, and the use of the above-mentioned plate-shaped heating element is limited to liquids that solidify or whose viscosity decreases due to a drop in temperature, or gases such as air that contain water droplets. It is also useful as a countermeasure for problems caused by low temperatures when transporting such items.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、何れも本発明の加熱処理装置等の加熱又は保温
方法を適用した加熱処理装置又は保温装置の要部を示す
もので、第1図は片持らj(のヤーン延伸ロールの要部
の側面断面図、第2図は第1図に用いた板状発熱体の概
略的な平面図、第3図は第1図に用いた一方のスリップ
リングの正面断面図、第4図及び第5図はそれぞれ第1
図に用いた一方のスリップリングの正面断面図及び拡大
側面断面図、第6図は両持ち式のヤーン延伸ロールの要
部の側面断面図、第7図は押出機バレルの概略的な断面
図、第8図は第7図の要部の拡大図、第9図はインフレ
ーション装置の要部の正面断面図、第10図はホットプ
レートの裏側に被覆固定した板状発熱体の概略的な平面
図である。 1・・ヤーン延伸ロールのスリーブ(加熱部)7・・耐
熱性絶縁材料 8・・板状発熱体 9・・耐熱性絶縁材料 20・・押出機バレル(加熱01l) 21・・抑え坂 特許出願人 平 岩 侑 池田定道
The drawings all show the main parts of a heat treatment apparatus or heat retention apparatus to which the heating or heat retention method of the present invention is applied, and FIG. 1 shows the main parts of a cantilevered yarn drawing roll. 2 is a schematic plan view of the plate-shaped heating element used in FIG. 1, FIG. 3 is a front sectional view of one slip ring used in FIG. 1, and FIGS. Figure 5 is the first
A front cross-sectional view and an enlarged side cross-sectional view of one of the slip rings used in the figure, Figure 6 is a side cross-sectional view of the main part of the double-supported yarn drawing roll, and Figure 7 is a schematic cross-sectional view of the extruder barrel. , Fig. 8 is an enlarged view of the main part of Fig. 7, Fig. 9 is a front sectional view of the main part of the inflation device, and Fig. 10 is a schematic plan view of the plate-shaped heating element covered and fixed on the back side of the hot plate. It is a diagram. 1. Sleeve of yarn drawing roll (heating part) 7. Heat resistant insulating material 8. Plate heating element 9. Heat resistant insulating material 20. Extruder barrel (heating 01l) 21. Patent application filed People Hiraiwa Sadamichi Yuikeda

Claims (5)

【特許請求の範囲】[Claims] (1)加熱処理装置等の加熱部又は保温部を均一に加熱
又は保温する方法であって、上記加熱部又は保温部に、
任意形状に付形可能な板状発熱体を、耐熱性絶縁材料を
介在させて耐熱性接着剤により被覆固定し、上記板状発
熱体に商用周波数の交流又は直流の70V以下の電圧を
印加して該板状発熱体を発熱させることを特徴とする加
熱処理装置等の加熱又は保温方法。
(1) A method for uniformly heating or keeping warm a heating part or a heat-retaining part of a heat treatment device, etc., wherein the heating part or heat-retaining part includes:
A plate-shaped heating element that can be shaped into any shape is covered and fixed with a heat-resistant adhesive with a heat-resistant insulating material interposed therebetween, and a commercial frequency AC or DC voltage of 70 V or less is applied to the plate-shaped heating element. A method for heating or keeping warm in a heat treatment apparatus, etc., characterized in that the plate-shaped heating element generates heat.
(2)板状発熱体が、鉄、ニッケル、クロム、チタン、
銅、アルミニウム等の金属、それらの合金、及び黒鉛、
カーボンファイバー等の導電性材料の一種又は二種以上
を、板、箔、多孔板、金網、打抜金網、又は連続網状体
に成形して形成しである、特許請求の範囲第(1)項記
載の加熱処理装置等の加熱又は保温方法。
(2) The plate-shaped heating element is made of iron, nickel, chromium, titanium,
Metals such as copper and aluminum, their alloys, and graphite,
Claim (1), which is formed by molding one or more conductive materials such as carbon fiber into a plate, foil, perforated plate, wire mesh, punched wire mesh, or continuous mesh. Heating or heat retention method using the heat treatment equipment described above.
(3)耐熱性絶縁材料が、セラミックペーパー、石綿等
の無機系耐熱性絶縁材料或いはテフロン、ポリイミド等
の有機系耐熱性絶縁材料である、特許請求の範囲第(1
1項記載の加熱処理装置等の加熱又は保温方法。
(3) Claim No. 1, wherein the heat-resistant insulating material is an inorganic heat-resistant insulating material such as ceramic paper or asbestos, or an organic heat-resistant insulating material such as Teflon or polyimide.
A method for heating or keeping warm using the heat treatment apparatus described in item 1.
(4)板状発熱体の加熱部又は保温部への固定に際し、
耐熱性接着剤と共に抑え板を使用し、該抑え板が導電体
の場合は、該抑え板を上記板状発熱体との間に耐熱性絶
縁材料を介在させ、必要に応しこれらを耐熱性接着剤に
より接着する、特許請求の範囲第(1)項記載の加熱処
理装置等の加熱又は保温方法。
(4) When fixing the plate-shaped heating element to the heating part or heat retention part,
A holding plate is used together with a heat-resistant adhesive, and if the holding plate is a conductor, a heat-resistant insulating material is interposed between the holding plate and the above-mentioned plate-shaped heating element, and these are heat-resistant as necessary. A heating or heat-retaining method for a heat treatment apparatus or the like according to claim (1), which comprises bonding with an adhesive.
(5)加熱部又は保温部側とは反対側の板状発熱体の表
面に耐熱性絶縁材料を耐熱性接着剤で被覆固定しである
、特許請求の範囲第+11項記載の加熱処理装置等の加
熱又は保温方法。
(5) A heat treatment device, etc. according to Claim No. +11, wherein a heat-resistant insulating material is coated and fixed with a heat-resistant adhesive on the surface of the plate-shaped heating element on the side opposite to the heating section or the heat-retaining section. method of heating or keeping warm.
JP19398383A 1983-10-17 1983-10-17 Meating or warming method of heat treating device or like Pending JPS6086789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19398383A JPS6086789A (en) 1983-10-17 1983-10-17 Meating or warming method of heat treating device or like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19398383A JPS6086789A (en) 1983-10-17 1983-10-17 Meating or warming method of heat treating device or like

Publications (1)

Publication Number Publication Date
JPS6086789A true JPS6086789A (en) 1985-05-16

Family

ID=16317018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19398383A Pending JPS6086789A (en) 1983-10-17 1983-10-17 Meating or warming method of heat treating device or like

Country Status (1)

Country Link
JP (1) JPS6086789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238396A (en) * 2009-03-30 2010-10-21 Taiheiyo Cement Corp Ceramic heater
JP2016157724A (en) * 2015-02-23 2016-09-01 東京エレクトロン株式会社 Deposition device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238396A (en) * 2009-03-30 2010-10-21 Taiheiyo Cement Corp Ceramic heater
JP2016157724A (en) * 2015-02-23 2016-09-01 東京エレクトロン株式会社 Deposition device
US10604837B2 (en) 2015-02-23 2020-03-31 Tokyo Electron Limited Film deposition apparatus

Similar Documents

Publication Publication Date Title
US5925161A (en) Method and apparatus for delivering a glass stream for forming charges of glass
US9174398B2 (en) Smart heating blanket
US10827566B2 (en) Susceptor wire array
CN214528682U (en) Platinum channel system
US4459250A (en) Process and apparatus of extrusion molding rubbers and thermal cross-linking synthetic resins
JPS6086789A (en) Meating or warming method of heat treating device or like
US9907121B2 (en) Parallel wire conductor for use with a heating blanket
JP3112137B2 (en) High frequency electromagnetic induction heater
CN202679688U (en) Electromagnetic heating device for pipeline
JPH06227822A (en) Outflow apparatus for glass preform
US4443679A (en) Induction furnace for heat shrinking thermoplastic sheet onto mandrels in a forming process
US4640742A (en) Method and apparatus for controlling the size of an opening through which a product is metered
CN208068802U (en) A kind of anti-analysis carbon die heater of the oily formula of efficient vortex heating fortune
CN107399478A (en) Glue pouring machine heating system
CN111712002A (en) Heating device
KR102490973B1 (en) Apparatus For Heating Electrolytic water
JP2021014698A (en) Turnout snow-melting device
RU38214U1 (en) PIPE HEATER
CN103376808A (en) Electromagnetic heating temperature control system and liquid cooling system thereof
CN217383742U (en) High efficiency melting equipment
CN213002551U (en) Heating system of injection device of die casting machine
CN113411928B (en) Electromagnetic heating device suitable for high-temperature and high-pressure working condition environment and use method thereof
CN2738514Y (en) Inductive distributing heater
CN105757968A (en) Constant-temperature chemical liquid control device
CN206551455U (en) A kind of plastic molten melt device of novel energy-conserving