JPS6086436A - Waveguide type temperature distribution meter - Google Patents

Waveguide type temperature distribution meter

Info

Publication number
JPS6086436A
JPS6086436A JP19414783A JP19414783A JPS6086436A JP S6086436 A JPS6086436 A JP S6086436A JP 19414783 A JP19414783 A JP 19414783A JP 19414783 A JP19414783 A JP 19414783A JP S6086436 A JPS6086436 A JP S6086436A
Authority
JP
Japan
Prior art keywords
waveguide
magnetostriction
temperature
signal
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19414783A
Other languages
Japanese (ja)
Inventor
Koji Mikawa
広治 三河
Wataru Kitaura
北浦 渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19414783A priority Critical patent/JPS6086436A/en
Publication of JPS6086436A publication Critical patent/JPS6086436A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To measure the temperatures of plural positions only by one waveguide by measuring the temperatures of plural magnet setting parts in accordance with the level of a magnetostriction signal. CONSTITUTION:When pulse current is applied to a core in the magnetostriction waveguide 1, magnetostriction is generated by Wiedemann effect of magnets M1-Mn to their magnetic fields, transmitted through the waveguide 1 and reaches to a signal processing circuit part 2. The magnetostriction signal 27 from the waveguide 1 is inputted to a synchronization detecting part 26 in a processing circuit 2 and a storage part 20. A detecting part 26 detects signals S1, S2 and outputs the signals at the time Ts. The storage part 20 stores the magnetostriction signal only for the period Ts. After the completion of the storage, the peaks of the magnetostriction signals S1-Sn are detected by an arithmetic circuit 21 to find out the temperatures. The found temperatures are stored in a storage device 23 and the waveforms are smoothed to find out the temperature distribution along the waveguide 1. Thus, the temperatures of plural positions can be measured only by one waveguide.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は磁歪現象を利用した導波管に係り、特に、磁歪
信号により温度を測定する手段に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a waveguide that utilizes the magnetostrictive phenomenon, and particularly to means for measuring temperature using a magnetostrictive signal.

〔発明の背景〕[Background of the invention]

円筒形の強磁性体に電流を流すと、それに平行な磁界の
存在する部分でねじれ歪を発生する現象はウィーブマン
効果として知られている。この現象を利用して、磁石を
取付けた物体の位置を測定する方法が提案されているが
、磁石設置部の温度を測定する構成、目的となっていな
い。
When a current is passed through a cylindrical ferromagnetic material, torsional strain occurs in the area where a parallel magnetic field exists, a phenomenon known as the Wiebmann effect. A method has been proposed that utilizes this phenomenon to measure the position of an object to which a magnet is attached, but it does not have a configuration or purpose for measuring the temperature of the magnet installation part.

また、物体の温度が変化すると、超音波の伝播速度が変
化する現象を利用して、導波拐料の温度を測定する方法
がある。この方法は導波材料に超音波を反射させるため
のノツチを複数個設け、各ノツチより反射する超音波伝
播時間よりノツチ間の平均温度をめるものである。導波
材料の音速変化は、10−’/l:’程度と小さいため
、測定精度の大幅向上を期待することはできない。
There is also a method of measuring the temperature of a waveguide material by utilizing the phenomenon that the propagation speed of ultrasonic waves changes when the temperature of an object changes. In this method, a plurality of notches are provided in a waveguide material to reflect ultrasonic waves, and the average temperature between the notches is calculated from the propagation time of the ultrasonic waves reflected from each notch. Since the sound velocity change in the waveguide material is as small as about 10-'/l:', it is not possible to expect a significant improvement in measurement accuracy.

〔発明の目的〕 。[Object of the invention].

本発明の目的は、一本の導波管で複数個所の温度を同時
に測定する装置を提供するにある。
An object of the present invention is to provide a device that simultaneously measures temperatures at multiple locations using a single waveguide.

〔発明の概要〕[Summary of the invention]

本発明は、磁歪導波管での磁歪効果が、温度により変化
することを積極的に利用したものである。
The present invention actively utilizes the fact that the magnetostrictive effect in a magnetostrictive waveguide changes with temperature.

温度が高くなると磁歪効果が小さくなり、キュリ一温度
以上になると磁歪ば0となることから、キュリ一温度以
下の温度計測に利用できる。この場合、磁界の強さが温
度により変化すると、磁歪効果も変わるので、導波管の
外部に設置する磁石のキュリ一温度は高い程望ましい。
As the temperature increases, the magnetostrictive effect becomes smaller, and when the temperature rises above one Curie temperature, the magnetostriction becomes zero, so it can be used to measure temperatures below one Curie temperature. In this case, if the strength of the magnetic field changes with temperature, the magnetostrictive effect also changes, so it is desirable that the Curie temperature of the magnet installed outside the waveguide be as high as possible.

また、温度と磁歪効果の関係は一般に非直線的であり、
補正することで精度向上を図る。
Additionally, the relationship between temperature and magnetostriction effect is generally nonlinear;
The accuracy is improved by correction.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面に従って説明する。第1
図は本発明の導波管式温度分布計の構成を示したもので
、1は、内部に芯線を有する磁歪導波管、2は芯線にパ
ルス電流を印加する手段及び磁歪信号を検出して温度分
布を計算する回路部。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows the configuration of the waveguide type temperature distribution meter of the present invention, in which 1 is a magnetostrictive waveguide having a core wire inside, 2 is a means for applying a pulse current to the core wire, and a means for detecting a magnetostrictive signal. Circuit section that calculates temperature distribution.

M1* Mx + M3 *・・・・・・M a −1
1M 11 は導波管の外部に設置した磁石である。
M1* Mx + M3 *...M a -1
1M 11 is a magnet installed outside the waveguide.

磁歪導波管内の芯線にパルス電流を印加すると、磁石M
l 、 賃r・・・・・の磁界とのウィーブマン効果に
より磁歪が発生し、導波管を伝播して信号処理回路部2
に達する。信号処理回路部で検出される磁歪信号は第2
図のようであり、磁石Ms 、 k・・・・・・M、に
対応した信号Ss 、 82・・・・・・Snが得られ
る。
When a pulse current is applied to the core wire inside the magnetostrictive waveguide, the magnet M
Magnetostriction is generated due to the Wiebmann effect with the magnetic field of l, r..., which propagates through the waveguide to the signal processing circuit section 2.
reach. The magnetostrictive signal detected by the signal processing circuit is the second
As shown in the figure, signals Ss, 82...Sn corresponding to the magnets Ms, k...M are obtained.

芯線へのパルス電流を、時間T8毎に繰返すと、磁歪信
号も8’1 * 8’2・・・・・・S’a と発生す
る。
When the pulse current to the core wire is repeated every time T8, a magnetostrictive signal of 8'1*8'2...S'a is also generated.

磁歪導波管の温度が上昇すると、第3図に示すように磁
歪の大きさが変化する。第3図は、例えば、ニッケルの
温度と磁歪の大きさの関係を示したものであるが、ニッ
ケルの他に鉄、コバルト及びその合金の温度と磁歪の大
きさは実験的にめることができる。磁歪の大きさは、キ
ュリ一温度以上で0となることから、キュリ一温度より
低い温度で第3図を使用することができる。
As the temperature of the magnetostrictive waveguide increases, the magnitude of magnetostriction changes as shown in FIG. Figure 3 shows the relationship between temperature and magnetostriction of nickel, for example, but it is not possible to experimentally determine the temperature and magnetostriction of iron, cobalt, and their alloys in addition to nickel. can. Since the magnitude of magnetostriction becomes 0 above the Curie temperature, the method shown in FIG. 3 can be used at temperatures lower than the Curie temperature.

第4図は信号処理回路部2のブロック図である。FIG. 4 is a block diagram of the signal processing circuit section 2. As shown in FIG.

磁歪導波管1よりの磁歪信号27は同期検出部26と記
憶部20に入力される。同期検出部は第2図の信号S1
.81′を検出し、時間T、の信号を28に出力する。
The magnetostrictive signal 27 from the magnetostrictive waveguide 1 is input to the synchronization detection section 26 and the storage section 20. The synchronization detection section receives the signal S1 in Fig. 2.
.. 81' is detected and a signal at time T is output to 28.

記憶部20では時間T1だけ磁歪信号を記憶する。記憶
が終了すると磁歪信号Ss 、8x・・・・・・S、の
ピークを21で検出し、22で温度をめる。22の関数
は第3図の逆関数を設定しておく。磁歪信号SX 、8
m・・・・・・よりめた温度を23で記憶した後、波形
をス°ムージングすることで磁歪導波管に沿った温度分
布をめる。温度分布は表示部25、あるいは、外部回路
に30を介して出力する。この操作は第2図の時間Ts
毎に繰約される。したがって、TIlは、第4図での処
理時間より長く設定することは当然である。
The storage unit 20 stores the magnetostrictive signal for a time T1. When the storage is completed, the peak of the magnetostrictive signal Ss, 8x...S is detected at 21, and the temperature is measured at 22. The function No. 22 is set as the inverse function shown in FIG. Magnetostrictive signal SX, 8
m... After storing the twisted temperature at 23, the temperature distribution along the magnetostrictive waveguide is determined by smoothing the waveform. The temperature distribution is output to the display section 25 or to an external circuit via 30. This operation is performed at time Ts in Figure 2.
It is repeated every time. Therefore, it is natural that TIl is set longer than the processing time in FIG. 4.

今、磁石M2とM3周辺の温度が上昇したとすると、第
2図Bで示すようにSt 、Sgの信号が小さくなる。
Now, if the temperature around the magnets M2 and M3 rises, the signals of St and Sg become smaller as shown in FIG. 2B.

磁歪信号の大きさは、磁石よりの磁界と芯線のパルス電
流の積にほぼ比例することから、磁石Ms 、Mz・・
・・・・M、の磁力が、温度上昇により弱くなったので
は誤差の要因となる。したがって、磁石のキュリ一温度
は高い程望ましく、温度分布計とするためには、導波管
のキュリ一温度が磁石のキュリ一温度より低いことが条
件となる。
Since the magnitude of the magnetostrictive signal is approximately proportional to the product of the magnetic field from the magnet and the pulse current of the core wire,
If the magnetic force of M becomes weaker due to a rise in temperature, this will cause an error. Therefore, the higher the Curie temperature of the magnet is, the more desirable it is, and in order to use it as a temperature distribution meter, the Curie temperature of the waveguide must be lower than the Curie temperature of the magnet.

また、磁歪信号は芯線のパルス電流のエネルギーが導波
管を歪ませるエネルギーに変換されたものであり、変換
効率が温度により変化すると考えることができる。した
がって1、磁歪エネルギーに関する量、例えば、振幅、
持続時間、2乗平均などを検出することで温度を計算す
ることができる。
Furthermore, the magnetostrictive signal is obtained by converting the energy of the pulsed current in the core wire into energy that distorts the waveguide, and it can be considered that the conversion efficiency changes depending on the temperature. Therefore 1, quantities related to magnetostrictive energy, e.g. amplitude,
Temperature can be calculated by detecting duration, root mean square, etc.

以上に於ては、本発明をその特定の実施例について説明
したが、本発明は説明した実施例に限定されるものでな
く、本発明の範囲内で種々の応用が可能であることは当
業者にとって明らかである。
Although the present invention has been described above with reference to specific embodiments thereof, it is understood that the present invention is not limited to the described embodiments and that various applications are possible within the scope of the present invention. It is clear to the trader.

例えば、磁歪導波管の材質を場所毎に変えてキュリ一温
度を変化させ、第3図の特性で感度の高い範囲を利用す
る、温度測定範囲を拡大するなどがある。また、第1図
の磁石Ml 、 M2・・・・・・の間隔を短縮して波
形8*、St・・団・を連続化させ、温度分布の計測精
度を向上させる方法がある。さらに1第4図の計算はマ
イクロコンピュータテ実現させることができることは当
然である。
For example, the Curie temperature can be varied by changing the material of the magnetostrictive waveguide for each location, and the temperature measurement range can be expanded by utilizing the high sensitivity range with the characteristics shown in FIG. Furthermore, there is a method of shortening the interval between the magnets M1, M2, . . . in FIG. 1 to make the waveforms 8*, St, . . . group continuous, thereby improving the measurement accuracy of the temperature distribution. Furthermore, it is a matter of course that the calculation shown in FIG. 1 can be realized by a microcomputer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば次の効果がある。 According to the present invention, there are the following effects.

(1)1本の導波管で複数個所の温度を同時に測定する
ことができる。
(1) Temperatures at multiple locations can be measured simultaneously with a single waveguide.

(2)上記(11の効果により、温度計測のための配線
数を低減することができ、例えば大型タンク内の3次元
温度分布を測定するような場合の配線数は、従来の熱電
対方式と比較して1710以下になる。
(2) Due to the effect of (11) above, the number of wires for temperature measurement can be reduced. For example, when measuring three-dimensional temperature distribution in a large tank, the number of wires is lower than that of the conventional thermocouple method. In comparison, it becomes 1710 or less.

(3) 磁歪発生部分の全金属化が可能であり、高温度
用センサとして使用できる。
(3) The magnetostriction generating part can be made entirely of metal, and can be used as a high temperature sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の導波管式温度″分布計の構成図、第2
図は本発明の詳細な説明するための磁歪信号図、第3図
は温度と磁歪の大きさの関係図、第4図は本発明の信号
処理方法を説明するためのブロック図である。 1・・・磁歪導波管、2・・・信号処理部%M1〜MI
l・・・階1図 ■ 一2図 St S2 S3’4 5n Sl 52 5354−
 STI率3図 叱4−図
Figure 1 is a configuration diagram of the waveguide type temperature distribution meter of the present invention, Figure 2
The figure is a magnetostriction signal diagram for explaining the present invention in detail, FIG. 3 is a relationship diagram between temperature and the magnitude of magnetostriction, and FIG. 4 is a block diagram for explaining the signal processing method of the present invention. 1... Magnetostrictive waveguide, 2... Signal processing section %M1~MI
l...Floor 1 Figure ■ 12 Figure St S2 S3'4 5n Sl 52 5354-
STI rate 3 figure scolding 4- figure

Claims (1)

【特許請求の範囲】 1、強磁性体の導波管と該導波管内部に設けた芯線と導
波管外部に設けた複数個の磁石と芯線にパルス電流を印
加する手段と複数個の磁石の磁界と芯線のパルス電流よ
り発生する磁歪を検出する手段を有する磁歪導波管にお
いて、磁歪信号のレベルにより複数個の磁石設置部の温
度を測定することを特徴とする導波管式温度分布計。 2、特許請求の範囲第1項において、導波管のキュリ一
温度を導波管外部に設けた磁石のキュ17一温度より低
くしたことを特徴とする導波管式温度分布計。 3、特許請求の範囲第1項において、磁歪信号のレベル
とは磁歪エネルギーに関与する量であることを特徴とす
る導波管式温度分布計。
[Claims] 1. A means for applying a pulse current to a ferromagnetic waveguide, a core wire provided inside the waveguide, a plurality of magnets provided outside the waveguide, and a plurality of core wires; In a magnetostrictive waveguide having a means for detecting magnetostriction generated by the magnetic field of the magnet and the pulse current of the core wire, a waveguide temperature waveguide is characterized in that the temperature of a plurality of magnet installation parts is measured based on the level of the magnetostrictive signal. Distribution meter. 2. A waveguide type temperature distribution meter according to claim 1, characterized in that the Curie temperature of the waveguide is lower than the Curie temperature of a magnet provided outside the waveguide. 3. A waveguide temperature distribution meter according to claim 1, wherein the level of the magnetostrictive signal is an amount related to magnetostrictive energy.
JP19414783A 1983-10-19 1983-10-19 Waveguide type temperature distribution meter Pending JPS6086436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19414783A JPS6086436A (en) 1983-10-19 1983-10-19 Waveguide type temperature distribution meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19414783A JPS6086436A (en) 1983-10-19 1983-10-19 Waveguide type temperature distribution meter

Publications (1)

Publication Number Publication Date
JPS6086436A true JPS6086436A (en) 1985-05-16

Family

ID=16319691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19414783A Pending JPS6086436A (en) 1983-10-19 1983-10-19 Waveguide type temperature distribution meter

Country Status (1)

Country Link
JP (1) JPS6086436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865805A1 (en) * 2004-01-29 2005-08-05 Cegelec Edifice unit e.g. cable, monitoring device, has sensors placed on wave guide that is placed along edifice unit, where sensors and waveguide are Wiedemann magnetostriction sensors and waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865805A1 (en) * 2004-01-29 2005-08-05 Cegelec Edifice unit e.g. cable, monitoring device, has sensors placed on wave guide that is placed along edifice unit, where sensors and waveguide are Wiedemann magnetostriction sensors and waveguide

Similar Documents

Publication Publication Date Title
US5274328A (en) Temperature compensation for magnetostrictive position detector
JPS6078317A (en) Method and device for detecting position of movable object
CN106066641A (en) Field instrumentation
JPS6086436A (en) Waveguide type temperature distribution meter
RU2222786C1 (en) Procedure measuring level of liquid with use of magnetostrictive level gauge and magnetostrictive level gauge
EP0578025A1 (en) Method of measuring the consumption of electrical energy
CN207540633U (en) A kind of liquid level detection device
KR0180100B1 (en) Liquid level measuring apparatus
JPS6123917A (en) Position detector
US8276431B1 (en) Method of determining acoustic transit times for material having high acoustic attenuation properties
JPS6031009A (en) Apparatus for measuring thickness of solidified cast piece
CN113932881B (en) Method for measuring and calculating dead zone-free magnetostrictive material level sensor
Slesarev et al. Analysis of models of solenoids used to simulate the reproduction signal of magnetostrictive tiltmeters
Slesarev et al. Investigation of Influence of Ring Magnet Location on Reproduction Signal of Magnetostrictive Transducer of Linear or Angular Displacements
CN219608164U (en) Signal processing system for magnetostrictive level meter
RU2411517C1 (en) Digital eddy-current flaw detector
SU1101725A1 (en) Device for checking moving ferromagnetic articles
SU855710A1 (en) Method of converting displacement into time interval
JPH02183117A (en) Displacement detector
SU1161863A1 (en) Electromagnetic measuring device
JPH04134230A (en) Measurement of and measuring device for bolt axial
KR930002723B1 (en) Device for compensating for time dependent error of measuring instrument
SU945633A1 (en) Device for touch-free measuring of metal article displacement
RU2121658C1 (en) Magnetostriction translation converter
SU419818A1 (en) MAGNETIC INDUCTION METER