JPS6086204A - Manufacture of low-carbon and low phosphor steel - Google Patents

Manufacture of low-carbon and low phosphor steel

Info

Publication number
JPS6086204A
JPS6086204A JP19407083A JP19407083A JPS6086204A JP S6086204 A JPS6086204 A JP S6086204A JP 19407083 A JP19407083 A JP 19407083A JP 19407083 A JP19407083 A JP 19407083A JP S6086204 A JPS6086204 A JP S6086204A
Authority
JP
Japan
Prior art keywords
steel
oxygen
carbon
low
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19407083A
Other languages
Japanese (ja)
Inventor
Takeyuki Hirata
平田 武行
Yujo Marukawa
雄浄 丸川
Shuji Yoshida
修司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19407083A priority Critical patent/JPS6086204A/en
Publication of JPS6086204A publication Critical patent/JPS6086204A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To enable industrial manufacture of low-carbon and low-phosphor steel by specifying carbon and oxygen contents of molten pig iron containing a specific silica amount in a converter through injection of oxygen for refining without adding a slagging agent and carrying out decarbonization and dephosphorization with a flux containing sodium carbonate. CONSTITUTION:Prior to oxygen injection into a converter for refining, molten pig iron is preliminarily treated so that it may contain <=0.1% of Si and <=0.01% or S. Next, after removing slag sufficiently, oxygen is injected into a converter for refining with addition of only a protective agent for refractories and virtually without a slagging agent to make molten steel containing less than 0.1% of carbon and more than 200ppm of oxygen. Further flux containing sodium carbonate is added to carry out decorabonization and dephosphorization. Thus it is possible to obtain low carbon and low phosphor steel.

Description

【発明の詳細な説明】 本発明は、工業的にめで実用性の高い低炭素・低燐鋼の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing low carbon and low phosphorus steel, which is industrially convenient and highly practical.

高炉等より得られた溶銑中にはC,S、P、Siなどの
成分が多環に含まれているため、これらを後続工程の転
炉吹錬によって精錬して、一般的には、C50,2%、
S<0.03%、P<0.03%、Si < 0.01
%にまでそれぞれ低下、除去して鋼材として使用に供し
ている。
Hot metal obtained from blast furnaces etc. contains polycyclic components such as C, S, P, and Si, so these are refined by converter blowing in the subsequent process, and generally C50 ,2%,
S<0.03%, P<0.03%, Si<0.01
%, respectively, and are removed and used as steel materials.

しかし、鋼材の使用状況は近年まずます厳しいものとな
っており、例えば、北極圏等においては低温構造材とし
て極低温の厳しい環境下で使用され、また海洋構造材と
しても高腐食性の環境下で使用されている。したがって
、このように厳しい状況下で使用される鋼材には所要材
料特性を発揮させるためにもその高品質化が要望されて
おり、しかもそのような要望はまずます高まってきてい
る。
However, the conditions under which steel is used have become increasingly severe in recent years. For example, in the Arctic Circle, it is used as a low-temperature structural material in extremely low temperatures, and as a marine structural material in highly corrosive environments. used in Therefore, steel materials used under such harsh conditions are required to have higher quality in order to exhibit the required material properties, and such demands are increasing.

かかる高品質化に対応するには不純物としてのS。In response to such high quality, S is required as an impurity.

Pなどを除去すること、高価な合金元素を添加して高合
金化を図ること等が考えられるが、高合金化を図る場合
にあっても、その歩留りを改善するためには不純物の除
去が不可欠である。また、Cについても、耐食性、溶接
性さらには靭性を改善すべく炭化物の析出を可及的に防
止するために、その低下が望まれている。
Possible methods include removing P, etc., and adding expensive alloying elements to achieve high alloying, but even when high alloying is desired, it is necessary to remove impurities in order to improve the yield. It is essential. Furthermore, a decrease in C is desired in order to prevent carbide precipitation as much as possible in order to improve corrosion resistance, weldability, and even toughness.

ところで、特に鋼の靭性を害すると考えられているSに
ついては、従来よりその除去方法が種々研究、検itl
され、その一部はすでに実施されており、今日では、例
えば溶銑予備処理法によりS <0.003%の極低硫
鋼が実用化されている。
By the way, with regard to S, which is thought to particularly impair the toughness of steel, various studies and examinations have been conducted to find ways to remove it.
Some of these methods have already been implemented, and today, ultra-low sulfur steel with S<0.003% has been put into practical use, for example, by hot metal pretreatment methods.

一方、Pについては、溶銑予備処理の際、または転炉吹
錬の際にCaまたはNaなどの化合物を溶湯に添加する
ごとによって酸化除去することができるが、しかし、P
の場合、他の元素、例えばC,Si、S等を除去する場
合のような強力な除去剤がないため、必ずしも満足のゆ
く除去が行われているわけではなかった。工業的には、
例えば、Ca化合物を使ったCa系フラックスによる場
合、290602%が限界と考えられており、また、N
a化合物を使ったNa系フラックスによる場合、P≧0
.01%が限界と考えられている。
On the other hand, P can be removed by oxidation by adding compounds such as Ca or Na to the molten metal during hot metal pretreatment or converter blowing.
In this case, the removal of other elements, such as C, Si, S, etc., was not always satisfactory because there was no strong removal agent available. Industrially,
For example, in the case of Ca-based flux using Ca compounds, 290,602% is considered to be the limit, and N
When using Na-based flux using a compound, P≧0
.. 0.1% is considered to be the limit.

なお、近年、転炉吹錬後の取鍋精錬時にNa 20−3
i02 (メタ珪酸ソーダ)系フラックスを用いて脱燐
を行う、P≦0.005%の極低焼鋼の製造方法が提案
されているが、メタ珪酸ソーダは極めて高価であり1、
経済性の点からもかかる方法の実用化には問題がある。
In addition, in recent years, Na 20-3 is used during ladle refining after converter blowing.
A method for producing ultra-low hardening steel with P≦0.005% has been proposed in which dephosphorization is performed using i02 (sodium metasilicate)-based flux, but sodium metasilicate is extremely expensive1.
There are also problems in practical application of such a method from the economic point of view.

更に、CについてはC50,01%にまで低下させるに
は前工程として真空処理等、操作の複イ((なかつ高価
な処理を必要としているが、かかる処理はそれ自体が高
価であるばかりでな(、処理容量が小さいため製造コス
トは著しく高いものになっている。
Furthermore, in order to reduce C to 50.01%, complex operations such as vacuum treatment are required as a pre-process (and expensive treatments are required; however, such treatments are not only expensive in themselves; (The manufacturing cost is extremely high due to the small processing capacity.

このように、特に脱燐法にあってメタ珪酸ソーダを利用
する方法、また脱炭法にあって真空処理を必要とする方
法などは、その処理コストが高いこともあって、例えば
汎用鋼材としての大量生産鋼種への実用化は困難である
In this way, methods that use sodium metasilicate in particular for dephosphorization, and methods that require vacuum treatment for decarburization have high processing costs, so they cannot be used as general-purpose steel materials, for example. It is difficult to put this into practical use in mass-produced steel types.

かくして、本発明の目的とするところは、価格的にも十
分実用化可能で、かつ効果的な脱炭、脱燐法にもとすく
低炭素・低t’lE鋼の製造方法を提供することである
Thus, it is an object of the present invention to provide a method for producing low-carbon, low-t'lE steel that is reasonably practical and suitable for effective decarburization and dephosphorization methods. It is.

また、本発明の別の目的は、高合金鋼あるいは低合金鋼
の溶鋼予備処理として、容易かつ工業的に実用化可能な
脱炭・脱燐法にもとすく低炭素・低3′A鋼の製造方法
を提供することである。
Another object of the present invention is to provide low-carbon, low-3'A steel that can be easily and industrially applied to a decarburization/dephosphorization method as a pretreatment for molten steel of high-alloy steel or low-alloy steel. An object of the present invention is to provide a manufacturing method.

ところで、従来にあっても、溶銑予備処理での脱硫・脱
燐用としてナトリウム系フラックス、主としてNa 2
 Co 3 (ソーダ灰)が用いられており、かかるソ
ーダ灰での溶銑脱燐能については広く知られていた。し
かし、従来知られていたのは溶銑の脱燐についてであっ
て、溶鋼、しかも1600℃を越えるような高温度での
溶鋼に関しては全く未知のものであり、未反応のまま昇
華してしまうか、あるいは激しい反応により溶鋼が飛散
してしまうか等が考えられていたに過ぎない。工業的に
実験も検問も行われたことはなかった。実際、本発明者
らの予備実験の結果からも溶鋼の沸騰現象およびすトリ
ウムガスの飛散が激しく起こってしまい脱燐までは至ら
なかった。
By the way, even in the past, sodium-based flux, mainly Na2, has been used for desulfurization and dephosphorization in hot metal pretreatment.
Co 3 (soda ash) has been used, and the ability of such soda ash to dephosphorize hot metal has been widely known. However, what was conventionally known was the dephosphorization of hot metal, but nothing was known about molten steel, especially molten steel at high temperatures exceeding 1600°C. It was only considered that the molten steel would be scattered due to a violent reaction. No industrial experiments or inspections were conducted. In fact, the results of preliminary experiments conducted by the present inventors show that the boiling phenomenon of molten steel and the scattering of strium gas occurred violently, and dephosphorization was not achieved.

このような状況にあって本発明者らは永年研究を続けて
、先に、炭素0.1%以下、酸素200ppm以」二の
溶鋼にすトリウム炭酸塩を含有するフラックスを添加す
る脱炭・脱燐法について提案した(特願昭58−135
966号)が、さらに研究を続けたところ、ここに、滓
のない状況で78鋼に上記すトリウム炭酸塩含有フラッ
クスを添加すると、フラックスの損失がないこと、7!
塩基度の調整を必要としないことの相乗的効果によって
、予想外にも脱淡ばかりでなく脱炭も著しく促進される
ことを見い出した。ざらに、一方、ソーダ灰などの炭酸
ナトリウム塩を溶鋼に添加するに際し9、特定条件下で
処理することにより、そしてそれらを分割して添加する
ことにより、過激な反応を抑制して効率良く脱炭ならび
に脱燐が予想外に促進されることを見い出して、本発明
を完成したものである。
Under these circumstances, the inventors of the present invention have continued research for many years, and first developed a decarburization method by adding a flux containing thorium carbonate to molten steel with 0.1% carbon or less and 200 ppm or less oxygen. proposed a dephosphorization method (patent application 1986-135)
966) continued their research and found that there was no flux loss when the above-mentioned thorium carbonate-containing flux was added to 78 steel in the absence of slag.7!
It has been unexpectedly found that not only desalination but also decarburization is significantly promoted due to the synergistic effect of not requiring adjustment of basicity. On the other hand, when adding sodium carbonate salts such as soda ash to molten steel9, by treating them under specific conditions and adding them in parts, radical reactions can be suppressed and removed efficiently. The present invention was completed by discovering that charcoal and dephosphorization were unexpectedly promoted.

かくして、本発明は、低炭素・低燐鋼の製造に際し、真
空脱炭処理等の高価な処理を必要とせず、しかも従来よ
り問題であった脱鱗と同時に脱炭も合わせて効率良く行
える転炉内脱炭・脱燐法を提供するものであり、その要
旨とするところは、転炉吹錬に先立ってまずSiS2.
1%、好ましくはS≦0.01%、SiS2.1%とず
べく溶銑予備処理を行い、充分に滓を除去してから、次
いで必要により添加される耐火物保護剤の添加のみで、
造滓剤を実質」二添加することなく、転炉内でi!!素
吹錬して炭素0.1%以下、酸素200ppm以上の/
SSi2し、続いてその転炉自溶鋼にすトリウム炭酸塩
を含むフラックスを添加して1(2炭脱3Aを行うこと
を特徴とする、低炭素・低域鋼の製造方法である。
Thus, the present invention provides a process that does not require expensive treatments such as vacuum decarburization when producing low carbon and low phosphorous steel, and can efficiently perform decarburization at the same time as descaling, which has been a problem in the past. This provides an in-furnace decarburization/dephosphorization method, and its gist is that SiS2.
1%, preferably S≦0.01% and SiS 2.1%, pre-treat the hot metal, thoroughly remove the slag, and then add a refractory protectant as necessary.
i! in the converter without adding substantially any slag forming agent! ! Bare blowing with less than 0.1% carbon and more than 200 ppm of oxygen /
This is a method for producing low-carbon, low-range steel, which is characterized by performing SSi2, followed by adding a flux containing thorium carbonate to the self-melting steel in a converter to perform 1 (2 carbon removal 3A).

さらに、本発明は、転炉吹錬に先立ってまずSiS2.
1%、好ましくはS≦0.01%、SiS2.1%とず
べく溶銑予備処理を行い、充分に滓を除去してから、次
いで必要により添加される耐火物保護剤の添加のみで、
造滓剤を実質」二添加することなく、転炉内で酸素吹錬
により炭素0.1%以下、酸素2ooppm以上の溶鋼
とし、引続き転炉内にて前記溶鋼にナトリウJ・炭酸塩
含有フラックスを添加して脱炭そして脱燐を行い炭素0
.02%以下とし、取鍋に出鋼時または出鋼後にさらに
ナトリウム炭酸塩含有フラックスを出鋼溶鋼流もしくは
取鍋内溶鋼に添加して最終脱燐を行うものである。
Furthermore, the present invention first provides SiS2.
1%, preferably S≦0.01% and SiS 2.1%, pre-treat the hot metal, thoroughly remove the slag, and then add a refractory protectant as necessary.
Without substantially adding any slag-forming agent, molten steel with 0.1% or less carbon and 20ppm or more oxygen is produced by oxygen blowing in a converter, and then a sodium J carbonate-containing flux is added to the molten steel in the converter. is added to decarburize and dephosphorize, resulting in zero carbon
.. 02% or less, and final dephosphorization is carried out by adding a sodium carbonate-containing flux to the tapped molten steel flow or the molten steel in the ladle during or after tapping the steel into the ladle.

このように、本発明にしたがえば、転炉吹錬時の滓生成
を可及的にさげるため、転炉吹錬に先立って、好ましく
はまず、S≦0.01%、SiS2゜1%とずべく溶銑
予備処理を行って充分に滓を除去してから、次いで、必
要により添加される耐火物保護剤以外の添加剤を添加す
ることなく、転炉内で酸素吹錬によりC50,1%、酸
素≧200ppmの溶鋼とし、引続き転炉内の前記溶鋼
にすトリウム炭酸塩を含むフラックスを添加して脱炭お
よび脱燐を行う。上記フラックスの溶鋼への添加は、酸
素吸錬終了後、直に溶鋼表面に直接投入することで行っ
てもよいが、溶鋼攪拌用のガスに同伴させて該ガスと共
に溶鋼内に吹込むことにより行うのが好ましい。
Thus, according to the present invention, in order to reduce slag formation during converter blowing as much as possible, prior to converter blowing, preferably S≦0.01%, SiS2°1% After pre-treating the hot metal and thoroughly removing the slag, it is then heated to C50. %, oxygen≧200 ppm, and then a flux containing thorium carbonate is added to the molten steel in a converter to decarburize and dephosphorize it. The above-mentioned flux may be added to the molten steel by directly injecting it onto the surface of the molten steel immediately after oxygen absorption, but it may also be added to the molten steel by entraining it with a gas for stirring the molten steel and blowing it into the molten steel together with the gas. It is preferable to do so.

溶銑予備処理としては、従来より種々の提案があり、本
発明はそのうち特定のものに制限されるものではない。
There have been various proposals for hot metal pretreatment, and the present invention is not limited to any particular one.

例えば、脱珪処理に関しては、高炉樋内またはトピード
(混銑車)内等にて溶銑中に酸化鉄等の酸素源を添加し
、溶銑中Siを5i02として除去してもよい。さらに
、脱硫処理に関しても、トピード内もしくは、注銑鍋内
において脱硫剤としてCaOまたはNa 2 CO3を
添加混合攪拌し、溶銑中のSを陸生に移行させ、該滓を
排滓することにより分離除去してもよい。前述のように
、本発明に係る方法では、転炉内吹錬は吹錬時に滓を実
質上作らないが、もしくは滓が極めて少ない状態で行う
ため、特に滓生成を主として引き起こすSi分を溶銑中
より除く必要があると同時に、転炉吹錬時に造滓剤(例
:脱硫・脱燐剤)を添加しないから、好適態様としては
予めS分をも低くしておく必要があり、一般にはSiS
2.1%、S≦0.01%である。
For example, regarding the desiliconization treatment, an oxygen source such as iron oxide may be added to the hot metal in a blast furnace gutter or a torpedo (pig-mixing car), and Si in the hot metal may be removed as 5i02. Furthermore, regarding desulfurization treatment, CaO or Na 2 CO3 is added as a desulfurization agent in the topedo or in the pouring ladle, mixed and stirred, S in the hot metal is transferred to land, and the slag is separated and removed by draining it. You may. As mentioned above, in the method according to the present invention, blowing in a converter is performed in a state in which substantially no slag is produced during blowing, or in a state where there is very little slag. At the same time, since no slag-forming agent (e.g. desulfurization/dephosphorization agent) is added during converter blowing, it is necessary to lower the S content in advance in a preferred embodiment.
2.1%, S≦0.01%.

なお、Sば、上述のように溶銑予備処理にて処理するの
が一般的であるが、転炉吹錬後の溶鋼にCa −3i 
(カルシリ)を添加し、脱酸と同時に脱硫を行ってもよ
い。ただし、Ca−3iに他の不純物(例えばC等)が
含まれていると、脱硫後の溶鋼成分が変わるため、Ca
−3iの純度を高くしなければならず、コスト的に高価
となるおそれがある。
Note that Ca-3i is generally treated in the hot metal pretreatment as described above, but Ca-3i is added to the molten steel after converter blowing.
(calcili) may be added to perform desulfurization at the same time as deoxidation. However, if Ca-3i contains other impurities (such as C), the molten steel composition after desulfurization will change, so Ca-3i
The purity of -3i must be increased, which may result in high cost.

序いでながら、鋼中Sは酸化雰囲気下では脱硫されない
ため、本発明において溶銑予備処理により脱硫されない
限り、ソーダ灰添加によっても高酸素含有鋼中からは除
去されない。
By the way, since S in steel is not desulfurized in an oxidizing atmosphere, it is not removed from high oxygen-containing steel even by adding soda ash unless it is desulfurized by hot metal pretreatment in the present invention.

かくして、本発明にあっては、SiS2.1%、S≦0
.01%にまで溶銑の予備処理を行うことにより、転炉
内酸素吹錬時に、はとんど滓が生成することなく脱炭が
進行する。しかし、溶銑中の残留Siが滓化すると耐火
物浸食が進むため、溶銑中Si量に合わせて、耐火物保
護剤としてCaOまたはM、O等を10kg/溶鋼to
n以下の少量だけ添加して炉内耐火月の保護を図っても
よい。
Thus, in the present invention, SiS2.1%, S≦0
.. By pre-treating the hot metal to 0.01%, decarburization proceeds without generating slag during oxygen blowing in the converter. However, if the residual Si in the hot metal turns into slag, refractory erosion progresses, so depending on the amount of Si in the hot metal, add CaO, M, O, etc. as a refractory protectant at 10kg/molten steel
It is also possible to protect the fire resistance inside the furnace by adding only a small amount of n or less.

次に、転炉内でC50,1%、酸素≧200ppm、好
ましくは、C50,05%、酸素≧400ppmにまで
溶製された、表面に実質上はとんど滓のない転炉内溶鋼
に対し、ソーダ灰(N82CO3)等のナトリウム炭酸
塩を含むフラックスを添加し脱炭および脱燐処理を行う
Next, the molten steel in the converter is melted to C50.1% and oxygen≧200ppm, preferably C50.05% and oxygen≧400ppm, and has virtually no slag on the surface. On the other hand, a flux containing sodium carbonate such as soda ash (N82CO3) is added to perform decarburization and dephosphorization treatment.

ところで、すでに述べたように、従来より溶銑脱燐用と
してナトリウム系フラックス、主としてNa2CO3が
用いられており、該Na 2 CO3の溶銑脱燐能につ
いては知られている。しかし、高温度での78鋼脱燐能
に関しては全く未知のものであり、未反応のまま昇華す
るか、または激しく反応して溶鋼飛散が起こるか等が考
えられ、工業規模での実験は行われていなかった。しか
し、本発明者らの知見によれば、溶鋼中の炭素分の低下
と共に反応の激しさも低下し、脱燐反応も進むのである
By the way, as already mentioned, sodium-based fluxes, mainly Na2CO3, have been used for dephosphorizing hot metal, and the ability of Na2CO3 to dephosphorize hot metal is known. However, the dephosphorization ability of 78 steel at high temperatures is completely unknown, and it is thought that it will sublimate without reacting, or that it will react violently and cause molten steel to scatter, so experiments on an industrial scale have not been carried out. It wasn't. However, according to the findings of the present inventors, as the carbon content in molten steel decreases, the intensity of the reaction also decreases, and the dephosphorization reaction progresses.

まず、ソーダ灰と溶鋼との化学反応としては主として次
のものが考えられる: Na2CO3千2G =2Na (g) +3CO・・
・・(1)Na2CO3+Fq =2Na (g ) 
+FeO→−co2・・・・(2) Na2CO3+415P=Na20 +215P205
十〇・・・・(3) これらの式中、式(1)および(2)の反応はNa分が
消費されるだけの反応であるが、式(2)の反応は進行
が遅い。また式(1)の反応は、−酸化炭素の発生によ
る溶鋼の沸騰現象を引き起こすとともに、Na(g)、
つまりナトリウムガスを主とする白煙を発生して激しく
進行する。そのため、従来、特に高温領域では溶鋼のソ
ーダ灰処理ができないと考えられていたのであった。
First, the following is the main chemical reaction between soda ash and molten steel: Na2CO3,0002G = 2Na (g) +3CO...
...(1) Na2CO3+Fq = 2Na (g)
+FeO→-co2...(2) Na2CO3+415P=Na20 +215P205
(3) In these formulas, the reactions of formulas (1) and (2) are reactions that only consume Na, but the reaction of formula (2) proceeds slowly. In addition, the reaction of formula (1) causes the boiling phenomenon of molten steel due to the generation of -carbon oxide, and also causes Na(g),
In other words, white smoke consisting mainly of sodium gas is generated and progresses violently. For this reason, it was previously thought that molten steel could not be treated with soda ash, especially in high-temperature regions.

一般には、式(])の反応では、発塵が極めて多く、し
かも反応それ自体も激しいが、炭素量と発塵の関係で言
えば、溶鋼のCをC50,1%とすることにより、転炉
に通常備えられているOG等のガス処理設備で集塵がで
き、実操業可能となる。なお、脱燐効率を上げるために
は、溶鋼炭素分は低い程良い。
In general, the reaction of formula () generates an extremely large amount of dust, and the reaction itself is also violent; however, in terms of the relationship between carbon content and dust generation, by setting the C content of molten steel to C50.1%, the reaction can be improved. Dust can be collected using gas processing equipment such as OG, which is normally provided in the furnace, and actual operation is possible. Note that in order to increase the dephosphorization efficiency, the lower the molten steel carbon content, the better.

一方、酸化された燐、つまりP2O5は陸生に固定され
るが、その場合、滓の塩基度(Na20/Si○2)が
重要である。このような滓の塩基度は、本発明者らの一
連の実験の結果によるとNa2O/5i02≧1に保つ
のが好ましく、このため、転炉中の溶鋼表面には5i0
2が少ない程滓の塩基度を高め易く、脱燐効率も高まる
と共に、添加フラックス原単位(′/8鋼重量当りのフ
ラックス所要量)も低くすることができる。したがって
、本発明によれば、十分に脱硫・脱砂した溶銑を使用す
ることにより、この溶銑に対する転炉吹錬は、造滓剤を
添加せずに行い、後の工程で添加するナトリウム炭酸塩
含有フラックスによる脱炭・脱燐効率を高めている。
On the other hand, oxidized phosphorus, that is, P2O5, is fixed on land, and in this case, the basicity of the slag (Na20/Si○2) is important. According to the results of a series of experiments conducted by the present inventors, it is preferable to maintain the basicity of such slag at Na2O/5i02≧1.
The smaller the amount of 2, the easier it is to increase the basicity of the slag, the higher the dephosphorization efficiency, and the lower the added flux basic unit (the amount of flux required per '/8 steel weight). Therefore, according to the present invention, by using hot metal that has been sufficiently desulfurized and desanded, converter blowing is performed on this hot metal without adding a slag-forming agent, and sodium carbonate is added in a later step. The included flux increases decarburization and dephosphorization efficiency.

このように、本発明によれば、予め行なう転炉吹錬によ
って、溶鋼の炭素量をC50,1%に調整しておくと、
式(2)の反応を抑制するとともに、式(1)の反応を
も穏やかに進行させ得る。
As described above, according to the present invention, if the carbon content of the molten steel is adjusted to C50.1% by converter blowing performed in advance,
While suppressing the reaction of formula (2), the reaction of formula (1) can also be allowed to proceed gently.

ここで、さらに、炭素を低下させC50,02%とする
と、式(3)の脱燐反応が極めて良好に進行する。しか
し、通常転炉吹錬ではC20,035%が限界であり、
転炉下部において各種ガスを溶鋼中に吹き込むことので
きる複合吹錬でもC20,030%が実用的には限界で
あるため、式(3)の脱燐反応を効率良く行うためには
、まず転炉吹錬直後に式(1)の脱炭反応を主とし、式
(3)の脱燐反応も進める予備脱燐を行いC50,02
%とした後、滓を充分に除去するため、転炉より取鍋に
溶鋼を移し、その後に式(3)の脱燐反応を主に進める
のが効率的である。
Here, if the carbon content is further reduced to C50.02%, the dephosphorization reaction of formula (3) proceeds extremely well. However, in normal converter blowing, C20,035% is the limit.
Even in composite blowing, in which various gases are injected into the molten steel at the bottom of the converter, C20,030% is the practical limit. Immediately after furnace blowing, preliminary dephosphorization is carried out, mainly to promote the decarburization reaction of formula (1), but also to advance the dephosphorization reaction of formula (3).
%, in order to sufficiently remove the slag, it is efficient to transfer the molten steel from the converter to a ladle, and then mainly proceed with the dephosphorization reaction of formula (3).

したがって、本発明の別の態様にあっては、一旦転炉内
溶鋼にナトリウム炭酸塩含有フラックスを添加してC5
0,02%としてから取鍋に出鋼時または出鋼後にさら
にすトリウム炭酸塩含有フラックスを出鋼溶鋼流もしく
は取鍋内溶鋼に添加して最終脱燐を行う。この際、溶鋼
攪拌が処理時間に大きく影響するから、転炉より取鍋に
出鋼中の溶鋼流にフラックスを添加するのが最も好まし
い。しかしながら、取鍋内の溶鋼にArガス等を吹き込
み攪拌しつつ、前述のフラックスを添加する方法も当然
可能である。
Therefore, in another aspect of the present invention, a sodium carbonate-containing flux is once added to the molten steel in the converter to reduce the C5
After the concentration is reduced to 0.02%, thorium carbonate-containing flux is further added to the tapped molten steel flow or the molten steel in the ladle during or after tapping the steel into a ladle to perform final dephosphorization. At this time, since stirring of the molten steel greatly affects the processing time, it is most preferable to add flux to the molten steel flow being tapped from the converter into the ladle. However, it is naturally also possible to add the above-mentioned flux while stirring Ar gas or the like into the molten steel in the ladle.

なお、本発明によれば、転炉吹錬後の溶鋼中の酸素量、
つまり溶存酸素量は200ppm以上に制限される。
According to the present invention, the amount of oxygen in the molten steel after converter blowing,
In other words, the amount of dissolved oxygen is limited to 200 ppm or more.

通常、転炉吹錬後の溶鋼中には、溶鋼中酸素量が少なく
なるほど、それだけ多量の酸素が含有されており、本発
明にあっても、式(1)および式(3)によって脱炭・
脱j省反応が進行する場合、溶鋼中酸素量が多いと酸素
ポテンシャルが高まり、かかる脱炭・脱燐反応が強力に
進行すると同時にNa系フラックスより発生した02源
が不純物の酸化に利用されずに鋼中に吸収されるのを防
止できる。したがって、本発明においては、鋼中酸素量
は多ければ多い程皐ましい。
Normally, the lower the amount of oxygen in the molten steel, the more oxygen is contained in the molten steel after converter blowing.・
When the de-J-saving reaction progresses, if the amount of oxygen in the molten steel is large, the oxygen potential increases, and the decarburization and dephosphorization reactions progress strongly, and at the same time, the 02 source generated from the Na-based flux is not used to oxidize impurities. can be prevented from being absorbed into the steel. Therefore, in the present invention, the higher the amount of oxygen in the steel, the more severe it is.

本発明においては、転炉吹錬後の炭素量をC50,1%
に制限しているため、このときに含有される酸素量とし
て200ppmを下限とする。好ましくは、鋼中酸素量
は300ppm、さらに好ましくは、400ppm以上
である。
In the present invention, the carbon content after converter blowing is C50.1%.
Therefore, the lower limit of the amount of oxygen contained at this time is 200 ppm. Preferably, the amount of oxygen in the steel is 300 ppm, more preferably 400 ppm or more.

ところで、Pは、通常、転炉などで普通銑を吹錬・出鋼
し、次いで同じ転炉で、極低燐銅用の溶銑を入れて吹錬
を行うと、炉壁などに付着した滓などより溶銑中にPが
移る、いわゆる燐ピックアップの現象が見られる。しか
し、本発明によればそのような燐ピックアップにもかか
わらず、効率的な脱燐反応が行われることが確認された
。したがって、極低燐銅用の専用の転炉を設ける必要は
もちろん、転炉への溶銑装入に先立って特別の作業など
を行う必要もなく、この点からも安価な操業を可能にす
る。
By the way, P usually occurs when normal pig iron is blown and tapped in a converter, and then hot metal for ultra-low phosphorous copper is added to the same converter and blown, and the slag that adheres to the furnace walls etc. A so-called phosphorus pickup phenomenon, in which P is transferred into the hot metal, is observed. However, according to the present invention, it has been confirmed that an efficient dephosphorization reaction can be carried out despite such phosphorus pickup. Therefore, it is not necessary to provide a dedicated converter for ultra-low phosphorous copper, and there is no need to perform any special work prior to charging hot metal into the converter, which also enables inexpensive operation.

本発明において、式filの反応によるナトリウムガス
の発生を抑制するため、このナトリウム炭酸塩の一部を
、例えばメタ珪酸ソーダによって置き換えてもよい。な
お、式(3)によれば、炭素が一部遊離されてくるが、
これば大部分スラグ中に吸収され、また、式(1)の反
応にしたがって、ソーダ灰によって除去される。
In the present invention, in order to suppress the generation of sodium gas due to the reaction of formula fil, a part of this sodium carbonate may be replaced, for example, by sodium metasilicate. According to formula (3), some carbon is liberated, but
This is mostly absorbed into the slag and removed by soda ash according to the reaction of equation (1).

ここに、本発明において利用されるすl・リウム炭酸塩
としては、Na 2 Go 3 <ソーダ灰)、Na1
lCO3(炭酸水素ナトリウム)、KNaCO3(炭酸
す1〜リウムカリウム)等が挙げられるが、特にソーダ
灰が好ましく、例えばトロナ灰やマガジ灰等のようなソ
ーダ製品の原料となるセスキ炭酸ソーダを含む鉱石を塊
状もしくは粉状にしてそのままフラックスとして用いて
もよい。
Here, the soot and lithium carbonates used in the present invention include Na2Go3<soda ash), Na1
Examples include lCO3 (sodium hydrogen carbonate), KNaCO3 (sodium to potassium carbonate), but soda ash is particularly preferred; for example, an ore containing sodium sesquicarbonate that is a raw material for soda products such as trona ash and magazi ash. It may be used as a flux as it is in the form of lumps or powder.

なお、フラックスは上記すトリウム炭酸塩単味であって
よいが、その他に、CaO、M、、o等の塩基度調整用
添加剤を混入させると、P2O5の陸生固定に要するナ
トリウム分が少なくてすみ、さらに脱炭脱鱗反応時の溶
鋼表面露出防止および温度降下防止となりより好ましい
The flux may be the above-mentioned thorium carbonate alone, but if additives for basicity adjustment such as CaO, M, and O are mixed, the sodium content required for terrestrial fixation of P2O5 can be reduced. Furthermore, it is more preferable because it prevents the molten steel surface from being exposed during the decarburization and descaling reaction and prevents temperature drop.

Claims (1)

【特許請求の範囲】[Claims] (1)溶銑予備処理により珪素0.1%以下とした溶銑
を、造滓剤を添加することなく、転炉内で酸素吹錬して
炭素0.1%以下、酸素200ppm以上の/8鋼とし
、続いてその転炉内18鋼にすトリウム炭酸塩を含むフ
ラックスを添加して脱炭脱燐を行うことを特徴とする、
低炭素・低域114の製造方法。 (21i銑予備処理により珪素(,1%以下とした溶銑
を、造滓剤を添加することなく、転炉内で酸素吹錬して
炭素0.1 %以下、酸素200ppm以上の溶鋼とし
、続いて該転炉内溶鋼にナトリウム炭酸塩含有フラック
スを添加して炭素0.02%以下にまで脱炭し、次いで
取鍋に出鋼中または出鋼後に溶鋼にさらにナトリウム炭
酸塩含有フラックスを添加して脱燐することを特徴とす
る、低炭素・低燐鋼の製造方法。
(1) Hot metal pre-treated to contain 0.1% or less silicon is oxygen blown in a converter without adding any slag forming agent to create a /8 steel with 0.1% or less carbon and 200ppm or more oxygen. Then, a flux containing thorium carbonate is added to the 18 steel in the converter to perform decarburization and dephosphorization.
Method for manufacturing low carbon/low range 114. (21i pig iron pre-treatment to reduce the silicon content to 1% or less is oxygen-blown in a converter without adding a slag-forming agent to produce molten steel with 0.1% or less carbon and 200ppm or more oxygen. Then, a sodium carbonate-containing flux is added to the molten steel in the converter to decarburize the carbon to 0.02% or less, and then a sodium carbonate-containing flux is further added to the molten steel during or after tapping into the ladle. A method for producing low-carbon, low-phosphorus steel, which is characterized by dephosphorizing the steel.
JP19407083A 1983-10-19 1983-10-19 Manufacture of low-carbon and low phosphor steel Pending JPS6086204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19407083A JPS6086204A (en) 1983-10-19 1983-10-19 Manufacture of low-carbon and low phosphor steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19407083A JPS6086204A (en) 1983-10-19 1983-10-19 Manufacture of low-carbon and low phosphor steel

Publications (1)

Publication Number Publication Date
JPS6086204A true JPS6086204A (en) 1985-05-15

Family

ID=16318457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19407083A Pending JPS6086204A (en) 1983-10-19 1983-10-19 Manufacture of low-carbon and low phosphor steel

Country Status (1)

Country Link
JP (1) JPS6086204A (en)

Similar Documents

Publication Publication Date Title
US4373949A (en) Method for increasing vessel lining life for basic oxygen furnaces
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JPS6086204A (en) Manufacture of low-carbon and low phosphor steel
US3954446A (en) Method of producing high duty cast iron
JP5286892B2 (en) Dephosphorization method of hot metal
JP4854933B2 (en) Refining method with high reaction efficiency
JP4655573B2 (en) Method for oxidative dephosphorization of chromium-containing hot metal
JPS6212301B2 (en)
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPS6121285B2 (en)
JP2856106B2 (en) Hot metal desulfurization method
JPS6029410A (en) Method for decarburizing and dephosphorizing molten steel
JPS6029409A (en) Method for decarburizing and dephosphorizing molten steel
JPS636606B2 (en)
SU1486523A1 (en) Method of producing ferronickel
JPH0849007A (en) Treatment of stainless steel slag
SU631542A1 (en) Solid oxidizing mixture for refining alloys outside furnace
SU1071643A1 (en) Method for smelting steel in oxygen convertor
JPH10317035A (en) Desulphurization method of ferrous molten alloy, and desulphurizing agent
SU840130A1 (en) Method of steel smelting
JPH0559419A (en) Method for dephosphorizing molten iron
RU2355776C2 (en) Production method of manganous steel
JPS6237686B2 (en)
JP2001262214A (en) Method for refining molten iron alloy