JPS608601A - 蒸気発生・再加熱方法および装置 - Google Patents

蒸気発生・再加熱方法および装置

Info

Publication number
JPS608601A
JPS608601A JP59059665A JP5966584A JPS608601A JP S608601 A JPS608601 A JP S608601A JP 59059665 A JP59059665 A JP 59059665A JP 5966584 A JP5966584 A JP 5966584A JP S608601 A JPS608601 A JP S608601A
Authority
JP
Japan
Prior art keywords
steam
economizer
reheating
reheater
heat supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59059665A
Other languages
English (en)
Inventor
ドナルド・シ−・シユル−ダ−バ−グ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Babcock and Wilcox Co
Original Assignee
Babcock and Wilcox Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock and Wilcox Co filed Critical Babcock and Wilcox Co
Publication of JPS608601A publication Critical patent/JPS608601A/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/181Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using nuclear heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D5/00Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
    • G21D5/04Reactor and engine not structurally combined
    • G21D5/08Reactor and engine not structurally combined with engine working medium heated in a heat exchanger by the reactor coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 発明の背景 本発明は、蒸気発生および再加熱装置に関し、特に、熱
供給流体を水および蒸気に対し熱交換関係に通流させて
、高圧(H,P)熱機関(即ちタービン)へ送給するた
め過熱蒸気を供給するとともに、高圧M機関からの排出
蒸気を低EE(L、P)熱機関(即ちタービン)へ送給
するのに適した品質となるまで再加熱するようにした蒸
気発生および再加熱装置に関する。ここでいう「品質」
とは、蒸気と水の混合物における蒸気の重量分率または
重量百分率のことであり、更には、過熱された蒸気の過
熱の度数のことである。
加圧水型原子炉プラントは、一般に、蒸気発生サイクル
を使用し、冷却液と称される第1流体を炉心内にある燃
料棒東に対し熱交換関係に通流させ、それによって加熱
された冷却液を蒸気発生器と称される熱交換器に通し、
該蒸気発生器内を流れる供給水と熱交換させて供給水を
加熱し、i熱蒸気を創生ずる。そのような貫流型蒸気発
生器においては、予熱器、蒸発器および過熱器が別個の
ユニットとして設けられておらず、1It−の管束内に
合体されている。予熱、蒸発および過熱の機能は、供給
水および発生した蒸気が管束内を上昇するにつれて、そ
れぞれ管束の下方部分、中間部分および上方部分におい
て行われる。高圧タービンからの排出蒸気も、上記冷却
液と熱交換関係に通流させて、低圧タービンへ送給する
のに適した品質にまで再加熱することができる。
米国特許第4.164.849号に開示された原子炉プ
ラントにおいては、高速増殖炉がらの冷却液は液体ナト
リウムである。この冷却液は、原子ヵ発電プラントの再
加熱サイクルに典型的にみられる態様で過熱Δgおよび
再加熱器内を並列6fEれとして通された後、蒸発器お
よび予熱器を直列流れとして通され、原子炉の炉心へ戻
される。
加圧水型原子炉、高速増殖炉、融合炉などのような発届
用原子炉装置においては、蒸気の湿度は、熱供給流体(
冷却液)の温度および熱供給流体が蒸気および水に熱を
与えるときの該流体の温度範囲によって制限される。ラ
ンキンサイクルの熱効率を高めるには、より高い平均温
度で水をノ用熱し、蒸発させ、蒸気を!4熱させること
が望まし、いことは当業者には周知である。従って、ラ
ンキンサイクルの熱効率を高めるには水をできるだけ高
い圧力で蒸発させ、それによって水をできるだけ高い温
度で蒸発させることが望ましい。しかしながら、蒸気圧
力を高くすると、いわゆる「ピンチ点△T問題」を訂起
する。即ち、蒸気圧力、従ってそれに対応する蒸発温度
が高められると、この△T(サイクル中の特定の点にお
ける2つの熱交換流体の温度差)が過度に小さくなり、
蒸気発生器のエコノマイザ部および蒸発器部内の対数平
均温度差を、効率的な熱伝達を行うのに十分なレベルに
維持することができなくなる。
そのような温度制限のために、ランキンライフルの十分
な熱効率を発揮することができる、有機流体の冷却剤を
使用する発電用融合反応炉を設計することには困難があ
った。
発明の概要 従って、本発明の目的は、供給水に対して熱交換関係に
通流させる所定の温度範囲の熱供給流体に対し供給水が
蒸発して蒸気となる圧力および温度を高くすることによ
って発電用融合原子炉、加圧水型原子炉、ナトリウムま
たは有機流体冷却式高迷増殖原子炉、および蒸気発生お
よび再加熱装置のランキンサイクル熱効率を向上させる
ことである。
実施例の説明 第1図は、本発明によって得られる利点を例示するため
に、蒸気発生装置における温度と伝達熱量の百分率との
関係を表わすグラフである。温度は縦軸の下から上に高
くなっている。第1図のグラフにおいて、10は、熱供
給流体が蒸気タービンへ過熱蒸気を供給するために水お
よび蒸気に与える熱の温度範囲を示すグラフ曲線である
。この熱供給流体の温度範囲グラフ曲線は、右方へいく
につれて上昇する傾斜直線であることに留意されたい。
熱供給流体のこれらの温度が、供給水を蒸発させて蒸気
2を発生させる湿度を制限する。綜12は、典型的な魚
気−水サイクルを表わす。水は、点16から18までの
上向き傾斜線区間14において予熱され、次いで、水は
、点18から22までの線区間20において一定温度で
蒸発して蒸気を発生し、得られた飽和蒸気は、点22か
ら26までの上向き傾斜線区間24において過熱される
。水が蒸発して飽和蒸気を発生する線区間20の温度T
1は、供給水の蒸発が始まる、熱供給流体の点28にお
ける温度T2によって制限される。
従って、点28は、「ピンチ点」とみなすことができ、
温度差’r、 −’r1を「ピンチ点ΔT」とみなすこ
とができる。
熱供給流体の温度曲線10は、グラフの右方に向って上
向きに傾斜しているから、ピンチ点を右方へ移動させる
ことができれば、蒸発が生じる温度を高くすることがで
きることは明らかである。
それは、線30によって示されている。即ち、線30に
おいては、点16から34までの線区間32において供
給水の予熱が行われ、点34から40までの線区間にお
いて一定温度で水が7’A発し飽和蒸気を生じる。その
飽和蒸気の過熱は、点40から26までの線区間38に
おいて行われる。
線30で表わされる蒸気−水サイクルにおいては、ピン
チ点は、点42であり、線10の場合の〃(光温度TI
より高い温度’rsでの蒸発を可能にする。
本発明の目的は、熱供給流体の温度制限の46問内で水
を蒸発させて飽和蒸気を創生ずる温度を1益度T3で示
されるように高くすることである。そのような高い温度
を達成するための本発明の装置nの実施例を説明する。
第2図を参照すると、核融合原子炉発電プラントのため
の本発明の蒸気発生・再加熱装置50が概略的に示され
ている。このようなプラントにおいては、炉心またはブ
ランケット53から熱エネルギーを除去するために、か
つ、中性子を吸収し、それによってトリチウム燃料を生
成するために、導管51を通して通流させる中間のリチ
ウム鉛−流体を用いることができる。その後トリチウム
の大部分は燃料として使用するためにリチウム−鉛から
分i’jitされるが、トリチウムの一部は管壁を透過
して拡散する。各・ホ穂を透過して拡散する少量のトリ
チウムがプラントの密閉部分から逃出するのを防止する
ために、有機物質を用いて、ぜ壁を通して拡散する、リ
チウム−鉛を帯同したトリチウムを捕捉するとともに、
該有機物質を熱供給流体として使用するべく該有機物質
によりリチウム−鉛から熱を除去させる。このリチウム
−鉛から熱を除去するために使用される有機流体(熱供
給流体)は、その流体が通常遭遇する温度より高い温度
では崩壊する、例えばポリフェニルのような流体である
ことが好ましいが、任意の適当な熱供給流体を用いるこ
とができる。有機流体は、熱交換器55内でリチウム−
鉛から熱エネルギーを吸収すると、ここに例示した実施
例では421℃(790丁)の温度になる。次いで、こ
の有機流体は、蒸気発生・再加熱装置50を通して通流
され、水および蒸気に熱エネルギーを与えて蒸気を創生
じ、蒸気を再加熱すると、627℃(62゜?)の温度
に冷却する。有機流体のこの温度範IL?1のグラフ曲
線52は、第3図のグラフに上向き傾斜直線52によっ
て示されている。これに対応するリチウム−鉛の温度範
囲は、直線52に対応して上向きに傾斜する直線54に
よって示されている。
再び第2図を参照して説明すると、供給水は、供給水ポ
ンプ56のような手段により導管58を通し246℃(
475?)の温度で第1エコノマイザ60へ供給され、
そこから導管62を通して第2エフノマイザ64へ供給
され、該どα1および81!2エコノマイザで予熱され
た後、導・R66を通して蒸発器68へ送給され、蒸発
器内で更に加熱されて蒸発し、205℃(401’F)
の一定温度および17.2 Mpa、 (メガパスカル
)の圧力の飽和蒸気を発生する。蒸発器68内において
、飽和蒸気は、水と分離され、導管70を通して過熱器
72へ送られ、過熱器内で更に熱エネルギーを与えられ
て、385℃(725?)の温度および16、55 M
pa(169’i/cm”絶対圧)の圧力にまで過熱さ
れる。過熱された蒸気は、次いで導管74を通して高圧
タービン76のような高圧熱機関へ送られ、該タービン
内を通る間に膨張して仕4)をする。高圧タービンから
の排出蒸気の品質を中間圧タービン78のような中間圧
熱機関へ供給するのに適゛シた品質にまで高めるために
、飽和状態の、そして6.70 Mpa (70kp/
cm2絶対EE)の圧力の該排出蒸気は、導管80を通
して再加熱器82のような第1再加熱手段へ送られて追
加の熱エネルギーを与えられ、中間圧タービン78へ供
給するのに適した343℃(650?)の温度および6
.9 Mpa (70kg7cm2絶対圧)の高品質の
(即ち過熱された)蒸気とされ、導管84を通して中間
圧タービン78へ送られ、該タービン内を通る間に再び
膨張せしめられ追加の仕小をする。
中圧タービン78からの排出蒸気の品質を低圧タービン
86のような低圧熱機関へ供給するのに適した品質にま
で高めるために、飽和状態の、そして172 Mpa 
(18峙/個2絶対圧)の圧力の該排出蒸気は、導管8
8を通して第2段再加熱器94、導管92および第2段
再加熱器94のような第2再加熱手段へ送られて追加の
熱エネルギーを与えられ、低圧タービン86へ供給する
のに適した345℃(ssoy)の温度および1.72
 Mpa(18kg7cm”絶対圧)の高品質の蒸気と
され、2!Z皆96を通して低圧タービン86へ送られ
、該タービン内を通る間に膨張して追加の仕事をする。
低圧タービン86から排出された蒸気は、導管98を通
して凝縮器100へ供給してljF、縮させ、次いで導
管102および適当な供給水加xIjtおよび処理装置
(図示せず)を通して供給水ポンプ56へ戻すれ、サイ
クルが繰返される。
従来の蒸気−水サイクルにおいては有機流体は、その熱
エネルギーを与えるために再加熱器と過熱器とへ並列流
として分流され、次いで蒸発器およびエコノマイザへ直
列に通流される。そのような従来の蒸気−水サイクルに
おける蒸発温度に比べて、ランキンサイクルの熱効率を
増大させるように蒸発器68内における水の蒸発温度を
高くするために、本発明によれば、有機流体が、第1お
よび第2エコノマイザ60.64内の供給水に熱エネル
ギーを付与するとともに、蒸発器68および過熱器72
を通過した後再加熱器82.90.94内の排出蒸気に
も熱エネルギーを付与するようにし、それによって、有
機流体内の利用しうる熱エネルギーのうち、該流体が蒸
発器68および過熱器72を通過した後供給水の予熱お
よび排出蒸気の再加熱のために与えられる熱エネルギー
の割合(%)を高めることができるようにする。そのよ
うな有機流体の流れを可能にするために、本発明によれ
ば、蒸発器68と、過熱器72と、エコノマイザ60.
64とを第2図に示されるように相互に分離させる。そ
れによって、第3図に104で示される「ピンチ点」が
右方へ移動され、従つて、熱供給流体としてここに例示
した温度でポリフェニルを用いる在来の蒸気発生・再加
熱装置におけるより高い一定温度で供給水を蒸発させる
ことができる。
再び第2図を参照して説明すると、有機流体は、421
℃(790下)の温度で導管106を通して過熱器72
へ供給され、過熱器内で蒸)A器68からの飽和蒸気と
熱交換関係をなして通流され、過熱蒸気を創生ずる。有
機流体は、過熱器72から407℃(765下)の温度
で導管108を通して排出され、直列流として蒸発器6
8へ送給され、蒸発器内で予熱ずみの供給水に対し熱交
換関係をなして通され、供給水を蒸発させて飽和蒸気を
創生ずる。有機流体は、蒸発器68内で供給水に熱エネ
ルギーを付与した後、導管110を通って373℃(7
03下)の温度で蒸発器から流出する。本舛明によれば
、有機流体は、次いで、再加熱器82.90.94を含
む再加熱手段と、第1および第2エコノマイザ60.6
4を含むエコノマイザ手段とを並列流として通され、供
給水とタービンからの排出蒸気との両方に対し熱交換関
係をなして通流される。詳述すれば、蒸発器68からの
有機流体の一部は導管112を通して第2エコノマイザ
64へ送られる。有機流体の残部&ま導管114を通し
て送られランキンサイクルの熱効率を更に高めるために
、並列流として導管116および118を通し、それぞ
れ第2再加熱器の第2段94および第1加熱′a82へ
導かれる。有機流体は、第2エコノマイザ64、第2再
加熱器の第2段94および第1再加熱器82力)らそれ
ぞれ342℃(648?)の温度で導管120.122
.124を通って流出し、共通の導管126に合流し、
再び並列流れとして導g128および130を通しそれ
ぞれ第1エコノマイザ60および第2再加熱器の第1段
90へ送られる。有侶流体(ま、第1エコノマイザ60
および第2再加熱者の第1段90からそれぞれ327℃
(620’F)の温度で尋’庁132および134を通
して流出し、共通の導管136で合流し、導管136を
通して熱交換器55へ戻され、熱交換器内でリチウム−
鉛に対し熱交換関係をなして通流されてリチウム−鉛か
ら再び熱エネルギーを受取り、導−1106を通して再
び過熱器72へ送られ、サイクルが繰返される。
エコノマイザおよび再加熱器の数は必要に応じて増減す
ることができる。また、熱供給流体としては、液体ナト
リウムやその他の有機物質流体、液体金属、油など任意
の適当な流体を用いることができる。また、各導管内に
流れ制御のための適当な弁および装置(図示せず)を配
設することができることも当業者には明らかであろう。
水を蒸発させて飽和蒸気を創生ずるための温度が本発明
によってどのように高められたかは第3図に示されてい
る。第3図のグラフにおいて、第1エコノマイザ60内
での供給水の予熱は、点140から142までの線区間
138によって表わされており、第2再加熱器の第1段
90内での排出蒸気の再加熱は点146から142まで
の点線区間144によって示されている。第2エコノマ
イザ64内での供給水の追加の予熱は、点142から1
50までの線区間148によって表わされ、第2再加熱
器の第2段94内での排出蒸気の再加熱並びに第1再加
熱器82内での排出蒸気の再加熱は、点142から15
4までの点線区間152によって表わされている。点1
04は、水を蒸発させるときの温度の限界を示す「ピン
チ点」である。点150から158までの一定温度の線
区間156は、蒸@468内での供給水の蒸発を示す。
点158から160までの線区間160は、過熱器72
内での飽和蒸気の過熱を表わす。有機流体内の利用可能
な熱エネルギーのほぼ50%が供給水の予熱と、高圧タ
ービンおよび中間圧タービンから排出された蒸気の再加
熱のために利用されていることに留意されたい。もし、
有機流体を、従来の技法に従って、蒸発器およびエコノ
マイザへ送給する前に過熱器と再加熱器へ並列流として
送給したとすれば、有機流体の利用可能熱エネルギーの
50%より相当少い鰍の熱エネルギーしか供給水の予熱
のために使用することができないから、「ピンチ点jI
D4は第3図のグラフでみて左方へ移動する。即ち、供
給水の蒸発が起る1福度が相当に低下することになる。
これに対して、本発明の蒸気発生−再加熱装置50は、
ランキンサイクルの熱効率を増大させるために供給水の
蒸発温度を高めることができる。
本発明の方法によれば、飽和蒸気を熱機関へ送給するべ
く過熱するために熱供給流体を飽和蒸気に対し熱交換関
係をなして過熱器を通して通流させる工程と、 該熱供給流体を過熱器を通して通流させた後、該熱供給
流体を予熱された供給水に対し熱交換関係をなして蒸発
器を通して通流させ、過熱器へ送給するための飽和蒸気
を創生ずる工程と、熱供給流体を蒸発器を通して通流さ
せた後、該熱供給流体をエコノマイザ手段と再加熱器手
段とを並列流として通流させて供給水を蒸発器へ送給す
るために予熱し、少くとも1つの熱機関からの排出蒸気
をより低圧の熱機関へ送給するために再加熱する工程と
から成る蒸気発生・再加熱方法を提供する。
【図面の簡単な説明】
第1図は、従来の蒸気−水サイクルに比べて本発明によ
って得られる利点を示す温度対熱伝達量のグラフ、第2
図は、本発明の蒸気発生・再加熱装置の概略図、第6図
は第2図の装置に関する温度対熱伝達量を示すグラフで
ある。 55:熱交換器 60:第1エコノマイザ 64:第2エコ/マイザ 68:蒸発器 70:過熱8g 76:熱機関(高圧蒸気タービン) 78:熱機関(中間圧蒸気タービン) 82:再加熱器 86:熱機関(低圧蒸気タービン) 90:第1段再加熱器 94:第2段再加熱器 図面の浄書(内容に変更なし) FIG1 FIG、3 手続袖正書(方式) %式% 事件の表示 昭和59年特 願第59665 は発明の
名称 蒸資発生・再加熱方法および装置補正をする者 π件との関係 特許出願入 代ilj人 〒103 補正命令通知の[1付昭和59年6月26日−−−寸市
ゴ1〒トち咄?呻T用冷力11f−之tイ1!リド乙に
必ヒ==−−補1[:、の対象 油圧の内容 別紙の通り 図面の浄書(内容に変更なし)

Claims (1)

  1. 【特許請求の範囲】 1)供給水を蒸発させて飽和蒸気を発生させるための蒸
    発器手段と、 該飽和蒸気を熱機関へ送給するために過熱するための過
    熱器手段と、 該熱機関からの排出蒸気をより低圧の熱機関へ送給する
    ために再加熱するためのコくとも1つの再加熱器手段と
    、 供給水を前記蒸発器手段へ送給する前に予熱するための
    エコノマイザ手段と、 熱供給流体を前記過熱器手段および蒸発器手段を直列に
    通して前記蒸気および水に対し熱交換関係をなして通流
    させるための導管手段と、11″ 前記熱供給流体を前記蒸発器手段から流出した後前記再
    加熱器手段とエコノマイザ手段とを並列に通し前記排出
    蒸気および供給水に対し熱交換関係をなして通流させる
    ための導管手段とから成る蒸気発生・再加熱装置。 2)前記熱供給流体へ原子炉からの熱エネルギーを付与
    するための熱エネルギー付与手段を備えている特許請求
    の範囲第1項記載の蒸気発生・再加熱装置。 3)前記熱機関は、高圧蒸気タービンおよび中間Dタタ
    ービンであり、前記より低圧の熱機関は、低圧蒸気ター
    ビンであり、前記再加熱器手段は、該高圧蒸気タービン
    からの排出蒸気を中間UE、蒸気タービンへ送給するた
    めに再加熱するための再加熱器と、該中間圧蒸気タービ
    ンからの排出蒸気を低圧蒸気タービンへ送給するために
    再加熱するための第1段再加熱器および第2段再加熱器
    とを含み、前記エコノマイザ手段は、第1エコノマイザ
    と第2エコノマイザを含み、前記並列流のための前記導
    管手段は、前記熱供給流体を前記第2エコノマイザと、
    第2段再加熱器と、高圧蒸気タービンからの排出蒸気の
    ための前記再加熱器とを並列流として通すための導管と
    、第2エコノマイザ、第2役得加熱器、および高圧蒸気
    タービンの排出蒸気のための前記再加熱器からの熱供給
    流体を前記第1エコノマイザと第1段再加熱器とを並列
    に通して通流させるための導管を含むものである特許請
    求の範囲第2項記載の蒸気発生・再加熱装置。 4)前記蒸発器手段と、過熱器手段と、エコノマイザ手
    段とは互いに分離されており、予熱された供給水を蒸発
    器手段へ送給するためにエコノマイザ手段を蒸発器手段
    に接続する導管と、飽和蒸気を過熱器手段へ送給するた
    めに蒸発器手段な過熱器手段に接続する導管が設けられ
    ている特許請求の範囲第2項記載の蒸気発生・再加熱装
    置。 5)前記熱供給流体へ核融合炉からの熱エネルギーを付
    与するための熱エネルギー付与手段を備えている特許請
    求の範囲第1項記載の蒸気発生・再加熱装置。 6)前記熱エネルギー付与手段は、核融合反応の熱エネ
    ルギーを中間のトリチウム産出流体に付与するための手
    段と、該中間のトリチウム産出流体からの貼エネルギー
    を前記熱供給流体に付与するための手段とから成り、該
    熱供給流体は、トリチウムが核融合炉プラントの密閉部
    分がら逃出するのを防止するためにトリチウムを捕捉す
    るt+: 改のものである特許請求の範囲第5項記ゼ・
    シの蒸気発生・再加熱装置。 7)前記熱供給流体は、有機流体である特許請求の範囲
    第6項記載の蒸気発生・再加熱装置。 8)前記熱供給流体はポリフェニルであり、+iiJ記
    中間のトリチウム産出流体はリチウム−鉛である請求の
    範囲第6項記載の蒸気発生・再加熱装置。 9)前記熱機関は、高圧蒸気タービンおよび中間B3F
    i%タービンであり、前記より低圧の熱機関は、低圧蒸
    気タービンであり、前記再°7JD熱dg手段は、該高
    圧蒸気タービンからの排出蒸気を中間圧蒸気タービンへ
    送給するために再加熱するための再加熱器と、該中間圧
    蒸気タービンがらの排出蒸気を低圧蒸気タービンへ送給
    するために再加熱するための第1段再加熱器および第1
    段再加熱器とを含み、前記エコノマイザ手段は、第1エ
    コノマイザと第2エコノマイザを含み、前記並列流のた
    めの前記導管手段は、前記熱供給流体を前記第2エコノ
    マイザと、第2段再加熱器と、高圧蒸気タービンからの
    排出蒸気のための前記再加熱器とを並列流として通すた
    めの導管と、第2エコノマイザ、第2段再加熱器、およ
    び高圧蒸気タービンの排出蒸気のための前記再加熱器か
    らの熱供給流体を前記第1エコノマイザと第1段再加熱
    器とを並列に通して通流させるための導管を含むもので
    ある特許請求の範囲第8項記載の蒸気発生・再加熱装置
    。 10)前記蒸発器手段と、過熱器手段と、エコノマイザ
    手段とは互いに分離されており、予熱された供給水を蒸
    発器手段へ送給するためにエコノマイザ手段を蒸発器手
    段に接続する導管と、飽和蒸気を過熱器手段へ送給する
    ために蒸発器手段を過熱器手段に接続する導管が設けら
    れている特許請求の範囲第9項記載の蒸気発生・再加熱
    装置。 11)前記熱機関は、高圧蒸気タービンおよ噸a寓ター
    ビンであり、前記より低圧の熱機関は、低圧蒸気タービ
    ンであり、前記再加熱器手段は、該高圧蒸気タービンか
    らの排出蒸気を1−11間圧蒸気タービンへ送給するた
    めに再加熱するための再加熱器と、該中間圧蒸気タービ
    ンからの排出蒸気を低圧蒸気タービンへ送給するために
    再加熱するための第1段再加熱器および第2段再加熱器
    とを含み、前記エコノマイザ手段は、第1エコノマイザ
    と第2エフノマイザを含み、前記並列流のための前記導
    管手段は、前記熱供給流体を前記第2エコノマイザと、
    第2段再加熱器と、高圧蒸気タービンからの排出蒸気の
    ための前dC再加熱器とを並列流として通すための導管
    と、第2エコノマイザ、第2段再加熱器、および高圧蒸
    気タービンの排出蒸気のための前記再加熱器からの熱供
    給流体を前記第1エコノマイザと第1段再加熱器とを並
    列に通して通流させるための導管を含むものである特許
    請求の範囲第1項記載の蒸気発生・再加熱装置。 12)前記蒸発器手段と、過熱器手段と、エコノマイザ
    手段とは互いに分lされており、予熱された供給水を蒸
    発器手段へ送給するためにエコノマイザ手段を蒸発器手
    段に接続する導管と、飽和蒸気を過熱器手段へ送給する
    ために蒸発器手段を過熱ari手段に接続する専管が設
    けられている特許請求の範囲第11項Me+載の蒸気発
    生・再加熱装置。 13 ) mJ記蒸発器手段と、過熱器手段と、エコノ
    マイザ手段とは互いに分隠されており、予熱された供給
    水を蒸発器手段へ送給するためにエコノマイザ手段を蒸
    発kR手段に接続する専管と、飽和蒸気を過熱器手段へ
    送給するために蒸発器手段を過熱器手段に接続する専管
    が設けられている特詐ml求のIl′ii m第1項記
    載の蒸気発生・再加熱装置。 14)飽和蒸気を熱機関へ送給するべく過熱するために
    熱供給流体を飽和蒸気に対し熱交換関係をなして過熱器
    を通して通流させる工程と、該熱供給流体を過熱器を通
    して通流させた後、該熱供給流体を予熱された供給水に
    対し熱交換関係をなして蒸発器を通して通流させ、過熱
    器へ送給するための飽和蒸気を創生ずる工程と、熱供給
    流体を蒸発器を通して通流させた後、該熱供給流体をエ
    コノマイザ手段と再加熱器手段とを並列流として通流さ
    せて供給水を蒸発器へ送給するために予熱し、少くとも
    1つの熱機関がらの排出蒸気をより低圧の熱機関へ送給
    するために再加熱する工程とから成る蒸気発生・再加熱
    方法。 15)核反応からの熱エネルギーを前記熱供給流体へ付
    与する工程を含む特許請求の範囲第14項記載の蒸気発
    生・再加熱方法。 16)核融合反応からの熱エネルギーを前記熱供給流体
    へ付与する工程を含む特¥F 請求のl1tNIJIN
    s14項記載の蒸気発生・再加熱方法。 − 17)熱供給流体をエコノマイザ手段と再加熱器手段を
    通して通流させる前記工程は、第2エコノマイザと、中
    間圧蒸気タービンからの排出蒸気を低圧蒸気タービンへ
    送給するべく再加熱するための再加熱器の第2段と、高
    圧然気タービンがらの排出蒸気を前記中間圧蒸気タービ
    ンへ送給するべく再加熱するための再加熱器とを並列に
    通して熱t1(給流体を通流させ、次いで、該熱供給流
    体を、第1エコノマイザと、中間圧蒸気タービンがらの
    排出蒸気を再加熱するための再加熱器とを並列に通して
    通流させることから成る特tt’を請求の範囲第14項
    記載の蒸気発生・再加熱方法。 18)核反応からの熱エネルギーを前記熱供給流体へ付
    与する工程を含む特許請求の範囲第17項記載の蒸気発
    生・再加熱方法。 19)核融合反応からの熱エネルギーを前記熱供給流体
    へ伺与する工程を含む特許請求の範囲第17項記載の蒸
    気発生・再加熱方法。
JP59059665A 1983-03-30 1984-03-29 蒸気発生・再加熱方法および装置 Pending JPS608601A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/480,450 US4619809A (en) 1983-03-30 1983-03-30 Steam generation and reheat apparatus
US480450 1983-03-30

Publications (1)

Publication Number Publication Date
JPS608601A true JPS608601A (ja) 1985-01-17

Family

ID=23908031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059665A Pending JPS608601A (ja) 1983-03-30 1984-03-29 蒸気発生・再加熱方法および装置

Country Status (6)

Country Link
US (1) US4619809A (ja)
EP (1) EP0121416B1 (ja)
JP (1) JPS608601A (ja)
AT (1) ATE37930T1 (ja)
CA (1) CA1223488A (ja)
DE (1) DE3474580D1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620262B1 (fr) * 1987-09-09 1989-11-17 Commissariat Energie Atomique Procede et installation de traitement de dechets organiques solides contamines par du tritium
US5335252A (en) * 1993-10-18 1994-08-02 Kaufman Jay S Steam generator system for gas cooled reactor and the like
AT410695B (de) * 1996-03-08 2003-06-25 Beckmann Georg Dr Vorrichtung und verfahren zur energieerzeugung
US6829895B2 (en) * 2002-09-12 2004-12-14 Kalex, Llc Geothermal system
US20060260314A1 (en) * 2005-03-25 2006-11-23 Kincaid Ronald F Method and system integrating combined cycle power plant with a solar rankine power plant
US20080034757A1 (en) * 2005-05-27 2008-02-14 Skowronski Mark J Method and system integrating solar heat into a regenerative rankine cycle
US7640746B2 (en) * 2005-05-27 2010-01-05 Markon Technologies, LLC Method and system integrating solar heat into a regenerative rankine steam cycle
US8087248B2 (en) * 2008-10-06 2012-01-03 Kalex, Llc Method and apparatus for the utilization of waste heat from gaseous heat sources carrying substantial quantities of dust
US8695344B2 (en) 2008-10-27 2014-04-15 Kalex, Llc Systems, methods and apparatuses for converting thermal energy into mechanical and electrical power
US8176738B2 (en) 2008-11-20 2012-05-15 Kalex Llc Method and system for converting waste heat from cement plant into a usable form of energy
US20110203575A1 (en) * 2009-08-24 2011-08-25 Robert Emery Thermodynamic/Solar Steam Generator
US8474263B2 (en) 2010-04-21 2013-07-02 Kalex, Llc Heat conversion system simultaneously utilizing two separate heat source stream and method for making and using same
US20130199150A1 (en) * 2012-02-03 2013-08-08 General Electric Company Steam injection assembly for a combined cycle system
US8833077B2 (en) 2012-05-18 2014-09-16 Kalex, Llc Systems and methods for low temperature heat sources with relatively high temperature cooling media
CN104143366A (zh) * 2013-05-10 2014-11-12 上海核工程研究设计院 非能动压水堆核电厂蒸汽发生器—主泵耦合流场分析方法
PT3086032T (pt) * 2015-04-21 2021-01-29 General Electric Technology Gmbh Gerador de vapor de passagem única de sal fundido
FR3122698A1 (fr) * 2021-05-05 2022-11-11 Frédéric CAILLARD Centrale thermique améliorée

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181298A (ja) * 1975-01-08 1976-07-16 Uradeimiroichi Oruro Bikutooru
JPS5248797A (en) * 1975-10-16 1977-04-19 Toshiba Corp Natrium heating steam generator starting device in a pile
JPS52145697A (en) * 1976-05-29 1977-12-03 Kawasaki Heavy Ind Ltd Tritium extraction/separation system device in breeder

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE565466A (ja) * 1957-03-08
DE1134391B (de) * 1961-01-06 1962-08-09 Borsig Ag Dampfkreislauf mit mehrfacher indirekter Zwischenueberhitzung
FR1286448A (fr) * 1961-04-18 1962-03-02 Combustion Eng Perfectionnements apportés aux stations centrales génératrices d'énergie
GB1037634A (en) * 1962-08-03 1966-08-03 Babcock & Wilcox Ltd Improvements in steam generating plant
FR1437467A (fr) * 1965-02-18 1966-05-06 Babcock & Wilcox France Perfectionnements aux installations de production d'énergie
FR1527695A (fr) * 1966-02-03 1968-06-07 Stein & Roubaix S A Installation thermique
FR2297483A1 (fr) * 1975-01-10 1976-08-06 Orlov Viktor Installation nucleaire de production d'energie
US4164849A (en) * 1976-09-30 1979-08-21 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for thermal power generation
CH610679A5 (en) * 1976-12-10 1979-04-30 Sulzer Ag Nuclear power plant
US4367193A (en) * 1977-10-13 1983-01-04 International Nuclear Energy Systems Co. Modular fusion apparatus using disposable core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181298A (ja) * 1975-01-08 1976-07-16 Uradeimiroichi Oruro Bikutooru
JPS5248797A (en) * 1975-10-16 1977-04-19 Toshiba Corp Natrium heating steam generator starting device in a pile
JPS52145697A (en) * 1976-05-29 1977-12-03 Kawasaki Heavy Ind Ltd Tritium extraction/separation system device in breeder

Also Published As

Publication number Publication date
EP0121416A2 (en) 1984-10-10
CA1223488A (en) 1987-06-30
ATE37930T1 (de) 1988-10-15
EP0121416A3 (en) 1986-07-09
DE3474580D1 (en) 1988-11-17
US4619809A (en) 1986-10-28
EP0121416B1 (en) 1988-10-12

Similar Documents

Publication Publication Date Title
JPS608601A (ja) 蒸気発生・再加熱方法および装置
US4164849A (en) Method and apparatus for thermal power generation
EP0391082B1 (en) Improved efficiency combined cycle power plant
US3979914A (en) Process and apparatus for superheating partly expanded steam
US11761622B2 (en) System and methods for integration of concentrated solar steam generators to Rankine cycle power plants
JPS6213485B2 (ja)
CA2718367A1 (en) Direct heating organic ranking cycle
CN103477033A (zh) 用于从聚光太阳能设备产生过热蒸汽的方法和设备
RU2153081C1 (ru) Газо- и паротурбинная установка, а также способ ее эксплуатации
JP2014514525A (ja) 工業プロセスで用いる蒸気を生成するための方法及び機器
CN112502800A (zh) 火力发电厂灵活性大规模高参数供热系统
US7861527B2 (en) Reheater temperature control
US4387577A (en) Boilers
US5133191A (en) High temperature cogeneration and heat recovery process
CN213953702U (zh) 火力发电厂灵活性大规模高参数供热系统
US5904039A (en) Method and configuration for deaerating a condensate
US2852005A (en) Method and means for controlling resuperheat temperature
US3913330A (en) Vapor generator heat recovery system
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
JPS6160242B2 (ja)
RU97122121A (ru) Способ эксплуатации паросиловой энергетической установки и установка для его осуществления
US3169373A (en) Power plant employing extraction steam for steam generation purposes
JPS6042842B2 (ja) 熱発電装置
JPH01280604A (ja) 蒸気プロセスの効率を高める方法
US3144856A (en) Steam generating plant