JPS6085830A - Wire electric discharge machining method - Google Patents
Wire electric discharge machining methodInfo
- Publication number
- JPS6085830A JPS6085830A JP19303383A JP19303383A JPS6085830A JP S6085830 A JPS6085830 A JP S6085830A JP 19303383 A JP19303383 A JP 19303383A JP 19303383 A JP19303383 A JP 19303383A JP S6085830 A JPS6085830 A JP S6085830A
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- wire
- coordinate system
- discharge machining
- electric discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/06—Control of the travel curve of the relative movement between electrode and workpiece
- B23H7/065—Electric circuits specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H2500/00—Holding and positioning of tool electrodes
- B23H2500/20—Methods or devices for detecting wire or workpiece position
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明はワイヤ放電加工機におけるワイヤ放電加工方法
に係り、特にワークのワイヤ放電加工機への取付位置が
づれていても予めワークに形成されている基準穴に対し
指令通りの加工ができるワイヤ放電加工方法に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a wire electrical discharge machining method in a wire electrical discharge machine, and in particular, even if the attachment position of the workpiece to the wire electrical discharge machine is shifted, it is possible to prevent the workpiece from being formed in advance. The present invention relates to a wire electrical discharge machining method that allows machining of reference holes according to instructions.
〈従来技術〉
ワイヤ放電加工機によりダイを作成する場合、ワークに
予め形成しである複数の基準穴に対して正確な位置にダ
イ加工をする必要がある。このため、正確にワーク全ワ
フク置台に取付けること、換言すね、ば基準穴の座標系
(ワーク座標系という)とワイヤ放電加工機の機械座標
系とが互いに平行となるようにワーク全ワーク貿台に取
付ける必要がある。第1図はワーク座標系Xw−Ywが
機械座標系Xtn−Ymに対し角度Δ0だけ回転してい
る場合の説明図である。ワークWKに設けられた基準穴
BH1、B H2に対し実nI!の通路PT [沿って
ワイヤ放電加工を実行するように数値制御データか作成
されていても、ワーク座標系X w −Y wが図示の
ように角度Δθだけ機械座標系Xm−Ymに対して傾斜
していると、実際の加工においてワイヤ電極は点線の通
路PT’ に沿って移動し、得らねるダイは基準穴に対
し角度Δθ回転したものとなる。これは実際の加工にお
いてワイヤ電極が数値制御データにより機械座標系で移
動するからである。たとえば、加工開始穴STHよりワ
ーク座標系XW−YWでYw軸方向にしたけ離ねたポイ
ントP1へワイヤ電極を切削移動させる数値制御データ
により、ワイヤ?)f、極は機械座標系Xm −Ymで
Ym軸方向にLだけ離れたポイントPfへ向けて移動す
る。従って、基準穴Bl(1、BH2に対し正確な位置
にワイヤ放電加工を実行するためにはワーク座標系Xw
−Ywと機械座標系Xm−Ymが互いに平行となるよう
に1ワークWKをテーブルTBLに取付けなくてはなら
ない。<Prior Art> When a die is created using a wire electrical discharge machine, it is necessary to machine the die at an accurate position relative to a plurality of reference holes that are previously formed in a workpiece. For this reason, it is necessary to accurately mount all workpieces on the mounting table, in other words, to mount all workpieces on the mounting table so that the coordinate system of the reference hole (referred to as the workpiece coordinate system) and the machine coordinate system of the wire electric discharge machine are parallel to each other. It needs to be installed on the FIG. 1 is an explanatory diagram when the workpiece coordinate system Xw-Yw is rotated by an angle Δ0 with respect to the machine coordinate system Xtn-Ym. Actual nI for reference holes BH1 and BH2 provided in workpiece WK! Even if numerical control data is created to perform wire electrical discharge machining along the path PT, the workpiece coordinate system X w - Y w is tilted with respect to the machine coordinate system Then, in actual machining, the wire electrode moves along the dotted line path PT', and the resulting die is rotated by an angle Δθ with respect to the reference hole. This is because in actual machining, the wire electrode is moved in the machine coordinate system based on numerical control data. For example, using numerical control data to cut and move a wire electrode to a point P1 that is far away in the Yw-axis direction in the workpiece coordinate system XW-YW from the machining start hole STH, the wire? )f, the pole moves toward a point Pf that is separated by L in the Ym-axis direction in the mechanical coordinate system Xm-Ym. Therefore, in order to perform wire electrical discharge machining at an accurate position with respect to the reference hole Bl (1, BH2), the workpiece coordinate system
One workpiece WK must be mounted on the table TBL so that -Yw and the machine coordinate system Xm-Ym are parallel to each other.
〈従来技術の欠点〉
しかし、従来ワーク座標系Xw−Ywが機械座標系Xm
−YmK平行となるようにワークを取付けることは非常
に困難であると共に、必らず若干の取付は誤差が生じ基
準穴に対し正確な位置にワイヤ放電加工を行なうことが
できなかった。<Disadvantages of the prior art> However, the conventional workpiece coordinate system Xw-Yw is the machine coordinate system Xm.
-YmK It is very difficult to mount the workpiece so that it is parallel to the workpiece, and some mounting errors inevitably occur, making it impossible to perform wire electrical discharge machining at an accurate position relative to the reference hole.
〈発明の目的〉
本発明の目的はワークの取付は誤差によりワーク座標系
が機械座標系に平行でなくても基準穴Gτ対し正確な位
置にワイヤ放電加工を実行することができるワイヤ放電
加工方法を提供することである。<Object of the Invention> The object of the present invention is to provide a wire electrical discharge machining method that can perform wire electrical discharge machining at an accurate position relative to the reference hole Gτ even if the workpiece coordinate system is not parallel to the machine coordinate system due to an error in mounting the workpiece. The goal is to provide the following.
〈発明の概要〉
第2図(A)、(B)は本発明の概略説明図であり、ワ
ークWKに設けられた2つの基準穴を結ぶ直訳SLがワ
ーク座標系Xw−Ywの所定軸Xwとなす角度θwfr
%定するだめのデータを記憶させて丸・き、該ワークを
ワイヤ放電加工機にセットした時の前記基準穴を結ぶ直
線が機械座標系X m −Y rnにおける所定の軸X
mとなす角度θm全測定し、前記2つの角度の差分Δ0
をめ、該差分を用いて数値制御データに、 ’3−!
ねる通路データを補正し、該補正したデータに基いてワ
4ヤ1()2極をワークに対し相対的に移動させてワー
クに加工を施す。<Summary of the Invention> FIGS. 2(A) and 2(B) are schematic explanatory diagrams of the present invention, and the direct translation SL connecting two reference holes provided in the workpiece WK is the predetermined axis Xw of the workpiece coordinate system Xw-Yw. The angle θwfr
When the workpiece is set in a wire electric discharge machine, the straight line connecting the reference holes is the predetermined axis X in the machine coordinate system X m - Y rn.
Measure all the angles θm formed with m, and calculate the difference Δ0 between the two angles.
Then, use the difference to convert the numerical control data into '3-!
The turning path data is corrected, and the wire 4 wire 1 ( ) 2 poles are moved relative to the workpiece based on the corrected data to process the workpiece.
〈実施例〉
第3図は本発明を適用できるワイヤ放電加工機の側面図
であり、図中1は基台2上に立設されたコラムで、逆り
牢屋ヲしており、その上部には電源用のコンデンサ箱3
が載置されている。<Example> Fig. 3 is a side view of a wire electrical discharge machine to which the present invention can be applied. is the power supply capacitor box 3
is placed.
基台2上には、ワーク取付台4が配設されてhるが、こ
のワーク取付台4は基台2上において、X方向駆動モー
タ及びY方向駆動モータにより二次元的に移動可能であ
る。ワーク取付台4の上には、クランプ5によりワーク
6が取付けられている。7はワイヤ41i極であり、放
電加工中にお層ては矢印方向に走行する。8は未使用の
ワイヤ電極が巻回されて層る送り出しリール、9はワイ
ヤ電輛の送り出し特に引張り方向へブレーキを掛けるブ
レーキローラで、ワイヤ電極が巻回濱す〕る。10けロ
ーラ、11は下ガイドローラ、12は上がイドローラ、
13はローラ、14はフィードローラで、ワイヤ電極全
駆動する駆動モータにより1転される。15はピンチロ
ーラで、ばね16によりフ1−トローラ14に押し付け
られている。なお、ワイヤ電極7はフィードローラー4
とピンチローラ−5間に挾み付けらねる。1γは使用済
のワイヤ電極を巻取る巻取リールである。A workpiece mount 4 is disposed on the base 2, and the workpiece mount 4 is two-dimensionally movable on the base 2 by an X-direction drive motor and a Y-direction drive motor. . A workpiece 6 is mounted on the workpiece mounting base 4 with a clamp 5. 7 is a wire 41i pole, which runs in the direction of the arrow during electrical discharge machining. Reference numeral 8 denotes a delivery reel on which unused wire electrodes are wound and layered, and 9 a brake roller that applies a brake to the delivery of the wire electric car, particularly in the pulling direction, on which the wire electrode is wound. 10 rollers, 11 is the lower guide roller, 12 is the upper idle roller,
13 is a roller, and 14 is a feed roller, which are rotated once by a drive motor that fully drives the wire electrodes. A pinch roller 15 is pressed against the foot roller 14 by a spring 16. Note that the wire electrode 7 is connected to the feed roller 4
and pinch roller 5. 1γ is a take-up reel for winding up the used wire electrode.
第4図は本発明の実施例ブロック図、第5図は処理の流
れ図である。FIG. 4 is a block diagram of an embodiment of the present invention, and FIG. 5 is a flowchart of processing.
ワイヤ放電加工に先立って、ワークをワイヤ放電加工機
の取付台に取付けた際の基準穴BHI(第2図参照)の
中心と基準穴BH2の中心を結ぶ直線SLが機械座標系
Xm−YmのXm軸となす角度θmを測定する。伺、直
線SLがワーク座標系Xw−YwのXw軸となす角度θ
W或いは該角度θWを特定するためのXW軸、Yw軸す
方向の軸成分a%b(θw=m−’ )は設計図面に記
載はねてhるから、NCテープ101或いは操作パネル
102から入力さh″′cRAM103に記憶される。Prior to wire electrical discharge machining, the straight line SL connecting the center of the reference hole BHI (see Figure 2) and the center of the reference hole BH2 when the workpiece is mounted on the mount of the wire electrical discharge machine is the machine coordinate system Xm-Ym. Measure the angle θm with the Xm axis. The angle θ that the straight line SL makes with the Xw axis of the workpiece coordinate system Xw-Yw
Since the axial component a%b (θw=m-') in the XW-axis and Yw-axis directions for specifying W or the angle θW is not written in the design drawing, it can be written from the NC tape 101 or the operation panel 102. The input data h''' is stored in the RAM 103.
まず、ワイヤ電極を第1の基準穴B)tlに通し、該ワ
イヤ電極を張り、ついで基準穴BH1の自動中心出1.
ヲ実行する。伺、この自動中心出しは周知である。1−
なわち、操作ノ!ネル102において自動中心出しモー
rと、はじめに動かしたい軸を選択するとプロセッサ1
04はROM105に格納されている制御プログラムの
制御で自動中心出し処理全開始し、まずあらい中心出し
を行ないおおよその穴の中心へワイヤ電極を位置決めし
たのち、正確な中心出しを行なう。First, pass the wire electrode through the first reference hole B)tl, tension the wire electrode, and then automatically center the reference hole BH1.
Execute wo. However, this automatic centering is well known. 1-
In other words, operation! When you select the automatic centering motor and the axis you want to move first in the channel 102, the processor 1
04, the automatic centering process is completely started under the control of the control program stored in the ROM 105. First, rough centering is performed to position the wire electrode to the approximate center of the hole, and then accurate centering is performed.
あらい中心出しにおいては、
0)第6図に示すように前記選択ばれた軸の正方向(十
X方向とする)匹送り速度f、Iたとえば50 mm/
min )でワイヤ電極をワークに向けて移動させる。For rough centering, 0) As shown in FIG.
The wire electrode is moved toward the workpiece at a speed of min ).
すなわち、プロセッサ104は予め定められている37
秒(たとえば16m5ec)間に移動すべき移動量Δx
1次式
%式%(1)
により演算し、31秒毎に該Δχをパルス分配器106
に出力する。パルス分配器106は入力されたΔXに基
いて・ぐルス分配演算を行なって分配パルスXPを発生
してX軸す−?回路107Xに入力し、X軸モータ10
8Xを回転し、ワイヤ電極をワークに対し相対的に移動
させる。プロセッサ104はΔT移経過する毎にΔX
f ieルス分配器106に入力して、ワイヤ電極をワ
ークに向けて移動させると共に、31秒毎に
Xa±ΔX−+X a (2)
の演算を行なって(符号は移動方向に依存する)、RA
M103に記憶されているX軸方向現在位訝Xa を更
新する。That is, the processor 104 has a predetermined number of 37
Amount of movement Δx that should be moved in seconds (for example, 16m5ec)
Calculated using the linear formula % formula % (1), the pulse distributor 106 calculates the Δχ every 31 seconds.
Output to. The pulse distributor 106 performs a pulse distribution calculation based on the input ΔX, generates a distribution pulse XP, and generates a distribution pulse XP on the X-axis. Input to circuit 107X, X-axis motor 10
Rotate 8X to move the wire electrode relative to the workpiece. The processor 104 calculates ΔX every time ΔT transitions.
input to the f ie pulse distributor 106 to move the wire electrode toward the workpiece, and calculate Xa±ΔX−+X a (2) every 31 seconds (the sign depends on the direction of movement). R.A.
The current position Xa in the X-axis direction stored in M103 is updated.
(ロ)上記処理によりワイヤ電極がワークに向けて接近
し、該ワイヤ電極がワークに接触すると短絡検出器10
9から短絡信号WSSが発生し、該短絡信号WSSはデ
ータ入出力装置110ヲ介シてプロセッサ104に取り
込まれる。(b) The wire electrode approaches the workpiece through the above process, and when the wire electrode comes into contact with the workpiece, the short circuit detector 10
A short circuit signal WSS is generated from 9, and the short circuit signal WSS is taken into the processor 104 via the data input/output device 110.
(ハ)プロセッサ104は短絡信号の発生により、パル
ス分配器106へのΔXの入力全停止してワイヤ電極を
B点(第6図参照)に停止させると共に、X軸方向現在
位置XaThX軸の第1端点位置Xn としてRAM1
03に記憶する。(c) Due to the generation of the short circuit signal, the processor 104 stops inputting ΔX to the pulse distributor 106, stops the wire electrode at point B (see FIG. 6), and also stops the wire electrode at the current position XaTh on the 1 end point position Xn as RAM1
Stored in 03.
に)ついで、プロセッサ104は同様に−X方向にワイ
ヤS:極を移動させ、第6図の0点の位置、すなわちX
軸方向の第2端点位置Xc’に測定してIζAM103
に記憶する。) Then, the processor 104 similarly moves the wire S:pole in the -X direction to the position of the 0 point in FIG.
IζAM103 measured at the second end point position Xc' in the axial direction
to be memorized.
(ホ) しかる後、プロセッサ104はX l ” (
XB + Xc ) / 2 (3)によりB点とC点
間のX軸方向中心位置Xl をめ、該Xt を残移動量
XrとするとともK(Xi−+Xr )、(11式のΔ
xiΔT秒毎K /# ルス分配器106に入力する。(E) After that, the processor 104 executes X l ” (
XB + Xc ) / 2 Determine the center position Xl in the X-axis direction between points B and C using (3), and let Xt be the remaining movement amount Xr.
xiΔT every second K/# is input to the pulse distributor 106.
これにより、ワイヤ電極は中心位置(第6図のD点)に
向けて移動する。プロセッサ104は又31秒毎に(2
)式の演算を行なって、X軸方向現在位買ケ更新すると
共に、31秒毎に次式
%式%(4)
の演算を行なってRAM103に記憶されている残移動
量Xr k更新する。そして、Xr=0となれば、すな
わちワイヤ電極が中心位置(D点)に到達すればワイヤ
電極の移動を停止させる。As a result, the wire electrode moves toward the center position (point D in FIG. 6). Processor 104 also processes (2) every 31 seconds.
) is performed to update the current position in the X-axis direction, and the following equation (%) (4) is calculated every 31 seconds to update the remaining movement amount Xr k stored in the RAM 103. Then, when Xr=0, that is, when the wire electrode reaches the center position (point D), the movement of the wire electrode is stopped.
(へ) しかる後、Y軸方向に上記処理?繰返えせばワ
イヤ電極は第1の基準穴BHIのほぼ中心に位置決めさ
れ、該中心位置(XI、 Yl )がRAMに記憶され
る。同、第4図において107Y、108Yはそれぞれ
Y軸方向のサー?回路、サーブモータである。(to) After that, do the above process in the Y-axis direction? To repeat, the wire electrode is positioned approximately at the center of the first reference hole BHI, and the center position (XI, Yl) is stored in the RAM. In the same Figure 4, 107Y and 108Y are the sensors in the Y-axis direction, respectively. The circuit is a serve motor.
(ト) つbで、送り速度をより低速圧して上記(イ)
〜(へ)の処理を繰返えせば、第1の基準穴BH1の正
確な中心位置(XO%YO1がまる。(G) In step b, lower the feed speed to the above (a).
By repeating the processes from to (f), the accurate center position (XO%YO1) of the first reference hole BH1 will be determined.
(ホ) しかる後、RAM103に記憶されている現在
位置X IIs Y a全零にする(0→Xa、0→Y
a)。すなわち基準穴BHIの中心位置にワイヤ電極が
存在しているときの現在位置XaYaを零とする。(e) After that, the current position X IIs Y a stored in the RAM 103 is set to all zeros (0→Xa, 0→Y
a). That is, the current position XaYa when the wire electrode exists at the center position of the reference hole BHI is set to zero.
(す)ついで、ワイヤ電極全切断した後操作パネル上の
ジョグ送り釦を押圧して第2の基準穴BH2iワイヤ走
行路の真下に位置決めする。(S) Next, after cutting the wire electrode completely, press the jog feed button on the operation panel to position it directly below the second reference hole BH2i wire running path.
伺、X軸方向のジョグ送り釦が押されているときプロセ
ッサ104は上記ステップ0)の処理を行なってワイヤ
電極をワークに対し相対的にX軸方向に移動させると共
にX軸方向現在位置XILを更新し、同様にプロセッサ
ー04はY軸方向のジョグ釦が押されているときステッ
プ0)の処理を行なってワイヤ電極iY軸方向に移動さ
せ同時にY軸方向現在位置Ya を更新する。When the jog feed button in the X-axis direction is pressed, the processor 104 performs the process in step 0) to move the wire electrode in the X-axis direction relative to the workpiece, and also sets the current position XIL in the X-axis direction. Similarly, when the jog button in the Y-axis direction is pressed, the processor 04 performs the process of step 0) to move the wire electrode i in the Y-axis direction and simultaneously update the current position Ya in the Y-axis direction.
(ロ) しかる後、ワイヤ電極を基準穴BH2に通し上
記ステップ(イ)〜(ト)の処理を繰返えして、ワイヤ
電極?第2の基準穴BH2の中心に位置決めすれば、そ
の時のRAM103に記憶されている現在位置Xa、Y
aが第1の基準穴BH1の中心から第2の基準穴BH2
の中心迄の機械座標系における各軸成分x、yとなる。(b) After that, pass the wire electrode through the reference hole BH2 and repeat the steps (a) to (g) above to remove the wire electrode. When positioned at the center of the second reference hole BH2, the current position Xa, Y stored in the RAM 103 at that time
a is from the center of the first reference hole BH1 to the second reference hole BH2
The axis components x and y in the mechanical coordinate system up to the center of
そして、該X%FはRAM103に記憶される。Then, the X%F is stored in the RAM 103.
に) しかる後、プロセッサー04は次式により
0m =tm −” y−(5)
直線SLがXm軸となす角度θmf演算すると共に、
により、ワーク座標系の機械座標系に対する傾きΔ0を
演算してRAM103に格納する。After that, the processor 04 calculates the angle θmf that the straight line SL makes with the Xm axis using the following formula, and calculates the inclination Δ0 of the workpiece coordinate system with respect to the machine coordinate system using the following formula. Store it in the RAM 103.
以上の処理により、傾きΔ、θがまれば以後NCテーゾ
101に記憶されている数値制御データに基いて以下に
示すダイのワイヤ放電加工を実行する。すなわち、
(イ)まず、加工開始穴5T)l (第1図参照)にワ
イヤ電極を通して張ると共に、前記自動中心出しを用い
てワイヤ電極を加工開始点て位置決めする。さらにワイ
ヤ電極とワーク間に電圧をかけ、操作パネル102上の
起動釦を押圧する。Through the above processing, once the inclinations Δ and θ are equal, the following wire electrical discharge machining of the die is executed based on the numerical control data stored in the NC Tezo 101. That is, (a) First, a wire electrode is passed through the machining start hole 5T)l (see FIG. 1), and the wire electrode is positioned at the machining start point using the automatic centering. Further, a voltage is applied between the wire electrode and the workpiece, and a start button on the operation panel 102 is pressed.
(ロ)起動がか\ればプロセッサ104はNCデータ読
取装置111?c−して1ブロツクのNCプ′−夕をN
Cテープ101から読みとらす。伺、NCテープ101
には加工開始穴STHからの通路データ、M機能命令な
どがNCデータとして記録されている。(b) If the startup is successful, will the processor 104 be able to read the NC data from the NC data reader 111? c- and 1 block of NC program.
Read from C tape 101. Listen, NC tape 101
Path data from the machining start hole STH, M function commands, etc. are recorded as NC data.
(ハ)プロセッサ104は制御プログラムの制御に基い
て、読取られたNCデータが通路データであるかどうか
を判別する。伺、NCデータが、ワードアドレス語であ
るアルファベットX或いはYを含んでいるかどうかによ
り通路データか層なかを判別する。(c) The processor 104 determines whether the read NC data is path data based on the control of the control program. It is determined whether the NC data contains the alphabet X or Y, which is a word address, to determine whether it is path data or layer data.
に) NCデータが通路データを含んでいなければプロ
セッサ104は通常のNC処理を実行し、該NCC処理
実行スステップ口)に戻る。) If the NC data does not include path data, the processor 104 executes normal NC processing and returns to the NCC processing execution step.
(ホ)一方、NCデータが通路データを含んでいれば、
たとえばNCデータが直線切削移動4示すデータ
GOIXX Yy :
であればプロセッサ104は次式
により、通路データを補正する。伺、ΔθはRAM10
3に記憶されている前記ワーク座標系の機械座標系に対
する傾き角、!、7はブロックの終点位置座標値であり
、ワードアドレス語でアルアルファベットXSYにつづ
く数値、x′、y′は補正後の終点位置座標値である。(E) On the other hand, if the NC data includes passage data,
For example, if the NC data is data GOIXX Yy indicating linear cutting movement 4, the processor 104 corrects the path data using the following equation. Δθ is RAM10
The inclination angle of the workpiece coordinate system with respect to the machine coordinate system, which is stored in !3, is stored in ! , 7 are the coordinate values of the end point position of the block, numeric values following the alphabet XSY in the word address word, and x' and y' are the coordinate values of the end point position after correction.
又、NCデータが円弧通路を示すデータ
G02(又はGO3)Xx Yy II Jj ;であ
れば(7)式に加えて、次式
の演算ケ行なって、円弧中心から円弧始点までの距離デ
ータ11 jtl’、j’に補正する。Also, if the NC data is data G02 (or GO3) indicating an arc path ', j'.
(へ) しかる後、プロセッサは直線データであれば(
7)式により得られたx’、y’を用いて、又円弧デー
タであれば(7)式及び(8)式により得られたX’
% y’ 、i’、j′ を用いて通常の直線切削処理
又は円弧切削処理を行なう。(to) After that, if the processor has straight line data (
Using x' and y' obtained by formula 7), or if it is circular arc data, use X' obtained by formula (7) and (8).
% y', i', and j' to perform normal straight line cutting processing or circular arc cutting processing.
(ト)ステップ(へ)における処理が終了すればプロセ
ッサは次のNCデータ全NCデータ読取装降の処理を繰
返えす。(g) When the process in step (g) is completed, the processor repeats the process of reading and unloading the next NC data.
(ト)そして、NCテープ101よりプログラムエンド
又はテープエンドを示すMコードMO2又はM2Oが読
み出されればワイヤ放電加工は終了する。以上によりワ
イヤ電極はワークに対し第1図実線に示す通路に沿って
移動し、ワーク座標系Xv−Ywが機械座標系Xm−Y
mに対して傾いていても基準穴に対し正確な位置にワイ
ヤ放電加工を行なうことができる。(G) Then, when the M code MO2 or M2O indicating the program end or tape end is read out from the NC tape 101, the wire electrical discharge machining ends. As a result, the wire electrode moves relative to the workpiece along the path shown by the solid line in Figure 1, and the workpiece coordinate system Xv-Yw changes from the machine coordinate system Xm-Y.
Wire electrical discharge machining can be performed at an accurate position relative to the reference hole even if the hole is tilted relative to m.
〈発明の効果〉
以上、本発明によればワークに設けられた2つの基準穴
を結ぶ直線がワーク座標系の所定軸となす角度を特定す
るだめのデータを記憶させておき、該ワーク全ワイヤ放
電加工機にセットした時の前記基準穴を結ぶ直線が機械
座標系における所定の軸となす角度を測定し、前記2つ
の角度の差分をめ、該差分を用いて数値制御データに含
まわる通路データを補正し、該補正したデータに基いて
ワイヤ電極をワークに対し相対的に移動させてワークに
加工を施すように構成したから、ワークの取付は誤差に
よりワーク座標系Xw−Yvが機械座標系Xm−Ymに
対し傾いてhても基準穴に対し正確なワーク位置にワイ
ヤ放電加工を実行することができる。<Effects of the Invention> As described above, according to the present invention, data for specifying the angle that a straight line connecting two reference holes provided in a workpiece makes with a predetermined axis of the workpiece coordinate system is stored, and all wires of the workpiece are Measure the angle that the straight line connecting the reference holes makes with a predetermined axis in the machine coordinate system when set in the electrical discharge machine, calculate the difference between the two angles, and use this difference to determine the path included in the numerical control data. Since the data is corrected and the wire electrode is moved relative to the workpiece based on the corrected data to process the workpiece, the workpiece coordinate system Even if the system is tilted h with respect to the system Xm-Ym, wire electrical discharge machining can be performed at an accurate workpiece position with respect to the reference hole.
第1図はワーク座標系が機械座標系に対して傾斜してい
る場合における゛所望の加工通路と実際の加工通路を示
す説明図、第2図は本発明の概略説明図、第3図は本発
明全適用できるワイヤ放電加工機の側面図、第4図は本
発明の実施例ブロック図、第5図は本発明の処理の流れ
図、第6図は中心出しの説明図である。
101・・・・・・NCテープ 102・・・・・・操
作・ゼネル103・・・・・・RAM 104・・・・
・・プロセッサ105・・・・・・ROM 106・・
・・・・z9Atス[1109・・・・・・短絡検出器
110・・・・・・データ入出力装置111・・・・
・・NC7J−夕読取装置特許出願人 ファナック株式
会社
代理人 弁理士齋藤干幹FIG. 1 is an explanatory diagram showing the desired machining path and the actual machining path when the workpiece coordinate system is inclined with respect to the machine coordinate system, FIG. 2 is a schematic explanatory diagram of the present invention, and FIG. 4 is a block diagram of an embodiment of the present invention, FIG. 5 is a flowchart of the process of the present invention, and FIG. 6 is an explanatory diagram of centering. 101...NC tape 102...Operation/Zenel 103...RAM 104...
...Processor 105...ROM 106...
...Z9Atsu[1109...Short circuit detector 110...Data input/output device 111...
...NC7J-Event reader patent applicant FANUC Co., Ltd. agent Patent attorney Kanki Saito
Claims (1)
し相対的に移動させてワークに加工を施すワイヤ放電加
工機のワイヤ放電加工方法において、ワークに設けられ
た2つの基準穴奮結ぶ直線がワーク座標系の所定軸とな
す角度を特定するだめのデータを記憶させておき、該ワ
ークをワイヤ放電加工機にセットした時の前記基準穴を
結ぶ直線が機械座標系における所定の軸となす角度を測
定し、前記2つの角度の差分をめ、該差分を用いて数値
制御データに含まれる通路データ全補正し、該補正した
データに基いてワイヤ電極をワークに対し相対的に移動
源せてワークに加工4施すことを特徴とするワイヤ放電
加工方法。 (2〕 前記ワーク全歪しくワイヤ放電加工機にセット
した際のワーク座標系の座標軸と機械座標系の座標軸と
が互いに平行であることを特徴とする特許請求の範囲第
(11項記載のワイヤ放電加工方法。 (3)前記データは、基準穴を結ぶ直線のワーク座標系
における各軸成分であること全特徴とする特許請求の範
囲第(11項又は第(2)項記載のワイヤ放電加工方法
。 (4) 前記データは基準穴全結ぶ直線がワーク座標に
おける所定軸となす角度であることを特徴とする特許請
求の範囲第(11項又は第(2)項記載のワイヤ放電加
工方法。 (5) 前記基準穴を結ぶ直線が機械座標系の所定軸と
なす角度を、該直線の機械座標系における各軸成分で特
定することf:特徴とする特許請求のQir4囲第(1
)項又は第(2)項記載のワイヤ放電加工方法。[Claims] (1) In a wire electrical discharge machining method for a wire electrical discharge machine in which a wire electrode is moved relative to the workpiece based on numerical control data to machine the workpiece, two Data for specifying the angle that a straight line connecting the reference holes makes with a predetermined axis of the workpiece coordinate system is stored, and when the workpiece is set in a wire electric discharge machine, the straight line connecting the reference holes is determined in the machine coordinate system. Measure the angle formed with a predetermined axis, calculate the difference between the two angles, use the difference to correct all path data included in the numerical control data, and adjust the wire electrode relative to the workpiece based on the corrected data. A wire electrical discharge machining method characterized by machining a workpiece using a moving source. (2) The wire according to claim 11, characterized in that the coordinate axes of the workpiece coordinate system and the coordinate axes of the machine coordinate system are parallel to each other when the workpiece is set in a wire electric discharge machine with full strain. Electrical discharge machining method. (3) The wire electrical discharge machining method according to claim 11 or (2), characterized in that the data is each axis component in a workpiece coordinate system of a straight line connecting the reference holes. (4) The wire electric discharge machining method according to claim 11 or (2), wherein the data is an angle between a straight line connecting all the reference holes and a predetermined axis in workpiece coordinates. (5) Specifying the angle that the straight line connecting the reference holes makes with a predetermined axis of the machine coordinate system using each axis component of the straight line in the machine coordinate system.
) or (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19303383A JPS6085830A (en) | 1983-10-15 | 1983-10-15 | Wire electric discharge machining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19303383A JPS6085830A (en) | 1983-10-15 | 1983-10-15 | Wire electric discharge machining method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6085830A true JPS6085830A (en) | 1985-05-15 |
JPH0349690B2 JPH0349690B2 (en) | 1991-07-30 |
Family
ID=16301045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19303383A Granted JPS6085830A (en) | 1983-10-15 | 1983-10-15 | Wire electric discharge machining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6085830A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS629816A (en) * | 1985-07-05 | 1987-01-17 | Hitachi Ltd | Broaching machine |
JPS62168216U (en) * | 1986-04-16 | 1987-10-26 | ||
GB2350313A (en) * | 1999-05-24 | 2000-11-29 | M J Technologies Ltd | Electrode position detection for electrical discharge machining |
CN103128387A (en) * | 2011-11-28 | 2013-06-05 | 发那科株式会社 | Wire electric discharge machining method and wire electric discharge machine |
EP3281735A1 (en) * | 2016-07-25 | 2018-02-14 | Fanuc Corporation | Wire electrical discharge machine and wire electrical discharge machining method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58137528A (en) * | 1982-02-04 | 1983-08-16 | Mitsubishi Electric Corp | Wire cut discharge machining device |
-
1983
- 1983-10-15 JP JP19303383A patent/JPS6085830A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58137528A (en) * | 1982-02-04 | 1983-08-16 | Mitsubishi Electric Corp | Wire cut discharge machining device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS629816A (en) * | 1985-07-05 | 1987-01-17 | Hitachi Ltd | Broaching machine |
JPS62168216U (en) * | 1986-04-16 | 1987-10-26 | ||
GB2350313A (en) * | 1999-05-24 | 2000-11-29 | M J Technologies Ltd | Electrode position detection for electrical discharge machining |
US6417475B1 (en) | 1999-05-24 | 2002-07-09 | M J Technologies Limited | EDM electrode position detection |
CN103128387A (en) * | 2011-11-28 | 2013-06-05 | 发那科株式会社 | Wire electric discharge machining method and wire electric discharge machine |
CN103128387B (en) * | 2011-11-28 | 2014-09-03 | 发那科株式会社 | Wire electric discharge machining method and wire electric discharge machine |
EP3281735A1 (en) * | 2016-07-25 | 2018-02-14 | Fanuc Corporation | Wire electrical discharge machine and wire electrical discharge machining method |
Also Published As
Publication number | Publication date |
---|---|
JPH0349690B2 (en) | 1991-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4649252A (en) | Wire-cut electric discharge machining method | |
JP2002224936A (en) | Tool presetter and method for calculation of tool offset data | |
US9649709B2 (en) | Numerical control apparatus for controlling wire electric discharge machine which performs taper machining | |
JPS6085830A (en) | Wire electric discharge machining method | |
CN107775131A (en) | Wire electric discharge machine and measuring method | |
EP0696493B1 (en) | Laser processing apparatus | |
WO1999029458A1 (en) | Wire cut electric discharge machining apparatus and control method therefor | |
JPS58126025A (en) | Vertical taking out method of wire electrode | |
JP2000284817A (en) | Numerical controller to simultaneously control two movable objects no common track | |
JPS5919072A (en) | Control system of operation of copying device | |
JP4027834B2 (en) | Positioning method in wire cut electric discharge machining | |
JP3014562B2 (en) | Electric discharge machine and method for setting machining conditions of electric discharge machine | |
JP6808868B1 (en) | Wire electric discharge machining method and wire electric discharge machining equipment | |
JPS6243814B2 (en) | ||
JP2885228B2 (en) | Wire electric discharge machining method and apparatus | |
JPS6351809B2 (en) | ||
JPH06155055A (en) | Laser beam machine | |
JPH07148621A (en) | Wire electrode tension control device | |
JPS60259327A (en) | Detection of corner point for work in wire electric discharge machine | |
JP4348791B2 (en) | Wire electric discharge machine and origin return method of wire electric discharge machine | |
JPS60213422A (en) | Guide position identification method in wire-cut electric discharge machining device | |
JPH0542415A (en) | Electric discharge machining method | |
JPH0573128A (en) | Feed rate control method for numerical controller | |
JPS6390380A (en) | Laser beam machine | |
JPS61219528A (en) | Wire cut electric discharge machine |