JPS6085584A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6085584A
JPS6085584A JP19380283A JP19380283A JPS6085584A JP S6085584 A JPS6085584 A JP S6085584A JP 19380283 A JP19380283 A JP 19380283A JP 19380283 A JP19380283 A JP 19380283A JP S6085584 A JPS6085584 A JP S6085584A
Authority
JP
Japan
Prior art keywords
layer
type
ingaasp
junction
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19380283A
Other languages
Japanese (ja)
Inventor
Ikuo Mito
郁夫 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19380283A priority Critical patent/JPS6085584A/en
Publication of JPS6085584A publication Critical patent/JPS6085584A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve reliability and service life by a method wherein a P-N junction is separated from an activation layer in a cleavage plane of a laser provided with a multilayer construction and a Fabry-Perot type resonator. CONSTITUTION:On an N type InP substrate 1, an InP buffer layer 2, non-dope InGaAsP activation layer 3, P type InP clad layer 4, P type InGaAsP electrode forming layer 5 are deposited, in that order. Next, impurity regions 200, 201 similar in conductivity type to the layer 4 are formed with a very small distance from the locations of cleavage planes 100, 101. In an element of this construction, with a P-N junction 300 being separated a very small distance from said layer 3, the progress of deterioration is decelerated by approximately a decimal place when aging is done under constant optical output conditions.

Description

【発明の詳細な説明】 本発明は、光通信における光源等に使用する半導体レー
ザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser used as a light source in optical communications.

半導体レーザは、特性及び信頼度の改善並びに長需命化
が続けられ、光フアイバ通信用光源として実用化されて
いる。しかしながら最近では海底中継伝送へも光フアイ
バ通信システムが導入されようとしており、半導体レー
ザには尚一層の高信頼度及び長需命が要求されている。
Semiconductor lasers continue to be improved in characteristics and reliability, and have a longer lifespan, and are now being put into practical use as light sources for optical fiber communications. However, recently, optical fiber communication systems are being introduced to submarine relay transmission, and semiconductor lasers are required to have even higher reliability and longer lifespan.

光ファイバの低伝送損失波長域に適合する発光波長ケ有
するInPを基板とするI n Ga As P系の半
導体レーザは、 AtGa As系の半導体レーザに比
べ開発の初期段階から優れた信頼性及び長需命性を示し
た。
InGaAsP semiconductor lasers, which use InP as a substrate and have an emission wavelength that matches the low transmission loss wavelength range of optical fibers, have superior reliability and long life from the early stages of development compared to AtGaAs semiconductor lasers. It showed demand.

その第1の理由は、結晶基板からの貫通転位が電流注入
により増殖する速度が非常に小さいことであり、第2の
理由は、臂開面での光学損傷がAtG a A sに比
べ非常に小さいことであった。InGaAsP系半導体
レーザが光学損傷を受ける光出力密度は数十MW /c
ystを越えているから、 InGaAsP系半導体レ
ーザでは、 AtGaAs系半導体レーザの様に例開面
に端面保護膜2施すといりたことは。
The first reason is that the propagation rate of threading dislocations from the crystal substrate due to current injection is extremely slow, and the second reason is that the optical damage at the arm opening is much lower than that of AtGa As. It was a small thing. The optical power density at which InGaAsP semiconductor lasers are optically damaged is several tens of MW/c.
yst. Therefore, in the case of InGaAsP semiconductor lasers, an end face protection film 2 is applied on the open surface, as in AtGaAs semiconductor lasers.

為されてこなかった。It has not been done.

しかしながら1発振閾値電流が使用開始時に比べて数十
−以上に上昇した素子の内部を評価してみると、臂開面
近傍の活性層に非発光部が見られ。
However, when evaluating the inside of the device whose single-oscillation threshold current had increased by several tens of magnitude or more compared to when it was first used, a non-light-emitting portion was found in the active layer near the arm opening.

よシ一層の高信頼度及び長需命を実現するには襞間面の
保護によシその劣化の抑制が必要なことが判って来た。
It has become clear that in order to achieve even higher reliability and longer service life, it is necessary to protect the interfold surfaces and to suppress their deterioration.

高信頼度及び長需命を実現する従来の襞間面の保護手段
は、At203膜、sio□膜。
Conventional protection measures for inter-fold surfaces that achieve high reliability and long service life are At203 membrane and sio□ membrane.

Si3N4膜等を襞間面に形成することであった。The purpose was to form a Si3N4 film or the like on the interfold surface.

この保護手段は1個々の素子を襞間した後に臂開面に施
すから1作製が面倒で歩留シも悪かった。
Since this protective means was applied to the opening surface of the arm after each element was folded, the manufacturing process was troublesome and the yield was low.

従って本発明の目的は、製造歩留シが良好であり、しか
も信頼度が高く需命が長い半導体レーザの提供にある。
Therefore, an object of the present invention is to provide a semiconductor laser that has a good manufacturing yield, high reliability, and has a long life.

本発明の構成は、第1のり2ラド層と活性層と第1のク
ラッド層とは導電型の異なる第2のクラッド層とを順次
積層した二重へテロ接合構造を含んでいる多層構造とフ
ァブリベロー形共振器とを備える半導体レーザにおいて
、前記共振器の反射鋭をなす端面から微小な厚さの範囲
が前記第1又は2のクラッド層と同じ導電影領域である
ことを特徴とする。
The structure of the present invention has a multilayer structure including a double heterojunction structure in which a first glue layer, an active layer, and a second cladding layer having a different conductivity type from the first cladding layer are sequentially laminated. A semiconductor laser including a Fabry-Bello resonator is characterized in that a small thickness range from an end face of the resonator that forms a reflective sharpness is the same conductive shadow region as the first or second cladding layer.

次に図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第1図は1本発明の第1の実施例を示すI n G a
AsP半導体レーザの斜視図である。n形InP基板l
の上にn形InPバッファ層2(機能上はクラッド層で
あり、前述の第1のり2ラド層に当る。
FIG. 1 shows a first embodiment of the present invention.
FIG. 1 is a perspective view of an AsP semiconductor laser. n-type InP substrate
An n-type InP buffer layer 2 (functionally a cladding layer and corresponding to the above-mentioned first adhesive layer 2) is formed on the n-type InP buffer layer 2 (functionally a cladding layer).

膜厚1.5μm)、ノンドーグInGaAsP活性層3
(発光波長にして1.3μm組成、膜厚O9^5μm)
film thickness 1.5 μm), non-doped InGaAsP active layer 3
(Composition of 1.3μm in terms of emission wavelength, film thickness O9^5μm)
.

p形InPクラッド層4(前述の第2クラッド層に当る
。膜厚1.5μm)、p形InGaAsP電極形成層5
(発光波長にして1.15μm組成、膜厚0.8μm)
を順次積層した後、襞間面too、iotを形成する位
置より奥に(共振器の軸方向に)厚さ約5μm。
p-type InP cladding layer 4 (corresponds to the above-mentioned second cladding layer; film thickness 1.5 μm), p-type InGaAsP electrode forming layer 5
(Composition of 1.15 μm in terms of emission wavelength, film thickness of 0.8 μm)
After sequentially laminating the layers, a thickness of approximately 5 μm is placed deeper than the position where the interfold surfaces too and iot are formed (in the axial direction of the resonator).

深さ約3μmのZnの選択拡散領域(クラッド層4と同
じp形導電形の不純物領域)200,201t−形成し
、p側に幅約10μmの8i02の酸化膜ストライプ3
0.およびAu−Zn形のp細金属電球40、n側にA
u −Ge−Ni系のn側金属電極41を形成した後装
間し第1図の構造の素子を得る。
A Zn selective diffusion region (an impurity region of the same p-type conductivity type as the cladding layer 4) 200, 201t with a depth of about 3 μm is formed, and an 8i02 oxide film stripe 3 with a width of about 10 μm is formed on the p side.
0. and Au-Zn type P thin metal bulb 40, A on the n side.
A device having the structure shown in FIG. 1 is obtained by mounting the u-Ge-Ni based n-side metal electrode 41 thereon.

共振器の長さは300μmである。この素子の発振闇値
は180mA、微分量子効率は50%であった。
The length of the resonator is 300 μm. The oscillation dark value of this device was 180 mA, and the differential quantum efficiency was 50%.

臂開面100ではpn接合はZnの選択拡散領域200
の下端(基板l側の鍬)300に形成されており、In
GaAsP活性層3から離れている。この形状は臂開面
lotにおいても同じである。
At the arm opening 100, the pn junction is a selective diffusion region 200 of Zn.
It is formed at the lower end (the hoe on the substrate l side) 300 of the In
It is separated from the GaAsP active layer 3. This shape is the same in the arm opening lot.

InGaAsP系の半導体レーザでは、前述した様に、
光学損傷が生じ瞬時に素子が故障してしまうという光出
力レベルは高い。しかし5mW、あるいはlomWとい
う光出力レベルでも長時間の動作を行うと、臂開面での
活性層部では光の電界強度が大きいため1表面電荷の集
中あるいは1表面率位密度の増大が生じ、更にそれらが
深い準位を形成するといった様な機構を通し、内部に非
発光再結合領域を形成して行き素子特性を徐々に劣化さ
せると考えられる。この場合、従来のほとんどの半導体
レーザの様に電界強度が最も強くなるpn接合が活性層
部にある場合には、劣化の進行を加速させることになる
。第1図に示す本発明の第1の実施例の素子では襞間面
lOOにおいてpn接合300はI n Ga As 
P活性層3から約0.5 p m離れているからS 5
0℃−5mWの定光出力の動作条件でエージングすると
劣化の進行は従来よりも約1桁小さく抑えることができ
ることがわかった。
In the InGaAsP semiconductor laser, as mentioned above,
The optical output level is so high that optical damage occurs and the device instantly breaks down. However, when operating for a long time even at an optical output level of 5 mW or lomW, the electric field strength of the light is large in the active layer at the arm opening surface, resulting in concentration of 1-surface charge or increase in 1-surface rate density. Furthermore, it is thought that through a mechanism such as the formation of a deep level, a non-radiative recombination region is formed inside, gradually deteriorating the device characteristics. In this case, if a pn junction where the electric field strength is strongest is located in the active layer, as in most conventional semiconductor lasers, the progress of deterioration will be accelerated. In the device according to the first embodiment of the present invention shown in FIG.
Since it is approximately 0.5 pm away from the P active layer 3, S 5
It has been found that aging under the operating conditions of constant light output of 0° C.-5 mW can suppress the progress of deterioration to about one order of magnitude smaller than that of the conventional method.

Znの選択拡散領域2001に形成したことで1発振閾
値が5mA程度増加したが、素子特性に与える影響は小
さい。
Although the single oscillation threshold increased by about 5 mA by forming it in the Zn selective diffusion region 2001, the effect on device characteristics is small.

第2図は1本発明の第2の実施例であるInGaAsP
埋め込み形半導体レーザの斜視図である。
Figure 2 shows InGaAsP which is a second embodiment of the present invention.
FIG. 2 is a perspective view of an embedded semiconductor laser.

この構造は2回の液相エピタキシャル(LPE)成長で
つくられる。第1回目のLPE成長では。
This structure is created by two rounds of liquid phase epitaxial (LPE) growth. In the first LPE growth.

(001)面の口形InP基板l上にn形InPバッフ
ァ層2(前述の第1のクラッド層に当る。膜厚2.5μ
m)、ノンビーフ−InGaAsP活性層3(発光波長
にして1.0μm組成)、p形InPクラッド層4(前
述の第2のクラッド層に当る。膜厚1μm)の3層を積
層する。次に<110>方向に平行に。
An n-type InP buffer layer 2 (corresponding to the above-mentioned first cladding layer, film thickness 2.5μ) is formed on a (001)-faced InP substrate l.
m), a non-beef-InGaAsP active layer 3 (composition of 1.0 μm in terms of emission wavelength), and a p-type InP cladding layer 4 (corresponding to the above-mentioned second cladding layer; film thickness of 1 μm) are laminated. Next, parallel to the <110> direction.

間にメサストライプ20を挾んで深さ約3μmの2本の
溝21.22を形成する。第2回目のLPE成長では、
まずp形InP電流ブロック層6(平坦部での膜厚0.
5μm)、n形InP電流閉じ込め層7(平坦部での膜
厚0.5μm)ffiメ丈ストラストライプ20には積
層しない様にして形成し1次にp形InP埋め込み層8
(平坦部での膜厚1.0μm)。
Two grooves 21 and 22 with a depth of about 3 μm are formed with the mesa stripe 20 sandwiched between them. In the second LPE growth,
First, the p-type InP current blocking layer 6 (thickness 0.5 mm at the flat part).
5 μm), n-type InP current confinement layer 7 (thickness 0.5 μm in the flat part) is formed so as not to be laminated on the ffi straight stripe 20, and the p-type InP buried layer 8 is formed first.
(Film thickness 1.0 μm at flat part).

p形InGaAsP電極形成層5(発光波長にして1.
15μm組成、平坦部での膜厚0.5μm)を全面に積
層する。
P-type InGaAsP electrode forming layer 5 (1.
A film having a composition of 15 μm and a film thickness of 0.5 μm at the flat portion is laminated over the entire surface.

次に第1の実施例の場合と同様に、 l開面100゜l
Ol を形成する位置より奥に厚さ約5μm、深さ約5
.5μmのZnの選択拡散領域200,201を形成す
る。p側には5io2の幅約10pmの酸化膜ストライ
プ30.その上にAu−Zn系のp側金稿電極40を形
成する。n側にはAu−Ge−Ni系のn側金楓電極4
1を形成する。最後に共振器長300μmで襞間し第2
図の素子を得る。
Next, as in the case of the first embodiment, l opening surface 100° l
Approximately 5μm thick and approximately 5μm deep from the position where Ol is formed.
.. Selective Zn diffusion regions 200 and 201 with a thickness of 5 μm are formed. On the p side, there is an oxide film stripe 30.5io2 with a width of about 10 pm. An Au--Zn based p-side gold plate electrode 40 is formed thereon. On the n side, an Au-Ge-Ni gold maple electrode 4 is provided.
form 1. Finally, the resonator length is 300 μm and the second
Obtain the element shown in the figure.

この実施例では1発振閾値は25から30 mA 。In this embodiment, the one-oscillation threshold is 25 to 30 mA.

微分量子効率は50から60チであった。この構造でも
、第1の実施例と同様に、襞間面loOではpn接合が
Zn選択拡散領域200の下端300に形成されており
1発光領域のメサスト2イグ2゜内のInGaAsP活
性層3から離れている。この形状は襞間面101におい
ても同じである。この素子は50℃−5mW、iるいは
70℃−5mWの定光出力の動作条件の二−ジンダ試験
において、襞間面にZn選択拡散領域200 、201
 ’e影形成ていない素子に比べ約1竹串さい劣化皐ヲ
示し。
The differential quantum efficiency was 50 to 60 chi. In this structure as well, as in the first embodiment, a pn junction is formed at the lower end 300 of the Zn selective diffusion region 200 at the inter-fold plane loO, and a pn junction is formed at the lower end 300 of the Zn selective diffusion region 200. is seperated. This shape is also the same for the interfold surface 101. This element was tested in two-zinda tests under the operating conditions of constant light output of 50°C-5mW or 70°C-5mW, with Zn selective diffusion regions 200, 201
It shows about 1 inch of deterioration compared to elements that do not form shadows.

70℃−5mWの条件での駆動電流の上昇率は2、OX
 L OmA/ hr と非常に小さい値であった。
The increase rate of drive current under the condition of 70℃-5mW is 2, OX
It was a very small value of L OmA/hr.

第3図は1本発明の第3の実施例を示すInGaAsP
埋め込み形半導体レーザの斜視図である。
FIG. 3 shows a third embodiment of the present invention.
FIG. 2 is a perspective view of an embedded semiconductor laser.

第2の実施例と異なる点は、Znの選択拡散領域200
.201の横幅がメサストライプ20の位置を中心とし
て16μmの幅に限定されていることである。このよう
にしても、メサストライプ20内の活性層3からpn接
合が離れるから、第2の実施例と同様の効果があり、劣
化率は第2の実施例の素子と同様小さな値であった。
The difference from the second embodiment is that the Zn selective diffusion region 200
.. The width of the mesa stripe 201 is limited to 16 μm with the mesa stripe 20 as the center. Even in this case, since the pn junction is separated from the active layer 3 in the mesa stripe 20, the same effect as in the second example was obtained, and the deterioration rate was a small value as in the element of the second example. .

前述の実施例では、InGaAsP活性層3は。In the embodiment described above, the InGaAsP active layer 3 is.

13μmの発光波長の組成であったが、12μmおよび
1.5μmの発光波長の組成でも同様の結果が得られた
。また、実施例ではInP基板上のInGaAsP系に
ついて示したが、GaAs基板上のAtG aAs系、
もしくはInGaAs糸でも同様の効果が期待できる。
Although the composition had an emission wavelength of 13 μm, similar results were obtained with compositions having emission wavelengths of 12 μm and 1.5 μm. In addition, although the example shows an InGaAsP system on an InP substrate, an AtGaAs system on a GaAs substrate,
Alternatively, a similar effect can be expected with InGaAs thread.

以上説明した如く1本発明の半導体レーザは。As explained above, one semiconductor laser of the present invention is as follows.

襞間面においてpn接合の位置が活性層から離してらる
から信頼度が高く長需命であり、更に従来の様に襞間面
に端面保護膜を施す方法ではなく成長ウェハに拡散を施
す方法で端面保護手段を実現するから製造歩留シがよく
生産性が高いという優れた効果を発揮することができる
Since the position of the pn junction is separated from the active layer on the inter-fold surface, it is highly reliable and has a long lifespan.In addition, it is a method of applying diffusion to the growth wafer instead of the conventional method of applying an end face protection film on the inter-fold surface. Since the end face protection means is realized with this method, excellent effects such as high manufacturing yield and high productivity can be exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の第1乃至第3の実施例をそ
れぞれ示す斜視図である。 l・・・・・・n形InP基板、2・・・・・・n形I
nPバッファ層、3・・・・・ランドーグInGaAs
P活性層。 4・・・・・・p形InPクラッド層、5・・・・・・
p形InGaAsP電極形成層、6・・・・・・p形I
nP電流ブロック層、7・・・・・・n形InP電流閉
じ込め層、890.11.。 形InP埋め込み層、20・・・・・・メサストライプ
。 21.22・・・・・・平行な2本の溝、30・・・・
・・酸化膜ストライプ、40・・・・・・p側金属電極
、41・・・・・・n側金属電極、too 、tot・
・・・・・例開面、200,201・・・・・・Zn選
択拡散領域、300・・・・・・拡散領域の下端。 第3図
1 to 3 are perspective views showing first to third embodiments of the present invention, respectively. l...n-type InP substrate, 2...n-type I
nP buffer layer, 3...Randogue InGaAs
P active layer. 4...p-type InP cladding layer, 5...
p-type InGaAsP electrode forming layer, 6... p-type I
nP current blocking layer, 7... n-type InP current confinement layer, 890.11. . InP type buried layer, 20...Mesa stripe. 21.22... Two parallel grooves, 30...
...Oxide film stripe, 40...p-side metal electrode, 41...n-side metal electrode, too, tot...
. . . Example open surface, 200, 201 . . . Zn selective diffusion region, 300 . . . Lower end of diffusion region. Figure 3

Claims (1)

【特許請求の範囲】[Claims] 第1のり2ラド層と活性層と第1のり2ラド層と導電型
の異なる第2のクラッド層とを順次積層した二重へテロ
接合構造を含んでいる多層構造と7アプリベロー形共振
器とを備える半導体レーザにおいて、前記共振器の反射
鏡をなす端面がら微小な厚さの範囲が前記第1又は第2
のり2ラド層と同じ導電形の領域であることを特徴とす
る半導体レーザ。
A multilayer structure including a double heterojunction structure in which a first glue 2 Rad layer, an active layer, a 1st glue 2 Rad layer, and a second cladding layer of a different conductivity type are sequentially laminated, and a 7-applied bellows resonator. In a semiconductor laser comprising:
A semiconductor laser characterized in that the region has the same conductivity type as the glue 2 rad layer.
JP19380283A 1983-10-17 1983-10-17 Semiconductor laser Pending JPS6085584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19380283A JPS6085584A (en) 1983-10-17 1983-10-17 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19380283A JPS6085584A (en) 1983-10-17 1983-10-17 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6085584A true JPS6085584A (en) 1985-05-15

Family

ID=16314014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19380283A Pending JPS6085584A (en) 1983-10-17 1983-10-17 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6085584A (en)

Similar Documents

Publication Publication Date Title
US6277696B1 (en) Surface emitting laser using two wafer bonded mirrors
US4821276A (en) Super-luminescent diode
JPH0669111B2 (en) Self-aligned rib waveguide high power laser
JP2980435B2 (en) Semiconductor device
US4722092A (en) GaInAsP/InP distributed feedback laser
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JP2000066046A (en) Light transmission device
JPS6343908B2 (en)
US4769821A (en) High power semiconductor laser by means of lattice mismatch stress
US4636821A (en) Surface-emitting semiconductor elements
US4313125A (en) Light emitting semiconductor devices
US5974070A (en) II-VI laser diode with facet degradation reduction structure
US5329134A (en) Superluminescent diode having a quantum well and cavity length dependent threshold current
JPS6085584A (en) Semiconductor laser
JP2022501815A (en) Gain-guided semiconductor laser and its manufacturing method
JPH0156547B2 (en)
JPS5840881A (en) Manufacture of buried hetero-structure semiconductor laser-photodiode beam integrating element
JPS5848490A (en) Semiconductor laser element built in light detector for monitoring
JPS6386581A (en) Light emitting diode
JPS6320398B2 (en)
JP2005079541A (en) Semiconductor optical amplifier and its manufacturing method
JPH09298338A (en) Quantum well crystalline body and semiconductor laser
JPH0575205A (en) Semiconductor luminous device
JPS6353718B2 (en)
JPH05343813A (en) Quantum-well-structure semiconductor laser and manufacture thereof