JPS6085379A - Moving direction discriminator - Google Patents

Moving direction discriminator

Info

Publication number
JPS6085379A
JPS6085379A JP58191689A JP19168983A JPS6085379A JP S6085379 A JPS6085379 A JP S6085379A JP 58191689 A JP58191689 A JP 58191689A JP 19168983 A JP19168983 A JP 19168983A JP S6085379 A JPS6085379 A JP S6085379A
Authority
JP
Japan
Prior art keywords
ultrasonic
vibrator
signal
wave
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58191689A
Other languages
Japanese (ja)
Other versions
JPH022111B2 (en
Inventor
Takanori Washimi
鷲見 孝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP58191689A priority Critical patent/JPS6085379A/en
Publication of JPS6085379A publication Critical patent/JPS6085379A/en
Publication of JPH022111B2 publication Critical patent/JPH022111B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/62Sense-of-movement determination

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the discrimination of the moving direction when a reflecting member is displaced with respect to an ultrasonic vibrator by converting an electrical signal into an ultrasonic wave to be beamed through a propagation medium while an ultrasonic vibrator is used and provided with a terminal to enable the transmitting and receiving of the electrical signal. CONSTITUTION:A continuous sine wave signal which was generated from an oscillator 12 for oscillating sine waves at the resonance frequency of an ultrasonic vibrator 3 is inputted into an ultrasonic wave position sensor 14 through a buffer circuit 13. When the continuous sine wave signal is applied to the vibrator 3 in the position sensor 14, the vibrator 3 beams ultrasonic waves continuously through an ultrasonic propagation medium 2. The ultrasonic wave travels through the medium, reaches an ultrasonic wave reflecting member 4 and then reflected to return to the vibrator 3 again. The position of the reflecting member 4 is movable longitudinally. At this point, if the frequency of the ultrasonic signal is higher by several MHzs, the ultrasonic wave travels straight as light does and is reflected. When an ultrasonic wave propagation path is relatively short, the condition of the wave front (within several tens cm) is satisfactory and the ultrasonic wave signal with the phase arrayed properly reciprocates through the medium.

Description

【発明の詳細な説明】 (技術分野) この発明は、超音波信号の体軸と反射および干渉を利用
した超音波位置センサを用いて、2点間の相対的位置変
化の変位方向全検知する移動方向1゛]」別装置に胸す
るものである。
Detailed Description of the Invention (Technical Field) This invention detects relative position changes between two points in all displacement directions using an ultrasonic position sensor that utilizes the body axis, reflection, and interference of ultrasonic signals. Direction of movement: 1゛] A separate device is required.

(従来技術) 従来より、超音波の伝飯時間ヲ′6111定して2点間
の距離全測定した例が数多く報告されてきている。
(Prior Art) Many examples have been reported in which the entire distance between two points is measured by fixing the propagation time of ultrasonic waves.

超音波振動子」法器に代表されるような超音波測長では
多くの場合、被測定物自穿あるいは被御」定物が抱合さ
れている物質を超音〃(の伝搬媒質として使用し、この
中を伝搬する超音波によって測定全行っている。このた
め、伝搬媒質によシ個々に異なる音速に対しての補償、
外部雑音の除去、伝娠減哀によるS/N比劣化に対する
対%等、検討全必要とする点が多い。しかし外から、圧
電セラミクスなどの伐れた超音波振動子の開発が進み、
杓波故が数〜数十[MHz ) 、伝搬媒質中での波長
が数10〔μm〕といりた知波長の超音波が簡単に発生
できる今日、この超音波をオリ用した精密変位測定にお
ける工業的実用価値は、非常に高いものであると考えら
れる。短波長で位相の良く揃っている超音υえの波動的
性?(を十分活用するためには。
In most cases, ultrasonic length measurement, such as an ultrasonic transducer, uses a material to which the object to be measured is self-piercing or conjugated with the object to be measured as the propagation medium for ultrasonic waves. All measurements are performed using ultrasonic waves propagating through the medium.Therefore, it is necessary to compensate for the different sound velocities depending on the propagation medium.
There are many points that need to be considered, such as removal of external noise and percentage reduction in S/N ratio deterioration due to transmission loss. However, from the outside, the development of cutting-edge ultrasonic transducers such as piezoelectric ceramics progressed,
Nowadays, it is easy to generate ultrasonic waves with known wavelengths, where the wave length is several to several tens of MHz and the wavelength in the propagation medium is several tens of micrometers. The industrial practical value is considered to be very high. Wave dynamics of ultrasonic waves with short wavelength and well-aligned phase? (In order to fully utilize the.

jl追、−B波伝搬媒負の状態を安尼にし、超音波信号
の規則的な波動性を乱さないようにする必要がある。
It is necessary to keep the -B wave propagation medium in a negative state so as not to disturb the regular wave nature of the ultrasonic signal.

このためには、密閉容器中に充てんした媒質中に超音波
全発射し、かつ検出する手法を用いた超音波#t at
が適していると思われる。
For this purpose, ultrasonic wave #t at using a method of emitting all ultrasonic waves into a medium filled in a closed container and detecting the same.
seems to be suitable.

(本うi明の要旨) 不発明は位相のよ< JG:iった知波長の超音波全使
用し、これによって超音波伝搬媒質中に設置された超音
波振動子面と反射部材面との間に定在波を発生させ、こ
の定在dシの振幅値情報と位相情報とから前記反射部相
が前記超音波撮動子に対して変位したときの移動方向を
判別しようとするものである。
(Summary of the present invention) The invention is based on the phase of the ultrasonic wave. A device in which a standing wave is generated between the two and the amplitude value information and phase information of this standing wave are used to determine the direction of movement when the reflecting part phase is displaced with respect to the ultrasonic sensor. It is.

(第1ら 成 ) 第1図は赴廿波位慨センサ10の実施例における偶成1
2である。密閉構造の容器1に流動性のある超音波伝搬
媒質2を封入する。ijA記容器の内壁には赤面が平滑
で厚み方向に振動する超音波撮動子6が取伺けてあり、
また、この振動子の振!IQ+面と対向し、かつ平行に
超音波を反射するための超音波反射部材4が設置されて
いる。この反射部月は感知枠5の先効に取付けられてお
り、前記容器の外部より感知枠を動かずことによンて、
前記振動子との平行間保全保持しつつ距晶のみを変化さ
せることができる。才た前記容器内には、不侵反躬の超
音波を吸収し、かつ前記反ム(1イ反および浜、釦枠が
移動することによって生ずる容器内の圧力変化を吸収す
るための気泡を含んだ吸音部材6が設置されている。こ
の吸音部相の設置場D1は、前記振jj7J子と反射部
材との間を往復伝搬する超音波を妨けず、かつ前記反射
部拐と感知枠との移動に支ト;1・の無い場所を選ぶ。
(1st layer configuration) FIG.
It is 2. A fluid ultrasonic propagation medium 2 is enclosed in a container 1 having a closed structure. ijA An ultrasonic sensor 6 with a smooth blush and vibrating in the thickness direction is located on the inner wall of the container.
Also, the vibration of this vibrator! An ultrasonic reflecting member 4 for reflecting ultrasonic waves in parallel with and facing the IQ+ surface is installed. This reflective part is attached to the sensing frame 5, and by not moving the sensing frame from the outside of the container,
Only the distance crystal can be changed while maintaining the parallel distance with the vibrator. Inside the container, there are air bubbles for absorbing non-invasive ultrasonic waves and for absorbing pressure changes inside the container caused by the movement of the button frame. A sound-absorbing member 6 containing the sound-absorbing member 6 is installed.The installation field D1 of this sound-absorbing member is such that it does not impede the ultrasonic waves propagating back and forth between the transducer and the reflecting member, and is located between the reflecting member and the sensing frame. Choose a place where there is no support for moving; 1.

前記超音波振動子からは電気信号を送受するための配糺
゛が、検出端子7に接続されている。検出端子7は超音
波電気信号人力y;;1子の機能fi:1にねる。
A wire for transmitting and receiving electrical signals from the ultrasonic transducer is connected to the detection terminal 7. The detection terminal 7 is connected to the ultrasonic electric signal y;;1 function fi:1.

次にこの超者阪位置センサ10の前記感知枠が前j4:
に移動するとき、その移動方向を判別する機11目につ
いて述べる。説明を匍単にするためにまず検出ψ;1”
、:子7よシ超音波振動子6の共振周波数合もつ正弦波
信号全入力し、前記超音波撮動子6より超音波伝搬媒質
2中に連続的に超音波を発射させる。このb昔汲は前記
超音波伝搬tk質中金進行し11(刊波反射部相4に到
達して反射し、再び前記振t・1り子に決る。このとき
j:lJ記振動子面と反射部材面との間に生じる定在波
の振幅と位相は、前記、1.・6波の二分の一波長(λ
/2)を周期とするこれら二平面間の耐量Xに対する周
期[月数になる。言い換えると2反射部材面での反射係
@yiR,前記超f’4波伝(ンタ媒賀中での波長定数
をlc 、角周波数をωとすると、定在波の音圧Pは。
Next, the sensing frame of this super position sensor 10 is in the front j4:
The 11th device that determines the direction of movement when the object moves to the other direction will be described. To simplify the explanation, first detect ψ;1”
, : All sine wave signals having the resonant frequencies of the ultrasonic transducer 6 and the transducer 7 are input, and ultrasonic waves are continuously emitted from the ultrasonic transducer 6 into the ultrasonic propagation medium 2. The ultrasonic wave propagates through the metal, reaches the reflection phase 4, is reflected, and is again determined to be the oscillator. At this time, j: lJ is the transducer surface. The amplitude and phase of the standing wave generated between
/2) is the period for the tolerance X between these two planes [number of months]. In other words, if the reflection coefficient @yiR on the two reflecting member surfaces, the wavelength constant in the ultra f'4 wave transmission (intermediate) is lc, and the angular frequency is ω, then the sound pressure P of the standing wave is.

P=p’T”j”R%−)−2Rcos 21cx c
os(ωt−44)で与えられる。ただしpは入射波の
強さと超音波伝搬媒質の性質とで決する定数である。こ
こで。
P=p'T"j"R%-)-2Rcos 21cx c
It is given by os(ωt-44). However, p is a constant determined by the intensity of the incident wave and the properties of the ultrasonic propagation medium. here.

k=2π/λの関係を用いると上式Pの振幅Aは。Using the relationship k=2π/λ, the amplitude A of the above equation P is.

A−pi71−7;τL”+2iもcos(4πX/λ
)−となり、距#I#xが二分の一波長(λ/2)移動
する毎に最大値′fi:得る。同時に上式Pの位相φは
、距離Xの移動に対し振幅Aと同じ二分の一伽、長C,
2/2 )の周期で変化し、かつ振幅Aに対して位41
がV2だけ遅ルている。(岑クロス点を見れはつJらか
でちろう。)つまシ足在波の音圧Pは、振動子面から反
射部材面までの距l!l1FXに対してその折幅Aを二
分の一波長(λ/2)の周期で変化させ、1だその位相
φも振幅Aの変化に対しπ/2の位相遅れと共に同じ二
分の一波長の周期で鋭化する。
A-pi71-7; τL”+2i is also cos(4πX/λ
)-, and the maximum value 'fi: is obtained every time the distance #I#x moves by a half wavelength (λ/2). At the same time, the phase φ of the above formula P is 1/2 the same as the amplitude A for the movement of the distance X, the length C,
2/2), and the magnitude is 41 times with respect to the amplitude A.
is delayed by V2. (Look at the cross point.) The sound pressure P of the current wave is the distance l from the transducer surface to the reflecting member surface! For l1FX, the amplitude A is changed at a period of half a wavelength (λ/2), and the phase φ, which is 1, has a period of the same half wavelength with a phase delay of π/2 with respect to the change in amplitude A. Sharpen with.

さてこれ才での知識をもとに、振動子に対する反射部拐
の移動方向を判別する原理を第2図を用いて具体的に説
明する。第2図の(a)は振動子に対する反射部詞の距
離Xに1441する位相φの変化8と振幅Aの変化9を
表わしたものである。これらの値はJjj:大値とノ1
史小値全1および−1に正規化しである。これら二つの
周期関数の一周期(λ/2)を最低二分割し、これら二
分割以上された二種類の信号の組合せ全複数個作り、こ
れら複数の組の変化してい< Ii!f’i序によりて
移動の方向を判別しようとするものである。第2図に掲
げた実施例では2位相111号8と振幅信号9を零交叉
検出などでプラスとマイナスを1と0に対応させるより
な二値信号10.11に変換する。ここで位相信号と振
幅信号とはπ/2の位相差があるために第2図中)に示
すような四稠の組合せ(1,0) 、 (1,1) 、
 (0,1)、 、 (0,0)を作ることができる。
Now, based on my knowledge, the principle of determining the direction of movement of the reflective part with respect to the vibrator will be explained in detail with reference to FIG. FIG. 2(a) shows a change 8 in the phase φ and a change 9 in the amplitude A depending on the distance X of the reflective part from the vibrator. These values are Jjj: large value and no 1
The history values are normalized to all 1 and -1. Divide one period (λ/2) of these two periodic functions into at least two parts, create a total of multiple combinations of two types of signals divided into two or more, and calculate the variation of these multiple sets <Ii! The purpose is to determine the direction of movement based on the f'i order. In the embodiment shown in FIG. 2, the two-phase signal 111 8 and the amplitude signal 9 are converted into a binary signal 10.11 in which plus and minus correspond to 1 and 0 by means of zero-crossing detection or the like. Here, since there is a phase difference of π/2 between the phase signal and the amplitude signal, four combinations (1,0), (1,1),
(0,1), , (0,0) can be created.

これらの組合せが(1,0)→(1,1)→(0,1)
→(0,0)と変化するか、(0,0)→(U、1)’
 −(1,1)→(1,0)と変化するかによって距1
’ii? Xの移動方向を判別することができる。
These combinations are (1,0) → (1,1) → (0,1)
→(0,0) or (0,0)→(U,1)'
- Distance 1 depending on whether it changes from (1, 1) → (1, 0)
'ii? The moving direction of X can be determined.

次に、この原理を用いた移動方向イ4」別装置i’:の
一実施例をブロック図を使って説明する。tHS 3図
は本発明の一実施例の構成を示1ブロックMである。
Next, an embodiment of the device i' for the moving direction i4 using this principle will be described using a block diagram. tHS 3 Figure 3 shows the configuration of one embodiment of the present invention and is one block M.

超音波振動子乙の共振y1]波数で正弦波全発振する発
振器12で発生させた連続正弦波信号を、バッファ回路
13を通して超音波位置センサ14に入力する。
A continuous sine wave signal generated by an oscillator 12 that generates a full sine wave at the resonance y1 wave number of the ultrasonic transducer B is input to the ultrasonic position sensor 14 through the buffer circuit 13.

前記位置センサ14の内にある振動子3に前記連続正弦
波信号が加えられると、との摂動子3は超盲波伝搬媒質
2中に連続的に超音波を放射し、この超音波は前記媒質
中を進有し超音波反射部材4に到達して反射され再び前
記振動子6に戻る。反射部材4の位置は矢印のように前
後に移%j可能である。このとき、超音波信号の周波数
が数N旧2程度と高ければ、超音波は光の場仔と同様に
直進し。
When the continuous sinusoidal signal is applied to the transducer 3 in the position sensor 14, the perturber 3 continuously emits ultrasonic waves into the ultrablind wave propagation medium 2, and this ultrasonic wave It travels through the medium, reaches the ultrasonic reflecting member 4, is reflected, and returns to the vibrator 6 again. The position of the reflecting member 4 can be moved back and forth as indicated by the arrow. At this time, if the frequency of the ultrasonic signal is as high as several N2, the ultrasonic wave travels in a straight line like a field of light.

かつ反射する。また、超音波伝搬経路が比較的短かけれ
ば(数十m以内)波面の状態も良好で9位相の良く揃っ
た超音波信号が、前記媒質中を往復する。本超音波位置
センサ14では、振動子面と反射部材面とが平行状態に
保たれており7反射部材で反射されて戻ってきたん音波
の波面と振動子面は平行である。よりて振動子は、この
超音波の音圧によって圧電現象を生じ、電圧を発生する
。・しかしながら、前記振動子には1発売器12よりの
連続正弦波信号が加えられているため2反射超音波信号
による電圧の発生は振動子の内部抵抗の変化となり、振
動子に流れ込む電流の変化となって現われる。すなわち
、振動子に加えている正弦波信号と同相の反射超音波信
号が振動子に加わると圧′【1−現象により発生した交
流電圧は振動子に加えているでイ流電圧と同相となり、
#i果として交流電流が流れにくくなる。捷だ、この逆
に2反射超音波信号が逆相で摂動子に加われば、交流電
流は流れやすくなる。この交流電流はすべて発振器12
から供給されているものであシ、バッファ回路16と前
記振チ・、す子を共通に流れるものである。したがって
前記振動子面と前記反射材面との間に生ずる定在波の電
圧による振動子の圧電現象によりて電流値が変化すれば
+ 641記バッファ回路の出力端電圧も変化する。こ
のバッファ回路の出力端電圧の信号と、前記発振器12
の出力信号との位相差を位相比軟器15によって位相信
号8として検出し、さらに例えば二値化した位相信号1
0にズり換する。同時にこのバッファ回路の出力端電圧
の信号は、検波器16によって包絡線検波されて振轄値
化号9としてとり出され、さらに例えば二値化した振幅
信号11に変換される。次に位相比較器15と検波器1
6とからそれぞれ出力された位相信号10と振幅信号1
1とから方向検知装置17において第2図中)に示した
四種類の組合せ(1,0) + (1,1) 、 (0
,1) 、 (Ot[])全作り、これら組合せの変化
1ド1序によシ2反化部材4または感知棒5の移動方向
を判別する。第4図に方向、検知装置の簡単な実加・1
yli ’fr:示ず。まず第2図(a)で示した振較
、信号11全入力矩形波信号の立ち上シで矩形波パルス
を出力するワンショット回11’61Bと、同じ入力矩
形波1i号の立ち下9点で矩形波パルスを出力するワン
ショット回1・ψ+19とに入力する。’i fc 2
f42図(a)テ示[/ タat ;+l](?t 号
1o 全hrpDケート回路20と21に入力する。従
って第2図(a)のグラフにおいて距)li+Xの増加
と共にXの1itjがX+に越えるとき、振幅信号11
が立ち上がり、ワンシコット回路18から矩形波パルス
が出力されゲート20に入る。このとき位相信号10は
値1をと9ゲート20をljlけているので、ワンショ
ット回路18からの出力はゲート20ヲ通過してアラン
ダウンカウンタ220カウントアツプの入力端子26に
入力され、V2波長分が数え上げられる。同様のことが
距離XがX3を左から右へ増加しながら通過するときに
も生起し。
and reflective. Furthermore, if the ultrasonic propagation path is relatively short (within several tens of meters), the wavefront is in good condition and the ultrasonic signals with well-aligned nine phases reciprocate in the medium. In the ultrasonic position sensor 14, the transducer surface and the reflecting member surface are kept parallel, and the wavefront of the sound wave reflected by the reflecting member 7 and returned is parallel to the transducer surface. Therefore, the vibrator causes a piezoelectric phenomenon due to the sound pressure of this ultrasonic wave, and generates a voltage. -However, since the continuous sine wave signal from the first emitter 12 is applied to the vibrator, the voltage generated by the two reflected ultrasonic signals changes the internal resistance of the vibrator and changes the current flowing into the vibrator. It appears as. In other words, when a reflected ultrasonic signal that is in phase with the sine wave signal applied to the vibrator is applied to the vibrator, the AC voltage generated by the pressure 1- phenomenon becomes in phase with the current voltage applied to the vibrator,
#i As a result, it becomes difficult for alternating current to flow. On the other hand, if two reflected ultrasound signals are applied to the perturber with opposite phases, the alternating current will flow more easily. All this alternating current is generated by the oscillator 12
The voltage is supplied from the buffer circuit 16 and flows through the swing shaft and the foot in common. Therefore, if the current value changes due to the piezoelectric phenomenon of the vibrator due to the voltage of the standing wave generated between the vibrator surface and the reflective material surface, the output terminal voltage of the +641 buffer circuit also changes. The output terminal voltage signal of this buffer circuit and the oscillator 12
The phase difference with the output signal of
Converts to 0. At the same time, the output terminal voltage signal of this buffer circuit is envelope-detected by a wave detector 16, extracted as a divided value signal 9, and further converted into, for example, a binary amplitude signal 11. Next, phase comparator 15 and detector 1
A phase signal 10 and an amplitude signal 1 outputted from 6 and 6, respectively.
1 and the direction detection device 17 in the four types of combinations (1, 0) + (1, 1), (0
, 1) , (Ot[]) All changes in these combinations 1) Determine the direction of movement of the reversing member 4 or the sensing rod 5. Figure 4 shows the direction and simple implementation of the detection device.1
yli'fr: Not shown. First, the one-shot time 11'61B which outputs a rectangular wave pulse at the rising edge of the signal 11 all input rectangular wave signals shown in FIG. 2(a), and the falling point 9 of the same input rectangular wave 1i is input to the one-shot time 1·ψ+19 which outputs a rectangular wave pulse. 'i fc 2
f42 (a) shows [/taat;+l] (?t No. 1o All hrpD is input to gate circuits 20 and 21. Therefore, in the graph of FIG. 2(a), as the distance)li+X increases, 1itj of When exceeding X+, the amplitude signal 11
rises, a rectangular wave pulse is output from the one-shicott circuit 18 and enters the gate 20. At this time, the phase signal 10 has a value of 1 and 9 gates 20, so the output from the one-shot circuit 18 passes through the gate 20 and is input to the input terminal 26 of the Allan down counter 220, and the V2 wavelength The minutes are counted. A similar thing occurs when distance X passes through X3 increasing from left to right.

さらに杯波長分が加えられる。逆に、距1fifj x
がX。
Furthermore, a cup wavelength is added. Conversely, the distance 1fifj x
is X.

またはへの地点を右から左へ、つまシ減少する方向に移
動してこれら2点X1 y xAを通過するときには、
振幅信号11は立ち下がりワンショット回路19より矩
形波パルスが出力されゲート21に入力される。このと
き位相信号10は同じく値1をとっている為にゲート2
1は開かれており、ワンショット回j’?+ 19から
の出力はゲート21ヲ通過してアップダウンカウンタ2
2のカウントダウンの入力端子24に入力されr ’i
’2波長分が減ぜられる。さらにこれら捧波長全単位と
した計数値は表示器25に出力され表示される。また、
距離XがX2の地点を右左に通過するときにも2つのワ
ンショット回路18 、19からそれぞれの場合に応じ
て矩形波パルスが出力されるが、このとき位相信号10
は値が箒となり、2つのゲー) 20 、21は閉じら
れているのでアップダウンカウンターで計数されること
はない。
When moving from the right to the left in the direction of decreasing numbers and passing through these two points X1 y xA,
The falling amplitude signal 11 is outputted as a rectangular wave pulse by the one-shot circuit 19 and inputted to the gate 21 . At this time, since the phase signal 10 also takes the value 1, the gate 2
1 is open and one shot times j'? The output from +19 passes through gate 21 and enters up/down counter 2.
2 is input to the countdown input terminal 24 and r'i
'Two wavelengths are subtracted. Further, the counted values in units of all the dedicated wavelengths are outputted to the display 25 and displayed. Also,
When the distance X passes the point X2 to the right or left, the two one-shot circuits 18 and 19 output rectangular wave pulses depending on the case, but at this time the phase signal 10
The value becomes a broom, and the two games) 20 and 21 are closed, so they are not counted by the up-down counter.

(効 果) 以上説明したように本発明では電気信号を超音波に変換
して伝搬媒質中に超毛波を発射し、また。
(Effects) As explained above, the present invention converts electrical signals into ultrasonic waves and emits ultrasonic waves into a propagation medium.

伝搬媒質から到来する超音波全電気イB号I/i:変換
する振動面をもつ超音波型動子を用い、振動子には端子
を設けて電気信号の送受を可[j弓とすることによシ試
振動面に平行に対向する反射mlと、該振動面との垂直
方向の距離あるいは位す、′):の情報4t4号が得ら
れる位置センサラ構成しブヒ。反射im全外的な駆動機
構、アクチーエータ等によシ移動可能にしておけば、そ
の位置情報を精密にオンラインit flilできるの
で9例えばロボットなどの知fi目機椋の位置情報金得
る手段が芙現できる。、 さらに9本発明では上記位僧、センサに肛(音波を用い
ることにより、振幅値情報のみならず位相情報金も独立
に直接演11定することができ、移動方向全容易に判別
し、かつ移動量の精度も同時に向上することが可能にな
った。また超音波全前記位置センサの容器内に賄じ込め
ることによって、外部肴イ;音や伝播減衰によるSハ比
劣イl′を防ぐこともできるに至ったことは2精密な変
位測定における変位方向の簡単な検出手段を与えるもの
として将来有望である。とくに高いJli′i枕と同時
に、広いダイナミックレンジを得ることができることは
+1¥鍬に値する。
Ultrasonic waves arriving from a propagation medium All-electric I/I A position sensor is configured to obtain information about the reflection ml facing parallel to the test vibration surface and the distance or position in the perpendicular direction to the vibration surface. If the reflection im is made movable by a completely external drive mechanism, actuator, etc., its position information can be accurately transmitted online. can be expressed. Furthermore, in the present invention, by using sound waves as the sensor, not only the amplitude value information but also the phase information can be directly determined independently, all directions of movement can be easily determined, and It has also become possible to improve the accuracy of the amount of movement at the same time.Also, by incorporating all the ultrasonic waves into the container of the position sensor, it is possible to prevent S from being inferior due to external noise and propagation attenuation. The fact that we have now been able to do this is promising in the future as it provides a simple means of detecting the displacement direction in precise displacement measurements.In particular, it is possible to obtain a wide dynamic range at the same time as a high Jli'i pillow. Worth the hoe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超毛波位置センサのtjf3成図。 第2図は本発明の詳細な説明図。 第3図は本発明の実施例のブロック図。 第4図は方向検知装置の実施例の回路図。 図中の 1は容器。 2は超、fs波伝搬媒質。 6は超音波振動子。 4は超音波反射部制。 5は感知棒。 6は阪音部材。 7は動子。 8は音圧の位相信号。 9は音圧の振幅値信号。 10は位相の二値化・はち。 11は振幅の二値化信号。 12は発振器。 13はバッファ回路。 14はh毛波位置センサ。 15は位相比較器。 16は検波器。 17は方向検知装置。 18は立ち上がりエッヂでのワンショット回路。 19は立ち下がりエッヂでのワンショット回路。 20と21はANi)ゲート。 22はアップダウンカウンタ。 26は数え上げの入力端子。 24は数え下り”の入力端子。 25は表示器を示す。 竹咋出願人 安立電気株式会社 代理人 弁理士 小池
ff1J太部第1図 第2図 (b) (1,0’) (1,1’) (0,1) (0,0)
 (1,0) (1,1) (0,1) (0,0)第
3図 第4図 //
Figure 1 is a tjf3 diagram of the ultrahair wave position sensor. FIG. 2 is a detailed explanatory diagram of the present invention. FIG. 3 is a block diagram of an embodiment of the present invention. FIG. 4 is a circuit diagram of an embodiment of the direction detection device. 1 in the figure is a container. 2 is a super, fs wave propagation medium. 6 is an ultrasonic vibrator. 4 is an ultrasonic reflection system. 5 is a sensing stick. 6 is the Hanon component. 7 is Moko. 8 is the sound pressure phase signal. 9 is a sound pressure amplitude value signal. 10 is phase binarization. 11 is an amplitude binary signal. 12 is an oscillator. 13 is a buffer circuit. 14 is a hair wave position sensor. 15 is a phase comparator. 16 is a detector. 17 is a direction detection device. 18 is a one-shot circuit at the rising edge. 19 is a one-shot circuit at the falling edge. 20 and 21 are ANi) gates. 22 is an up/down counter. 26 is the input terminal for counting. 24 is an input terminal for counting down. 25 is a display device. Takekui Applicant: Anritsu Electric Co., Ltd. Agent: Patent Attorney Koike ff1J Abe Figure 1 Figure 2 (b) (1,0') (1, 1') (0,1) (0,0)
(1,0) (1,1) (0,1) (0,0)Figure 3Figure 4//

Claims (1)

【特許請求の範囲】[Claims] 電気(R号を超音波に変換して伝搬媒質に超音波全発射
するとともに該伝搬媒質から到来する超音波を’Tj+
気信号に変換する振動面をもつ超音波振動子(6)と、
該振動子に接続された端子(7)とで414成され、該
振動面に平行に対向する反射面が1亥振すlJ+而の垂
直方向へ相対的に移動したことを検知するための超音波
位置センサ(14)と:該振動子を励振させるための交
流信号を前記端子へ入力する発掘器(12)と:前記発
振器の出力を実質的に単方向に通過させて前記センサの
端子に入力するとともに該端子からの該反射面の該振動
子に対する相対的な位置16報信号を前記発振器の出力
と加算して出力するバッファ回M (15)と;該バッ
ファ回路からの該加算された出力と該発振器の出力との
位相を比収することにより位相差信号全出力する位相比
較器(15)と;該バッファ回路からの該加算された出
力を包絡線検波するととによυ振幅値信号全出力す忠検
波器(16)と:該反射面の前記相対的な位置の変化に
対応して得られる該位相差信号の変化と振幅値信号の変
化とから前記センサの前記反射面の該振動子に対する相
対的位置の移動方向を検知する方向検知装置(17)と
からなる移動方向判別装置1g−0
Electricity (R) is converted into ultrasonic waves and all the ultrasonic waves are emitted into the propagation medium, and the ultrasonic waves arriving from the propagation medium are 'Tj+
an ultrasonic transducer (6) having a vibration surface that converts into air signals;
414 is formed with the terminal (7) connected to the vibrator, and a transducer for detecting the relative movement in the perpendicular direction of one vibration of the reflecting surface facing parallel to the vibrating surface. a sonic position sensor (14); an excavator (12) for inputting an alternating current signal for exciting the vibrator to the terminal; and an excavator (12) for passing the output of the oscillator substantially in one direction to the terminal of the sensor a buffer circuit M (15) for inputting and outputting a signal indicating the relative position of the reflecting surface with respect to the vibrator from the terminal and adding the signal to the output of the oscillator; a phase comparator (15) which outputs a full phase difference signal by specifically collecting the phase between the output and the output of the oscillator; and detecting the envelope of the added output from the buffer circuit to obtain a υ amplitude value. A signal full-output faithful detector (16): detects the reflection surface of the sensor based on the change in the phase difference signal and the change in the amplitude value signal obtained in response to the change in the relative position of the reflection surface. A moving direction determining device 1g-0 comprising a direction detecting device (17) that detects the moving direction of the relative position with respect to the vibrator.
JP58191689A 1983-10-15 1983-10-15 Moving direction discriminator Granted JPS6085379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58191689A JPS6085379A (en) 1983-10-15 1983-10-15 Moving direction discriminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58191689A JPS6085379A (en) 1983-10-15 1983-10-15 Moving direction discriminator

Publications (2)

Publication Number Publication Date
JPS6085379A true JPS6085379A (en) 1985-05-14
JPH022111B2 JPH022111B2 (en) 1990-01-16

Family

ID=16278821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58191689A Granted JPS6085379A (en) 1983-10-15 1983-10-15 Moving direction discriminator

Country Status (1)

Country Link
JP (1) JPS6085379A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720165A1 (en) * 1994-05-17 1995-11-24 Valeo Electronique Ultrasonic movement detector for car interior alarm
JP2012042485A (en) * 2011-11-28 2012-03-01 Oki Electric Ind Co Ltd Data processing apparatus, operation recognition system, operation discrimination method, and program
CN113920551A (en) * 2021-09-30 2022-01-11 深圳市汇顶科技股份有限公司 Ultrasonic image sensor and related electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720165A1 (en) * 1994-05-17 1995-11-24 Valeo Electronique Ultrasonic movement detector for car interior alarm
JP2012042485A (en) * 2011-11-28 2012-03-01 Oki Electric Ind Co Ltd Data processing apparatus, operation recognition system, operation discrimination method, and program
CN113920551A (en) * 2021-09-30 2022-01-11 深圳市汇顶科技股份有限公司 Ultrasonic image sensor and related electronic device
CN113920551B (en) * 2021-09-30 2023-02-07 深圳市汇顶科技股份有限公司 Ultrasonic image sensor and related electronic device

Also Published As

Publication number Publication date
JPH022111B2 (en) 1990-01-16

Similar Documents

Publication Publication Date Title
US2592134A (en) Method of supersonic inspection
JPH0525045B2 (en)
US4126047A (en) Surface acoustic wave rate sensor and position indicator
JPH109914A (en) Ultrasonic flowmeter
JPS6156450B2 (en)
Bo et al. Forced oscillation to reduce zero flow error and thermal drift for non-reciprocal operating liquid ultrasonic flow meters
JPS6085379A (en) Moving direction discriminator
Bayón et al. Estimation of dynamic elastic constants from the amplitude and velocity of Rayleigh waves
Kikuchi et al. Ultrasonic Power Measurements by Radiation Force Balance Method–Characteristics of a Conical Absorbing Target–
Costley et al. Viscosity measurement with laser-generated and detected shear waves
US4061040A (en) Apparatus for measuring rotation rates with acoustic waves
JPH0271146A (en) Accurate measuring method of reciprocating time of ultrasonic wave utilizing pulse reflection method
Nakamura et al. Measuring vibration characteristics at large amplitude region of materials for high power ultrasonic vibration system
Wan et al. Direct measurement of ultrasonic velocity of thin elastic layers
McDevitt et al. Two-Channel Laser Vibrometer Techniques for Vibrational Intensity Measurements: Part 2—Longitudinal Intensity
Casula et al. Transient surface velocity measurements in a liquid by an active ultrasonic probe
JPH074945A (en) Ultrasonic interferometer
JPH0250422B2 (en)
JPH0237965B2 (en) CHOONPAOMOCHIITAHENISOKUTEISOCHI
JPS59192907A (en) Measuring method of thickness
Huber et al. Ultrasonic Flowmeter for Leakage Detection in Water Mains
RU2084821C1 (en) Ultrasonic meter for measuring clearances in multi-layer structures
SU757910A1 (en) Method of measuring elastic constants of solid isotropic bodies
SU717625A1 (en) Vibration-type viscosity measuring transducer
JPS6076615A (en) Ultrasonic wave position sensor