JPS6085254A - Ignition timing control method - Google Patents
Ignition timing control methodInfo
- Publication number
- JPS6085254A JPS6085254A JP19384983A JP19384983A JPS6085254A JP S6085254 A JPS6085254 A JP S6085254A JP 19384983 A JP19384983 A JP 19384983A JP 19384983 A JP19384983 A JP 19384983A JP S6085254 A JPS6085254 A JP S6085254A
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- engine
- lean
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/045—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Ignition Timing (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の利用分野)
本発明は内燃機関の点火時期制御方法に関し、特に、所
定の機関運転条件下で空燃比を理論空燃比よシ希薄化す
る内燃機関に用いて好適女点火時期制御方法に関するも
のでおる。DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to an ignition timing control method for an internal combustion engine, and is particularly applicable to an internal combustion engine in which the air-fuel ratio is leaner than the stoichiometric air-fuel ratio under predetermined engine operating conditions. This invention relates to a preferred female ignition timing control method.
(発明の背景)
一般に、三元触媒を用いた、排気ガス浄化対策が施され
た自動車用エンジンにおいては、排気エミッションを向
上させるため、エンジンの燃焼状態を示す空燃比を理論
空燃比近傍に制御する必要がある。(Background of the Invention) Generally, in automobile engines that use a three-way catalyst and are equipped with exhaust gas purification measures, in order to improve exhaust emissions, the air-fuel ratio, which indicates the combustion state of the engine, is controlled to be close to the stoichiometric air-fuel ratio. There is a need to.
例えば、排気ガス中の残留酸素濃度により空燃比を検出
するO!セ/すの出力に応じて、空燃比を理論空燃比と
すべくフイ七ドパツク制御が従来から行なわれている。For example, O! detects the air-fuel ratio based on the residual oxygen concentration in the exhaust gas. Fidel pack control has conventionally been performed to bring the air-fuel ratio to the stoichiometric air-fuel ratio in accordance with the output of the engine.
エンジン軽負荷運転状態においては、排気ガス中の窒素
酸化物の排出量が少ないので、理論空燃比より希薄側に
空燃比を移行しても排気エミッションはそれほど悪化せ
ず燃費を向上させることができる。When the engine is operating under light load, the amount of nitrogen oxides emitted in the exhaust gas is small, so even if the air-fuel ratio is shifted to the leaner side than the stoichiometric air-fuel ratio, the exhaust emissions do not deteriorate much and fuel efficiency can be improved. .
このような点に立脚して、例えば02センサからの空燃
比信号に基づいてエンジンが理論空燃比で運転されるよ
うに空燃比を制御するフィードバック制御と、理論空燃
比より希薄側で運転されるように空燃比をフィードフォ
ーワード制御するり−/制御とを運転状態に応じて切替
え、これにより、燃費を向上させるようにした内燃機関
が提案されている。Based on these points, for example, feedback control is used to control the air-fuel ratio so that the engine is operated at the stoichiometric air-fuel ratio based on the air-fuel ratio signal from the 02 sensor, and the engine is operated at a leaner side than the stoichiometric air-fuel ratio. An internal combustion engine has been proposed in which the air-fuel ratio is switched between feedforward control and control depending on the operating state, thereby improving fuel efficiency.
ところが、かかる内燃機関の点火時期は、理論空燃比を
基準としてめられており、リーン制御下では進角値が不
足し、所望のトルクおよび燃費が得られない惧れがある
。However, the ignition timing of such an internal combustion engine is set based on the stoichiometric air-fuel ratio, and under lean control, the advance angle value may be insufficient and the desired torque and fuel efficiency may not be obtained.
(発明の目的)
本発明の目的は、リーン制御中の点火を、空燃比に応じ
た点火進角値を用いて行うようにした点火時期制御方法
を提案することにある。(Objective of the Invention) An object of the present invention is to propose an ignition timing control method in which ignition during lean control is performed using an ignition advance value according to the air-fuel ratio.
(発明の構成、効果)
本発明は、リーン制御時には、空燃比が大きいすなど大
きく、かつ機関回転数が高いほど小さくなる点火進角で
点火するようにしたものであり、これにより、最適な燃
焼が得られ、リーン制御下でも所望の機関特性を発揮さ
せることが可能となる。(Structure and Effects of the Invention) The present invention is configured to ignite at an ignition advance angle that becomes smaller as the air-fuel ratio becomes larger and the engine speed becomes higher. Combustion is obtained, and it becomes possible to exhibit desired engine characteristics even under lean control.
また本発明は、空燃比のみならず機関回転数も加味した
補正を行なっているので、空燃比のみで進角補正する場
合に比べて、より精度の高い点火時期制御が可能となる
。Furthermore, since the present invention performs correction that takes into account not only the air-fuel ratio but also the engine speed, it is possible to perform ignition timing control with higher accuracy than when advance angle correction is performed based only on the air-fuel ratio.
(実施例)
以下、図面に基づいて本発明の実施例について説明する
。(Example) Hereinafter, an example of the present invention will be described based on the drawings.
第1図は本発明方法を適用した内燃機関の一例を示して
いる。FIG. 1 shows an example of an internal combustion engine to which the method of the present invention is applied.
吸気管1のスロットル弁3の上流には燃料噴射弁5が設
けられ、スロットル弁3の下流には吸気管圧力に応じた
電圧を発生する吸気管圧力センサ7が設ケラれている。A fuel injection valve 5 is provided upstream of the throttle valve 3 in the intake pipe 1, and an intake pipe pressure sensor 7 is provided downstream of the throttle valve 3 to generate a voltage according to the intake pipe pressure.
スロットル弁3の回動軸には、スロットル開度に応じた
信号を出力するスロットル開度センサ9が連結されてお
り、また、スロットル弁3の上流には、吸気温に応じた
信号を出力する吸気温センサ11が取付けられている。A throttle opening sensor 9 that outputs a signal according to the throttle opening is connected to the rotating shaft of the throttle valve 3, and a throttle opening sensor 9 that outputs a signal according to the intake air temperature is connected upstream of the throttle valve 3. An intake temperature sensor 11 is attached.
13は周知慣例の内燃機関であり、燃焼家15内の混合
気は、圧縮工程終了直前のクランク角度位置(点火進角
)において点火プラグ17により点火される。点火プラ
グ17へは、イグナイタ19で昇圧された高電圧がディ
ス) +1ピユータ21を介して供給される。ディスト
リビュータ21には、クランク角が30度毎のパルス信
号を出力する回転角センサ23と、360度毎のパルス
信号を出力する気筒判別センサ25とが設けられている
。Reference numeral 13 denotes a well-known conventional internal combustion engine, and the air-fuel mixture in the combustion chamber 15 is ignited by a spark plug 17 at a crank angle position (ignition advance angle) just before the end of the compression process. The high voltage boosted by the igniter 19 is supplied to the spark plug 17 via the +1 computer 21. The distributor 21 is provided with a rotation angle sensor 23 that outputs a pulse signal every 30 degrees of the crank angle, and a cylinder discrimination sensor 25 that outputs a pulse signal every 360 degrees.
燃焼後の排気は、排気管27を介して排出され、排気管
27には、排気中の酸素濃度に応じた二値の信号を出力
する酸素センサ(02センサ)29が取付けられている
。また、ウォータジャケット31内の冷却水温度に応じ
た電圧を発生する水温センサ33も取付けられている。The exhaust gas after combustion is discharged through an exhaust pipe 27, and an oxygen sensor (02 sensor) 29 is attached to the exhaust pipe 27, which outputs a binary signal according to the oxygen concentration in the exhaust gas. A water temperature sensor 33 that generates a voltage according to the temperature of the cooling water inside the water jacket 31 is also attached.
35は制御回路であり、第2図に示すように、公知のC
PU35a、後述のプログラム等が格納されているRO
M35b、演算途中の数値等が格納されるRAM35c
、バックアップRAM35d1人出カポー)35es
35f、A/D変換器35g1マルチプレクサ35h1
出力ポート35i、35j、バッファ群35に1コンパ
レ一タ3511波形整形回路35m、駆動回路35n、
35p1これらを接続するパスライン35qおよびクロ
ック35rから構成される。吸気管圧力センサ7、水温
センサ33、吸気温センサ11はバッファ群35に1マ
ルチプレクサ35hを介してA/D変換器35gと接続
され、酸素センサ29はバッファ群35に1コンパレー
ク351を介して入出力ボート35fと接続され、気筒
判別回路25および回転角センサ23は整形回路35m
を介して、スロットル開度センサ19は直接に入出力ボ
ート35fと接続され、燃料噴射弁5は駆動回路35n
を、イグナイタ19は駆動回路35pをそれぞれ介して
出カポ−)35i、35jと接続されている。35 is a control circuit, as shown in FIG.
RO where the PU35a and programs described below are stored
M35b, RAM35c where numerical values etc. during calculation are stored
, backup RAM35d1 person output) 35es
35f, A/D converter 35g1 multiplexer 35h1
Output ports 35i, 35j, buffer group 35, 1 comparator 3511, waveform shaping circuit 35m, drive circuit 35n,
35p1, a pass line 35q connecting them, and a clock 35r. The intake pipe pressure sensor 7, the water temperature sensor 33, and the intake temperature sensor 11 are connected to the buffer group 35 through a single multiplexer 35h and an A/D converter 35g, and the oxygen sensor 29 is connected to the buffer group 35 through a single comparator 351. It is connected to the output boat 35f, and the cylinder discrimination circuit 25 and rotation angle sensor 23 are connected to the shaping circuit 35m.
The throttle opening sensor 19 is directly connected to the input/output boat 35f, and the fuel injection valve 5 is connected to the drive circuit 35n.
The igniter 19 is connected to output ports 35i and 35j via drive circuits 35p, respectively.
第1図および第2図に示した内燃機関では、第3図に示
すフローチャートに従って燃料が噴射される。In the internal combustion engine shown in FIGS. 1 and 2, fuel is injected according to the flowchart shown in FIG.
手順P1において、回転角センサ23からの基準位置信
号S1に基づいてエンジン回転数Neを読込むとともに
吸気管圧力信号S5に基づいて吸気管圧力ーpmを読込
む。手順P2において、回転数Neと圧力pmとに基づ
いて基本噴射時間Tpをめ、手順P3において、エンジ
ンの運転条件に応じて補正演算処理を実行して補正後の
噴射時間τをめる。更に手順P4において、電源゛陽圧
に応じた補正を行ない最終噴射時間τ7をめる。手順P
5で噴射タイミングを判断し、肯定判断されれば手順P
6で噴射信号S8を噴射弁5に出力する。In step P1, the engine rotation speed Ne is read based on the reference position signal S1 from the rotation angle sensor 23, and the intake pipe pressure -pm is read based on the intake pipe pressure signal S5. In step P2, the basic injection time Tp is determined based on the rotational speed Ne and the pressure pm, and in step P3, a correction calculation process is executed according to the operating conditions of the engine to determine the corrected injection time τ. Furthermore, in step P4, a final injection time τ7 is determined by making a correction according to the positive pressure of the power source. Procedure P
Determine the injection timing in step 5, and if the determination is positive, proceed to step P.
6, the injection signal S8 is output to the injection valve 5.
ここで、基本噴射時間Tpは第4図のマツプからめるこ
とができ、補正演算処理は、例えば次式により行なわれ
る。Here, the basic injection time Tp can be determined from the map shown in FIG. 4, and the correction calculation process is performed, for example, by the following equation.
τ=TPxFAFxFLFJANxF【)0×にここで
、τ=補正後の噴射時間
FAF=フィードバック補正係数
FLEAN=リーン補正係数
FPO=パワー補正係数
に=水温、吸気温等による補正係数
フィードバック補正係数FAFは、フィードバック制御
条件下において、酸素センサ29からの空燃比信号S3
により空燃比がリーンであると判定されれば、噴射量を
増量するような値、例えば1.05となゆ、空燃比信号
S3により空燃比がリッチであると判定されれば、噴射
量を減債するよう々(直、例えば、0.95となり、フ
ィードバック制御条件下でなければ、補正係数FAFが
1.0となる。τ = TP x FAF Under control conditions, the air-fuel ratio signal S3 from the oxygen sensor 29
If the air-fuel ratio is determined to be lean by S3, the injection amount is increased to a value such as 1.05, and if the air-fuel ratio is determined to be rich by the air-fuel ratio signal S3, the injection amount is increased. If the debt is reduced (directly, for example, 0.95), and the correction coefficient FAF is not under feedback control conditions, the correction coefficient FAF will be 1.0.
フィードバック補正係数FAFの演算手順の一例を第5
図に示す。An example of the calculation procedure of the feedback correction coefficient FAF is shown in the fifth section.
As shown in the figure.
手順P11において、フィードバック条件が成立してい
るか否かを判断する。例えば、始動状態でなく、始動後
増量中で々く、エンジン水温THWが50°C以上であ
り、パワー増量中でない時に、フィードバック制御の条
件が成立する。フィードバック制御の条件が成立してい
なければ、手順P12でフィードバック補正係数FAF
を1.0としてフィードバック制御が実行されないよう
にして、この手順を終了する。条件が成立していれば手
順P13に進む。手順P13では、空燃比信号S3を読
込む。手順P14では空燃比信号S3が表わす電圧値に
フィルタをかけて、リッチのときに“1″、リーンのと
きに10” となるように空燃比リーンリッチフラグを
形成し、手順P 15 Kオイてフラグが“1″の場合
には、空燃比が過濃であると判断して空燃比を稀薄側に
すべく手順f:実行する。In step P11, it is determined whether a feedback condition is satisfied. For example, the conditions for feedback control are satisfied when the engine water temperature THW is 50° C. or higher, not during a starting state, but during power increase after startup, and when power is not increasing. If the conditions for feedback control are not satisfied, the feedback correction coefficient FAF is set in step P12.
is set to 1.0 so that feedback control is not executed, and this procedure ends. If the conditions are met, the process advances to step P13. In step P13, the air-fuel ratio signal S3 is read. In step P14, the voltage value represented by the air-fuel ratio signal S3 is filtered to form an air-fuel ratio lean-rich flag so that it is "1" when rich and 10 when lean. If the flag is "1", it is determined that the air-fuel ratio is too rich, and step f: is executed to make the air-fuel ratio lean.
すなわち、手順P16でフラグCAFLを零として手順
P17に進み、フラグCAFRが零か否かを判断する。That is, in step P16, the flag CAFL is set to zero, and the process proceeds to step P17, where it is determined whether the flag CAFR is zero.
初めて過濃側へ移行した時にはフラグCAFRが零であ
るので手順P]9へ進み、RAM35Cに格納されてい
る補正係数FAFから所定の値αlを減じ、その結果を
新たな補正係数FAFとする。手順P20においては、
フラグCAFRを1とする3、従って、手順P15にお
いて連続して二回以上過濃と判断されれば、二回目以降
に通過する手順P17では必ず否定判定され、手11[
P 18において、補正係数FAF’から所定の値β1
を減じ、その結果を新たな補正係数FAFとしてFAF
演算を終了する。When the flag CAFR is shifted to the over-concentration side for the first time, the flag CAFR is zero, so proceed to step P]9, subtract a predetermined value αl from the correction coefficient FAF stored in the RAM 35C, and use the result as a new correction coefficient FAF. In step P20,
3 with the flag CAFR set to 1. Therefore, if it is determined that there is excessive concentration twice or more in succession in step P15, a negative determination will always be made in step P17 passed from the second time onwards, and the step 11 [
At P18, a predetermined value β1 is calculated from the correction coefficient FAF'.
FAF
Finish the calculation.
一方、手順P15で信号S3が表わす電圧値に基づくり
一ンリッチフラグが″0″の場合には、空燃比が稀薄で
あると判断して空燃比を過濃側にすべく手順を実行する
。すなわち、手順P21において、フラグCAFRを零
として手順P22に進み、フラグCAFLが零か否かを
判断する。初めて稀薄側へ移行した時にはフラグCAF
Lが零であるので手順P23に進み、補正係数FAFに
所定の値α2を加算し、その結果を新たな補正係数FA
Fとする。手順P24においてはフラグCA F Lを
1とする。従って、手順P15において連続して二回以
上稀薄と判断されれば二回目以降に通過する手順P22
では必ず否定判定され、手順P25において、補正係数
FAFに所定の値β2を加算し、その結果を新た小袖正
係数FAFとしてFAF演算を終了する。On the other hand, if the rich flag based on the voltage value represented by the signal S3 is "0" in step P15, it is determined that the air-fuel ratio is lean, and the procedure is executed to make the air-fuel ratio rich. . That is, in step P21, the flag CAFR is set to zero, and the process proceeds to step P22, where it is determined whether the flag CAFL is zero. Flag CAF when moving to the dilute side for the first time
Since L is zero, proceed to step P23, add a predetermined value α2 to the correction coefficient FAF, and use the result as a new correction coefficient FA.
Let it be F. In step P24, the flag CA F L is set to 1. Therefore, if it is determined to be diluted twice or more consecutively in step P15, the step P22 is passed from the second time onwards.
In step P25, a predetermined value β2 is added to the correction coefficient FAF, and the result is set as a new Kosode positive coefficient FAF, and the FAF calculation is ended.
なお、手順pis、β19、β23、β25におけるα
1、α2、β1およびβ2は予め定められた値である。In addition, α in steps pis, β19, β23, and β25
1, α2, β1 and β2 are predetermined values.
この演算手段によりめられるフィードバック補正係数F
’AFを空燃比信号S3が表わす電圧値にフィルタをか
けて表わした空燃比A/Fのり一ンリツチフラグととも
に第6図に示す。この図を参照するに、空燃比がリーン
からリッチまたはリッチからリーンに切換わったときに
は、補正係数FAFがα1あるいはα2だけスキップさ
れ、リーンのままなら逐次所定数β1が減算され、リッ
チのままなら逐次所定数β2が加算される。Feedback correction coefficient F determined by this calculation means
'AF is shown in FIG. 6 together with an air-fuel ratio A/F ratio enrichment flag that is expressed by filtering the voltage value represented by the air-fuel ratio signal S3. Referring to this figure, when the air-fuel ratio switches from lean to rich or from rich to lean, the correction coefficient FAF is skipped by α1 or α2, if it remains lean, a predetermined number β1 is subtracted sequentially, and if it remains rich, the correction coefficient FAF is skipped by α1 or α2. A predetermined number β2 is added sequentially.
次に、リーン補正係数FLEANについて説明する。Next, the lean correction coefficient FLEAN will be explained.
第7図に示すリーン補正係数FLEAN演算ルーチンが
起動されると、手順P31においてIJ−ン制御条件が
成立しているか否かを判断する。例えば、エンジン冷却
水?1tTHWが806C以上、吸気管圧力Pmが45
0ymHg以下、吸気絞9弁開度゛rAが30i以下の
ときにリーン制御の実行条件が満足される。この条件が
満足されると手順P32に進み、第8図に示すような関
係の吸気管圧力Pmとり一ン補正係数FLEANのマツ
プから、吸気管圧力Pmに基づいてリーン補正係数FL
EANをめ、この係数F L ); A Nを所定の記
憶領域に格納してこのルーチンを終了する。When the lean correction coefficient FLEAN calculation routine shown in FIG. 7 is started, it is determined in step P31 whether or not the IJ-on control conditions are satisfied. For example, engine coolant? 1tTHW is 806C or more, intake pipe pressure Pm is 45
The lean control execution conditions are satisfied when the intake throttle 9 valve opening rA is 30i or less. When this condition is satisfied, the process proceeds to step P32, where a lean correction coefficient FL is determined based on the intake pipe pressure Pm from a map of intake pipe pressure Pm and lean correction coefficient FLEAN, which has the relationship shown in FIG.
EAN, this coefficient F L ); A N is stored in a predetermined storage area, and this routine ends.
一方、手順P31でリーン制御の実行条件が成立してい
ない場合には、手順P33でリーン補正係数FL FJ
A Nを1.0としてこのルーチンを終了する。On the other hand, if the lean control execution conditions are not satisfied in step P31, the lean correction coefficient FL FJ is determined in step P33.
This routine ends with AN set to 1.0.
なお、パワー補正係数FPOは、スロットル弁3が高開
度領域、例えば50度以上の場合に1.15が設定され
、それ以外は1.0が設定される。Note that the power correction coefficient FPO is set to 1.15 when the throttle valve 3 is in a high opening range, for example, 50 degrees or more, and is set to 1.0 otherwise.
次に、点火時期制御手順について説明する。Next, the ignition timing control procedure will be explained.
第9図に示す点火時期演算ルーチンが起動されると、手
順P41において、吸気管圧力Pmおよびエンジン回転
数Neに基づいて、第1θ図に示すような基本進角TH
Bのマツプから基本進角THBをルックアップして手順
P42に進む。手順F’42においては、記憶領域FL
EANに格納されているリーン補正係数FLEANに基
づいて、第11図に示すような関係のり一ン補正係数F
’LEANとリーン補正進角Tl−LLのマツプから補
正進角THLをめる。そして、手順P43において、(
基本進角THB+リーン補正進角T)IL)を演算して
最終進角THFをめ、手順P44において点火タイミン
グを判定し、肯定判定されれば、手順P45において点
火信号S9によりイグナイタ19を制御して、点火進角
THFにて点火プラグ17に通電する。When the ignition timing calculation routine shown in FIG. 9 is started, in step P41, the basic advance angle TH as shown in FIG.
Look up the basic advance angle THB from the map of B and proceed to step P42. In step F'42, the storage area FL
Based on the lean correction coefficient FLEAN stored in EAN, the lean correction coefficient F is calculated as shown in FIG.
'Determine the correction advance angle THL from the map of LEAN and lean correction advance angle Tl-LL. Then, in step P43, (
The basic advance angle THB+lean correction advance angle T)IL) is calculated to determine the final advance angle THF, and the ignition timing is determined in step P44.If the determination is affirmative, the igniter 19 is controlled by the ignition signal S9 in step P45. Then, the spark plug 17 is energized at the ignition advance angle THF.
このように本実施例では、所定の機関運転条件下で、フ
ィードバック制御により空燃比を理論空燃比に維持し、
所定の機関運転条件下でフィードフォーワード制御によ
沙空燃比を理論空燃比より稀薄化するとともに、リーン
制御下においては、燃料噴射演算時にめられたり一ン補
正係数FLEANが小さいほどリーン補正進角T i(
Lが太きくかつ機関回転数N11lが高いほど小さく設
定されたマツプから補正進角T )i Lをめている。As described above, in this embodiment, under predetermined engine operating conditions, the air-fuel ratio is maintained at the stoichiometric air-fuel ratio by feedback control,
Under predetermined engine operating conditions, the air-fuel ratio is made leaner than the stoichiometric air-fuel ratio by feedforward control, and under lean control, the lean correction progresses as the error occurs during fuel injection calculation and the smaller the correction coefficient FLEAN becomes. Angle T i (
The correction advance angle T)iL is determined from a map that is set smaller as L becomes thicker and the engine speed N11l is higher.
従って、機関回転数を一定とすれば、リーン運転中の空
燃比が大きいほど点火進角も大きくなり、以て、点火時
期が早く々す、所望のトルクを得ることができる。Therefore, if the engine speed is kept constant, the greater the air-fuel ratio during lean operation, the greater the ignition advance angle, which allows for earlier ignition timing and the desired torque.
第1図は本発明方法が適用された内燃機関の一例を示す
構成図、第2図はその制御回路の詳細例を示すブロック
図、第3図は燃料噴射制御手順例を示すフローチャート
、第4図は基本燃料噴射時間TPOマツプ、第5図はフ
ィードバック補正係数FAFの演算手順例を示すフロー
チャート、第6図はり一ンリンチフラグとフィードバッ
ク補正係数F A Fのタイムチャート、第7図はり一
ン補正係数FLEANの演算手順例を示すフローチャー
ト、第8図は吸気管圧力Pmとリーン補正係数FI、E
ANの関係を示すグラフ、第9図は点火時期演算の手順
例を示すフローチャート、第10図は基本点火進角T
HBのマツプ、第11図は補正進角Tl(Lをパラメー
タとして機関回転数Neとリーン補正係数FLEANと
の関係を示すグラフである。
5・・・燃料噴射弁、7・・・吸気管圧力センサ。
13・・・内燃機関本体、17・・・点火プラグ。
19・・・イグナイタ、 21・・・ディストリビュー
タ。
23.25・・・クランク角センサ。
35・・・制御回路。
代理人 鵜 沼 辰 之
(ほか1名)
第2図
第3図
第5図
第6図
第10図
エージ〉回転数Ne (r、p、m)
第11図
オy#間1転数Ne
手続補正書
特許庁長官 殿
昭和58年10月17日提出の特許願(B)2、発明の
名称
点火時期制御方法
3、補正をする者
事件との関係 特許出願人
名称 (320) トヨタ自動車株式会社4、代理人
7、補正の対象
明細書の特許請求の範囲の欄、明細書の発明の詳細な説
明の欄および図面。
8、補正の内容
(1)特許請求の範囲を別紙のとおり改める。
(2)明細書第3頁第9行の「高いほど小さく」を「高
いほど大きくJと改める。
(3)明細書第13頁第1行の「高いほど小さく」を「
高いほど大きく」と改める。
(4)第11図を別紙の通り改める。
特許請求の範囲
所定の機関運転条件下で空燃比を理論空燃比より希薄化
する内燃機関の点火時期を制御するにあたり、少なくと
も希薄化された空燃比状態では、空燃比が大きいほど点
火進角を進め、かつ、機関回転数が高いほど点火進角を
iすることを特徴とする点火時期制御方法。FIG. 1 is a block diagram showing an example of an internal combustion engine to which the method of the present invention is applied, FIG. 2 is a block diagram showing a detailed example of its control circuit, FIG. 3 is a flowchart showing an example of a fuel injection control procedure, and FIG. The figure shows the basic fuel injection time TPO map, Figure 5 is a flowchart showing an example of the calculation procedure of the feedback correction coefficient FAF, Figure 6 is the time chart of the beam 1-inch flag and the feedback correction coefficient F A F, and Figure 7 is the beam correction coefficient. A flowchart showing an example of FLEAN calculation procedure, FIG. 8 shows intake pipe pressure Pm and lean correction coefficients FI and E.
A graph showing the relationship between AN, Fig. 9 is a flowchart showing an example of the procedure for calculating the ignition timing, and Fig. 10 shows the basic ignition advance angle T.
The map of HB, FIG. 11 is a graph showing the relationship between the engine speed Ne and the lean correction coefficient FLEAN using the correction advance angle Tl (L as a parameter). 5...Fuel injection valve, 7...Intake pipe pressure Sensor. 13...Internal combustion engine body, 17...Spark plug. 19...Igniter, 21...Distributor. 23.25...Crank angle sensor. 35...Control circuit. Agent Unuma Tatsuyuki (and 1 other person) Figure 2 Figure 3 Figure 5 Figure 6 Figure 10 Age〉Rotation number Ne (r, p, m) Figure 11 Oy #1 rotation number Ne Procedural amendment document Patent Office Director, Patent Application (B) 2 filed on October 17, 1981, Name of the invention Ignition timing control method 3, Relationship with the case of the person making the amendment Name of the patent applicant (320) Toyota Motor Corporation 4, Agent 7. Claims column of the specification to be amended, detailed description of the invention column of the specification, and drawings. 8. Contents of the amendment (1) The scope of claims is amended as shown in the attached sheet. (2) Specification ``The higher the size, the larger it is.
The higher it is, the bigger it is.'' (4) Figure 11 has been revised as shown in the attached sheet. Claims: In controlling the ignition timing of an internal combustion engine in which the air-fuel ratio is leaner than the stoichiometric air-fuel ratio under predetermined engine operating conditions, at least in the lean air-fuel ratio state, the larger the air-fuel ratio is, the ignition advance is increased. An ignition timing control method characterized by advancing the ignition timing and increasing the ignition advance angle as the engine speed increases.
Claims (1)
する内燃機関の点火時期を制御するにあたり、少なくと
も希薄化された空燃比状態では、空燃比が大きいほど点
火進角を進め、かつ、機関回転数が高いほど点火進角を
遅くすることを特徴とする点火時期制御方法。In controlling the ignition timing of an internal combustion engine in which the air-fuel ratio is leaner than the stoichiometric air-fuel ratio under predetermined engine operating conditions, the ignition advance is advanced as the air-fuel ratio increases, at least in the lean air-fuel ratio state, and An ignition timing control method characterized in that the higher the engine speed, the slower the ignition advance angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19384983A JPS6085254A (en) | 1983-10-17 | 1983-10-17 | Ignition timing control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19384983A JPS6085254A (en) | 1983-10-17 | 1983-10-17 | Ignition timing control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6085254A true JPS6085254A (en) | 1985-05-14 |
Family
ID=16314769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19384983A Pending JPS6085254A (en) | 1983-10-17 | 1983-10-17 | Ignition timing control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6085254A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6210472A (en) * | 1985-07-05 | 1987-01-19 | Toyota Motor Corp | Ignition timing control device of internal combustion engine |
EP0241029A2 (en) * | 1986-04-09 | 1987-10-14 | Hitachi, Ltd. | Engine controlling system |
-
1983
- 1983-10-17 JP JP19384983A patent/JPS6085254A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6210472A (en) * | 1985-07-05 | 1987-01-19 | Toyota Motor Corp | Ignition timing control device of internal combustion engine |
JPH0427386B2 (en) * | 1985-07-05 | 1992-05-11 | Toyota Motor Co Ltd | |
EP0241029A2 (en) * | 1986-04-09 | 1987-10-14 | Hitachi, Ltd. | Engine controlling system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0499207B1 (en) | Control apparatus for speedily warming up catalyst in internal combustion engine | |
JPS59194059A (en) | Control method and device for air-fuel ratio and ignition timing | |
JP2000008922A (en) | Cylinder direct injection type spark-ignition engine | |
JPS59194053A (en) | Method and device of air-fuel ratio control for internal- combustion engine | |
JP3282660B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPS5912136A (en) | Apparatus for controlling fuel injection starting time of electronically controlled engine | |
JPS6085254A (en) | Ignition timing control method | |
JP3468500B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2869820B2 (en) | Air-fuel ratio control method for internal combustion engine | |
JPH04124439A (en) | Air fuel ratio control method for internal combustion engine | |
JPS62157252A (en) | Method of feedback controlling air-fuel ratio of internal combustion engine | |
US5749333A (en) | Two-stroke internal-combustion engine depollution process and associated applications | |
JPS6065245A (en) | Air-fuel ratio controller for internal-combustion engine | |
JP2696779B2 (en) | Control device for internal combustion engine | |
JPH03217640A (en) | Exhaust gas purifier of internal combustion engine | |
JPS62186029A (en) | Abnormality judging method for lean sensor | |
JPS60249637A (en) | Air-fuel ratio control for internal-combustion engine | |
JPH1144245A (en) | Exhaust emission control device for cylinder direct fuel injection type spark ignition engine | |
JP2006348776A (en) | Engine control device and engine control method | |
JPH09287493A (en) | Internal combustion engine controller | |
JPS61142344A (en) | Method of controlling air-fuel ratio of internal combustion engine | |
JPH0536617B2 (en) | ||
JP2001213200A (en) | Controller for internal combustion engine | |
JPH01315633A (en) | Multi-cylinder two-cycle internal combustion engine | |
JP2010144563A (en) | Exhaust emission purifying apparatus for internal combustion engine |