JPS6084735A - Secondary electron multiplying material - Google Patents
Secondary electron multiplying materialInfo
- Publication number
- JPS6084735A JPS6084735A JP59194230A JP19423084A JPS6084735A JP S6084735 A JPS6084735 A JP S6084735A JP 59194230 A JP59194230 A JP 59194230A JP 19423084 A JP19423084 A JP 19423084A JP S6084735 A JPS6084735 A JP S6084735A
- Authority
- JP
- Japan
- Prior art keywords
- secondary electron
- conductive agent
- polymer
- composition
- electron multiplier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/12—Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
- H01J9/125—Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes of secondary emission electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/32—Secondary emission electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、高分子材料によって構成されたチャネル型二
次電子増倍管および増倍面に利用される二次電子増倍用
高分子材料に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a channel-type secondary electron multiplier made of a polymer material and a polymer material for secondary electron multiplication used for the multiplication surface.
従来、チャネル形二次電子増倍管(以下OEMと略す)
は、高鉛ガラス、セラミックなどで作られ、従来の分割
ダイノード形増倍管に代わって、荷電粒子、フォトン、
X線などの検出に広く用いられている。このOEMは管
の内壁が二次電子放出能をもち、かつ適度の抵抗値をも
つ層で構成されており、この管の内壁から放出される二
次電子を高電界によシ加速し、二次電子放出を繰シ返し
て電子を増倍するものである。OEMには管の内壁のみ
が半導電性で二次電子放出能をもち、高鉛ガラスを用い
て作られている表面形と、管全体を適度の半導電性と二
次電子放出能をもつ材料、たとえばZn T zO3や
B aT x Osなどのセラミックで構成したバルク
形の二種類が市販されている。実用的な構成として、O
EMには直線形構造のものと円弧形構造のものとがある
が、直線形構造のものではイオンフィードバンクといわ
れる真空中の残留ガスのイオン化による効果を受けやす
く、いくつかの点で実際使用に際して困難なことが多い
。Conventionally, channel type secondary electron multiplier (hereinafter abbreviated as OEM)
is made of high-lead glass, ceramic, etc., and replaces the traditional split dynode type multiplier tube with charged particles, photons,
Widely used for detecting X-rays, etc. In this OEM, the inner wall of the tube is composed of a layer that has the ability to emit secondary electrons and has an appropriate resistance value, and the secondary electrons emitted from the inner wall of the tube are accelerated by a high electric field. The electrons are multiplied by repeating the second electron emission. For OEM, only the inner wall of the tube is semiconductive and has secondary electron emission ability, and the surface shape is made of high lead glass, and the entire tube has moderate semiconductivity and secondary electron emission ability. Two types of bulk types are commercially available, made of materials such as ceramics such as Zn T zO3 and B aT x Os. As a practical configuration, O
There are two types of EM, one with a linear structure and one with an arcuate structure.The linear structure is susceptible to the effect of ionization of residual gas in vacuum, which is called an ion feed bank, and in some respects it is not practical. Often difficult to use.
そのため通常では円弧形構造が多く使用されるが、この
ことがOEMの製造上のむずかしさの原因となっている
。またOEMは、小形軽量、高利得。For this reason, arcuate structures are often used, but this causes difficulty in OEM manufacturing. Also, for OEM, it is small, lightweight, and has high gain.
低雑音というすぐれた特徴をもち、パルスカウントモー
ドで使用されるとき、その特徴を発揮するが、高価であ
るうえに、ガラス、セラミックなどのぜい弱な素材から
成り、構造上の制約もあって破損しやすいという欠点を
有している。It has an excellent feature of low noise and exhibits this feature when used in pulse count mode, but it is expensive and made of fragile materials such as glass and ceramics, and has structural limitations that make it prone to breakage. It has the disadvantage of being easy to do.
そこで、この欠点を除くため、有機高分子の二次電子放
出作用を応用し、高分子材料のすぐれた成形性、可撓性
を生かしたCEM(以下FCEMという)が作られてい
る。このFOEMは、半導電性高分子組成物をチューブ
状に成形することにより、バルク形の可撓性CEMとし
たものであシ、イオンフィードバックの影響を防ぐため
に任意の曲率の円弧に曲げて高利得で使用することがで
きる。Therefore, in order to eliminate this drawback, CEM (hereinafter referred to as FCEM) has been produced by applying the secondary electron emission function of organic polymers and taking advantage of the excellent moldability and flexibility of polymer materials. This FOEM is a bulk-type flexible CEM made by molding a semiconducting polymer composition into a tube shape, and it can be bent into an arc of arbitrary curvature to prevent the effects of ion feedback. Can be used with gain.
また、機械的な衝撃、加速衝撃に対しても強く破損しに
くい特徴を有しているためロケットや人工衛星に搭載さ
れて宇宙空間の荷電粒子やフォトンの検出器として用い
られる場合にもその特徴を発揮する。In addition, it is strong against mechanical shocks and acceleration shocks and is resistant to damage, so it is suitable for use as a detector of charged particles and photons in outer space when mounted on rockets and artificial satellites. demonstrate.
こOFcEM K用いる材料は、105−1010Q−
cmという適度の固有抵抗値をもつ電子伝導性の高分子
組成物であり、その最大二次電子放出比δtnaxは、
芳香族よりも脂肪族高分子においてより大きく、そして
固体イオン化ポテンシャルの大きい高分子はど大きな値
を示し、そのδma工が200〜300eVという低い
一次電子エネルギー(Epma x )において生じる
ことがわかっている。それゆえ、Epm&!以下の低エ
ネルギーの一次電子に対して、δは比較的大きな値をも
つ。このため有機高分子を二次電子増倍管として応用す
る場合、一定加速電圧のもとで増倍管内壁に衝突する電
子は、大きな衝突回数nと、比較的大きなδ値をもっこ
とになシ、利得G=δ0で表わされるように大きな利得
を得ることになシ、skVの印加電圧で、1o8という
大きな利得が容易に得られていた。そして、との増倍管
に用いる電子伝導性高分子組成物として、へ二次電子放
出比の大きい絶縁性高分子にカーボンブラックやグラフ
ァイト、金属などを粒子状分散した粒子分散系高分子組
成物と、(B)二次電子放出比の大きい絶縁高分子に有
機半導体を分子状に分散(溶解)させた分子分散系高分
子組成物及び(q高分子自身が電導性を有する高分子有
機半導体があった。そしてこれら聞(B) fclは、
いずれも、二次電子増倍管として3kVの印加電圧で1
♂という大きな利得を有するものであったが、今回、そ
の利得の計数率依存性において大きな差違のあることが
わかった。すなわち、(5)の増倍管では利得の計数率
依存性が悪く、計数率の上昇に伴なって、原理限界より
、非常に低い計数率で、利得の減少と、出力電流の飽和
が生じてきた。一方、(B) 、 (C10増倍管では
、はぼ原理限界に近い、すぐれた計数率依存性を示し、
高い計数率においても利得は低−トせず、大きな出力電
流を得られていた。しかしながら、(B) 、 (C1
の材料は、固有の抵抗値をもち、105〜1010Ω・
ωという体積固有抵抗値をもつ材料は少なく、寸た成形
性に非常に欠ける材料や熱劣化が速く分解ガスなどが多
く放出される材料が多いため、実用上、容易に加工でき
る材料は大変少なかった。The material used for this OFcEM K is 105-1010Q-
It is an electronically conductive polymer composition with a moderate resistivity of cm, and its maximum secondary electron emission ratio δtnax is:
It is known that aliphatic polymers are larger than aromatic polymers, and polymers with a large solid-state ionization potential exhibit a large value, and that the δma occurs at a low primary electron energy (Epmax) of 200 to 300 eV. . Therefore, Epm&! For low-energy primary electrons below, δ has a relatively large value. Therefore, when an organic polymer is applied as a secondary electron multiplier, the electrons that collide with the inner wall of the multiplier under a constant acceleration voltage will have a large number of collisions n and a relatively large δ value. In order to obtain a large gain as expressed by gain G=δ0, a large gain of 108 was easily obtained with an applied voltage of skV. And, as an electron conductive polymer composition used in a multiplier tube, a particle-dispersed polymer composition is prepared by dispersing carbon black, graphite, metal, etc. in particulate form in an insulating polymer with a high secondary electron emission ratio. and (B) a molecularly dispersed polymer composition in which an organic semiconductor is molecularly dispersed (dissolved) in an insulating polymer with a high secondary electron emission ratio, and (a polymeric organic semiconductor in which the q polymer itself has conductivity). There was.And these (B) fcl were
Both of them can be used as secondary electron multipliers at 1
However, this time, we found that there is a large difference in the dependence of the gain on the counting rate. In other words, in the multiplier tube (5), the dependence of the gain on the counting rate is poor, and as the counting rate increases, the gain decreases and the output current saturates at a counting rate that is much lower than the theoretical limit. It's here. On the other hand, (B) (C10 multiplier shows excellent count rate dependence close to the Habo principle limit,
Even at high counting rates, the gain did not decrease and a large output current was obtained. However, (B), (C1
The material has a specific resistance value of 105 to 1010Ω・
There are few materials that have a volume resistivity value of ω, and there are many materials that are extremely lacking in formability or that deteriorate quickly due to heat and release a large amount of decomposition gas, so there are very few materials that can be easily processed in practical terms. Ta.
本発明は、この点にかんがみ、八と(B)あるいは0を
組合わせることによって、105〜1o10Ω・αとい
う適度の体積固有抵抗値をもち、増倍管利得の計数率依
存性がすぐれた上に成形加工性に富み、耐熱性もよく、
また抵抗の温度係数が小さく実用上に有益な二次電子増
倍用高分子組成物を提供するものである。In view of this point, the present invention has a suitable volume resistivity value of 105 to 1010Ω・α by combining 8 and (B) or 0, and has excellent counting rate dependence of the multiplier gain. It is highly moldable and has good heat resistance.
The present invention also provides a polymer composition for secondary electron multiplication that has a small temperature coefficient of resistance and is useful in practice.
しく述べる。Explain clearly.
四 粒子分散系導電高分子組成物。4. Particle-dispersed conductive polymer composition.
高分子の二次電子放出比δは、固体イオン化ポテンシャ
ルの大きい高分子程大きく、この傾向は芳香族より脂肪
族高分子においてδが大きいことに一致し、π電子共役
によって電導性を有する高分子有機半導体の性質とは反
対に、絶縁性高分子において大きなδ値を有する傾向が
ある。それ故、絶縁性高分子の中で、大きな二次電子放
出比をもち、成形加工性に富む材料を選ぶことは、きわ
めて容易で、こうして選択した絶縁性高分子をマトリッ
クス高分子とし、これに、カーボン、グラファイト、金
属、金属酸化物などの粒子分散性導電剤を分散混練して
、105〜1o10Ω・副の体積固有抵抗を有する組成
物を得ることができる。ここでいう粒子分散性導電剤と
は、その高分子マトリックスに対し、溶解性を有せず、
粒状で分散される導電剤のことで、高分子に対してはカ
ーボンブランク、グラファイトや銀、ニッケルなどの金
属粉体が用いられることが多い。高分子に、このように
粒子分散性導電剤を混練すると、電気抵抗は第1図で示
されるモデルのように、導電粒子同志の接触数によって
決定され、電子は高分子マトリックス中の導電粒子のチ
ャネルを伝わって流れている。第1図において、1はマ
トリックス高分子、2は電極、3は粒子分散性導電剤、
4は直流電源、5は高分子表面近傍の二次電子である。The secondary electron emission ratio δ of a polymer is larger as the polymer has a higher solid-state ionization potential, and this tendency is consistent with the fact that δ is larger in aliphatic polymers than in aromatic polymers. Contrary to the properties of organic semiconductors, insulating polymers tend to have large δ values. Therefore, it is extremely easy to select a material with a large secondary electron emission ratio and excellent moldability among insulating polymers, and the insulating polymer selected in this way is used as a matrix polymer. By dispersing and kneading a particle-dispersible conductive agent such as carbon, graphite, metal, or metal oxide, a composition having a volume resistivity of 10 5 to 10 Ω can be obtained. The particle-dispersible conductive agent referred to here means that it has no solubility in the polymer matrix,
A conductive agent that is dispersed in granular form, and carbon blanks and metal powders such as graphite, silver, and nickel are often used for polymers. When a particle-dispersible conductive agent is kneaded into a polymer in this way, the electrical resistance is determined by the number of contacts between the conductive particles, as shown in the model shown in Figure 1, and the electrons are distributed between the conductive particles in the polymer matrix. Flowing through channels. In FIG. 1, 1 is a matrix polymer, 2 is an electrode, 3 is a particle-dispersed conductive agent,
4 is a DC power supply, and 5 is a secondary electron near the surface of the polymer.
このような粒子分散系導電高分子組成物の一例として、
ポリ塩化ビニル(PVCと略す)とポリウレタン(PU
と略す)の組成物をマトリックスポリマとし、それにカ
ーボンブラック(平均粒径400人)を加えて得た半導
電性組成物をチューブ状(内径1.2胴外径3 、6
mm長さ11crn)に成形した二次電子増倍管は第2
図のへのような利得の計数率依存性を示す。As an example of such a particle-dispersed conductive polymer composition,
Polyvinyl chloride (abbreviated as PVC) and polyurethane (PU
A semiconductive composition obtained by adding carbon black (average particle size: 400 mm) to a matrix polymer was formed into a tubular shape (inner diameter: 1.2, body outer diameter: 3,6 mm).
The secondary electron multiplier tube is molded to a length of 11 crn mm.
The dependence of the gain on the counting rate is shown in the figure.
この増倍管は抵抗値1o8Ω(体積固有抵抗ρ中106
Ω・crn)であシ、利得は1o8が得られているが、
計数率の上昇につれて、利得の減少が大きく、その出力
電流比!。/Id(IO:出力電流、工d:管電流)は
原理限界の10−1に達せず、1o−2〜10−5で飽
和している。他の粒子状導電剤や、高分子を用いた場合
においては、利得の計数率依存性は悪く、出力電流比I
o/Id が10−5付近で飽和するものが多い。これ
らの材料のうち、粒子状導電剤として400人と平均粒
径の小さいカーボンブラックを選び、その組成物の組成
や成形法によって粒子分散系導電剤の配向等を考慮して
得た最もよい特性が前に示した第2図の西の特性であっ
て、より原理l限界に近い大きな出力電流を得る増倍管
は、この粒子分散系高分子組成物では得られないことが
わかった。This multiplier tube has a resistance value of 108Ω (volume specific resistance ρ of 106
Ω・crn), a gain of 1o8 is obtained, but
As the counting rate increases, the gain decreases greatly, and its output current ratio! . /Id (IO: output current, d: tube current) does not reach the principle limit of 10-1 and is saturated at 10-2 to 10-5. When other particulate conductive agents or polymers are used, the dependence of the gain on the count rate is poor, and the output current ratio I
Many of them are saturated when o/Id is around 10-5. Among these materials, carbon black with a small average particle size was selected as the particulate conductive agent, and the best characteristics were obtained by considering the composition of the composition and the orientation of the conductive agent in the particle dispersion system depending on the molding method. It has been found that a multiplier tube which has the characteristics shown above in the west of FIG. 2 and which can obtain a large output current closer to the principle limit cannot be obtained with this particle-dispersed polymer composition.
一方、この粒子分散系高分子組成物は、その抵抗値の温
度依存性を測定すると、第3図への増倍管のように、小
さな正の温度係数をもち、増倍管使用上は、有利な一面
を持っている。On the other hand, when the temperature dependence of the resistance value of this particle-dispersed polymer composition is measured, it has a small positive temperature coefficient, as shown in the multiplier tube shown in Figure 3. It has an advantageous side.
(司 分子分散系導電高分子組成物。(Tsukasa Molecularly dispersed conductive polymer composition.
マトリックスとしては前記式のマトリックス高分子と同
様に、大きな二次電子放出比とすぐれた成形加工性を有
するものを選ぶ。ここで用いる導電剤はマトリックス高
分子に対して分子状に分散性(溶解性)を有する有機半
導体であって、それに合わせて、マトリックス高分子と
導電剤が選択される。電気伝導性が高く、高分子への分
子分散性のある有機半導体としては電荷移動錯体が適し
、イオンラジカル塩が最も一般的である。中でも7゜7
.8.8−テトラシアノキノジメタン(以下TCNQ
と略す)や、p−クロラニル等を電子受容体とするイオ
ンラジカル塩を極性高分子や電子供与性高分子へ溶解分
散してこの分子分散系導電高分子組成物を構成する。こ
れらの分子分散性導電剤の中で、TCNQ塩は電導度が
高く、最も安定なものの一つであるが、窒素を含む分子
(アミンなど)を電子供与体とするTCNQ塩では、大
部分が150’C以下に融点9分解点をもち、高分子の
成形加工温度である150’C以上においては、分解や
劣化のため高分子との混線作業の出来ないものが大部分
である。このTCNQ塩の中で熱的に最も安定で、20
0°Cまでの加工温度に耐えるものは、第4図のように
金属(特にアルカリ金属)を電子供与体とする金属TC
NQ塩である。しかし、これら金属TCNQ塩は体積固
有抵抗が高い(ρ−1o3〜1o6Ω・crn)のが欠
点である。−例として金属TCNQ塩のうち、Na T
CNQ (p−10”Ω−crn)の粉体を分子分散性
導電剤として、ポリ塩化ビニル(PVC)とポリウレタ
ン(PU)の組成物へ混練した体積固有抵抗1010Ω
・。の分子分散系高分子組成物で作った二次電子増倍管
の特性について示す。このP V C+ P U 十N
a T CN’Qから成る組成物は、添加み散している
Na T CN Q自身の固有抵抗値が高い(ρ−1o
5Ω・Cm)のため、組成物の成形加工性をこわさない
範囲で1o Ω・m以下の固有抵抗値の高分子組成物に
することは難しい(一般に添加剤を40体積係以上加え
ると加工性が著しく減衰する。)。この組成物を用いた
増倍管の利得は108と大きく、その利得の計数率依存
性は第2図の(E)で示される。ここで出力電流比Io
/Id が原理限界である10 に達しているにもかか
わらず、利得の減少が低計数率でおこっているのは、と
の増倍管の抵抗値が1012(ρ−1010Ω・−と高
いためで、抵抗値を1012Ω(ρ=1o10Ω・6n
)→108〜9Ω(ρ=106〜7Ω・α)へと低く出
来ないことに欠点がある。またとの増倍管の抵抗温度係
数は第3図(B)のように大きな負係数をもち、増倍管
使用上、大きな欠点を持っている。このように、分子分
散系高分子組成物から成る増倍管は、増倍基礎特性はよ
いにもかかわらず、次の条件を満たしていないことがわ
かった、すなわち、固有抵抗値が106〜9Ω・mの最
適値で、かつ成形加工性がよく、熱安定性にすぐれ、抵
抗温度係数の小さい材料のないことが、増倍管の実際の
製造にあたって困難性が大きい原因であった。As the matrix, a material having a large secondary electron emission ratio and excellent moldability is selected, similar to the matrix polymer of the above formula. The conductive agent used here is an organic semiconductor that has molecular dispersibility (solubility) in the matrix polymer, and the matrix polymer and the conductive agent are selected accordingly. Charge transfer complexes are suitable as organic semiconductors with high electrical conductivity and molecular dispersibility in polymers, and ionic radical salts are the most common. Among them, 7゜7
.. 8.8-tetracyanoquinodimethane (hereinafter referred to as TCNQ)
A molecularly dispersed conductive polymer composition is constructed by dissolving and dispersing an ion radical salt having an electron acceptor such as P-chloranyl or p-chloranil as an electron acceptor into a polar polymer or an electron-donating polymer. Among these molecularly dispersible conductive agents, TCNQ salt has high conductivity and is one of the most stable, but most TCNQ salts that use nitrogen-containing molecules (such as amines) as electron donors Most of them have a melting point of 9 decomposition points below 150'C, and cannot be mixed with polymers at temperatures above 150'C, which is the molding temperature of polymers, due to decomposition and deterioration. This TCNQ salt is the most thermally stable, with 20
Those that can withstand processing temperatures up to 0°C are metal TCs that use metals (especially alkali metals) as electron donors, as shown in Figure 4.
It is NQ salt. However, the drawback of these metal TCNQ salts is that they have a high volume resistivity (ρ-1o3 to 1o6Ω·crn). - As an example, among the metal TCNQ salts, Na T
A volume resistivity of 1010Ω was obtained by kneading CNQ (p-10”Ω-crn) powder as a molecularly dispersible conductive agent into a composition of polyvinyl chloride (PVC) and polyurethane (PU).
・. This paper describes the characteristics of a secondary electron multiplier made from a molecularly dispersed polymer composition. This P V C+ P U 1N
The composition consisting of a T CN'Q has a high specific resistance value (ρ-1o
5 Ω・Cm), it is difficult to create a polymer composition with a specific resistance value of 10 Ω・cm or less without impairing the molding processability of the composition (in general, adding additives of 40 volume coefficient or more will reduce processability). is significantly attenuated). The gain of a multiplier tube using this composition is as large as 108, and the dependence of the gain on the counting rate is shown in FIG. 2(E). Here, the output current ratio Io
The reason why the gain decreases at a low count rate even though /Id has reached the principle limit of 10 is because the resistance value of the multiplier tube is as high as 1012 (ρ-1010Ω・-). So, the resistance value is 1012Ω (ρ=1o10Ω・6n
) → 108 to 9Ω (ρ = 106 to 7Ω·α), which is a drawback. The temperature coefficient of resistance of the multiplier tube has a large negative coefficient as shown in FIG. 3(B), which is a major drawback in the use of the multiplier tube. As described above, it was found that the multiplier tube made of a molecularly dispersed polymer composition, although its basic multiplication characteristics were good, did not satisfy the following conditions, namely, the specific resistance value was 106 to 9Ω - The lack of a material that has an optimal value for m, has good moldability, excellent thermal stability, and a small temperature coefficient of resistance has been the cause of great difficulty in actually manufacturing multiplier tubes.
本発明は、導電剤の分散状態の異なるこれら八。The present invention is directed to these eight different dispersion states of the conductive agent.
(T3)の二つを組合わせて、上記^)と(E)の各々
の欠点をすべて除き、単なる(A)(B)の組合せでは
なく、新たな相乗効果をもつすぐれた二次電子増倍材料
を得ることに成功したものである。すなわち、西に示し
た粒子分散組成物の場合に最大出力電流が小さく、利得
が低下する原因は、その増倍管の抵抗値が1o8Ω(ρ
−1o6Ω・crn)と低くても導電剤が高分子に溶解
しないため、高分子マトリックス部分の抵抗値は低下せ
ず、第1図のように二次電子5を放出した時の表面のプ
ラス電荷を中和する電子の供給が導電剤から容易に行な
われないためである。そこで、マトリックス高分子に分
子分散性導電剤を加え、体積固有抵抗を1o11Ω、c
rn以下の組成物とし、それにさらに粒子分散性導電剤
を加えて体積固有抵抗が1o Ω・αという二次電子増
倍管としての最適抵抗値の半導電性高分子組成物とする
。こうすることによって、高分子マトリックスの抵抗値
が1Q11Ω・m以下の電子の移動が各易な領域に下が
るため、105〜9Ω・αという最適抵抗値を与えてい
る主に粒子分散性導電剤によって成る導電チャネルから
、二次電子を放出した表面への電子の供給が容易になっ
て、秀れた電子増倍材料となる。分子分散性導電剤のみ
を加えた高分子組成物の体積固有抵抗値ρが(1)、1
o Ω・α以上の時は、本発明は大きな効果は持たない
。(2)1o8〜1o11Ω・口の範囲の時は、さらに
粒子分散性導電剤を加えて1Q5〜109Ω・錆の組成
物にすることにより本発明の大きな効果を示す。(3)
108Ω・(7)以下の時は、粒子分散性導電剤をさら
に加える必要性がほとんどないことが判明した。By combining the two of (T3), eliminating all the drawbacks of each of the above ^) and (E), we can create an excellent secondary electron increaser with a new synergistic effect, rather than just a combination of (A) and (B). We succeeded in obtaining double material. In other words, the reason why the maximum output current is small and the gain is low in the case of the particle-dispersed composition shown on the west is that the resistance value of the multiplier tube is 1o8Ω (ρ
-1o6Ω・crn), the conductive agent does not dissolve in the polymer, so the resistance value of the polymer matrix does not decrease, and the positive charge on the surface when secondary electrons 5 are emitted as shown in Figure 1. This is because the conductive agent cannot easily supply electrons to neutralize the Therefore, we added a molecularly dispersible conductive agent to the matrix polymer to increase the volume resistivity to 1o11Ω, c
rn or less, and a particle-dispersible conductive agent is further added thereto to obtain a semiconductive polymer composition having a volume resistivity of 10 Ω·α, which is the optimum resistance value for a secondary electron multiplier. By doing this, the resistance value of the polymer matrix is reduced to a region where electron movement is easy below 1Q11Ω・m, so that the resistance value of the polymer matrix is reduced to a region where electron movement is easy. This makes it easy to supply electrons from the conductive channels to the surface where the secondary electrons were emitted, making it an excellent electron multiplier material. The volume resistivity value ρ of the polymer composition containing only the molecularly dispersible conductive agent is (1), 1
The present invention does not have a significant effect when it is equal to or larger than o Ω·α. (2) When the resistance is in the range of 108 to 1011 Ω, the great effect of the present invention is exhibited by further adding a particle-dispersible conductive agent to form a composition of 1Q5 to 109 Ω. (3)
It was found that when the resistance was 10 8 Ω·(7) or less, there was almost no need to further add a particle-dispersible conductive agent.
この本発明における組成物は、適切な電気抵抗値とすぐ
れた二次電子増倍特性をもつ。またこれら導電剤はマト
リックス高分子に対し40体積パーセント以内であると
高分子機械的加工性を落さない。したがって本発明の導
電剤の量の範囲では組成物の製造ができるため、汎用高
分子の如くすぐれた成形加工性を有し、工業上の大きな
利点である。The composition according to the present invention has an appropriate electrical resistance value and excellent secondary electron multiplication properties. Furthermore, if the amount of these conductive agents is within 40% by volume relative to the matrix polymer, the mechanical processability of the polymer will not deteriorate. Therefore, since a composition can be manufactured within the range of the amount of the conductive agent of the present invention, it has excellent moldability like a general-purpose polymer, which is a great industrial advantage.
また、本発明は、分子分散性導電剤として少し固有抵抗
値の高いものであっても10 Ω・α以下の固有抵抗値
を組成物に与えるものであれば、充分に使いこなすこと
ができ、導電剤の選択の範囲も広がり、耐熱性や安定性
の高い導電剤を使用して、すぐれた二次電子増倍材料を
つくることができる。In addition, the present invention provides that even if the molecular dispersion conductive agent has a slightly high specific resistance value, it can be used satisfactorily as long as it gives the composition a specific resistance value of 10 Ω・α or less, and is conductive. The range of agent selection has been expanded, and excellent secondary electron multiplier materials can be created using conductive agents with high heat resistance and stability.
さらに、大きな利点として、成形加工操作による抵抗値
の変動が少なく、この抵抗安定性と共に、抵抗の温度係
数が小さいということがある。粒子分散系電導組成物の
抵抗値は導電剤の添加量によって一般に第5図のような
挙動を示し、105〜1o10Ω・鋼の半導性組成物の
抵抗値が非常にバラツキ、成形加工条件によって1〜2
桁異なる抵抗値のものが出来てしまうことは公知の事実
であシ、これは特にカーボンプラックのような鎖状の導
電剤において著るしい。一方、分子分散系組成物は、形
状や成形加工条件によらず、安定した固有抵抗値を示す
。Further, a major advantage is that there is little variation in resistance due to molding operations, and in addition to this resistance stability, the temperature coefficient of resistance is small. The resistance value of a particle-dispersed conductive composition generally exhibits the behavior shown in Figure 5 depending on the amount of conductive agent added, and the resistance value of a semiconductive composition made of 105 to 1010Ω/steel varies greatly, depending on the forming processing conditions. 1-2
It is a well-known fact that resistance values that differ by orders of magnitude can be produced, and this is particularly noticeable in chain-shaped conductive agents such as carbon plaque. On the other hand, a molecularly dispersed composition exhibits a stable resistivity value regardless of shape or molding processing conditions.
本発明のこの両分散系を適切に併用した組成物では、抵
抗値はバラツキが小さく、その抵抗の温度係数は、小さ
な負係数を持つ。例えば、後に示す実施例1の組成物に
おいて、その抵抗の温度係数は第3図(qのように小さ
く 、(B)のような抵抗安定性はあるが、大きな負の
温度係数をもつ組成物ではない。これは、CB)のよう
な大きな抵抗温度係数を有する分子分散系の電導機構が
西のような小さな正の温度係数をもつ粒子分散系の電導
機構によって緩和され、本発明の(qが小さな負の抵抗
温度係数になることを示している。このようにして本発
明はすぐれた二次電子増倍材料を提供する大なる価値の
ものである。In a composition in which both of these dispersion systems of the present invention are appropriately used in combination, the resistance value has small variations and the temperature coefficient of resistance has a small negative coefficient. For example, in the composition of Example 1 shown later, the temperature coefficient of resistance is small as shown in Figure 3 (q), and the composition has resistance stability as shown in (B) but has a large negative temperature coefficient. This is because the conduction mechanism of a molecular dispersion system with a large resistance temperature coefficient like CB) is relaxed by the conduction mechanism of a particle dispersion system with a small positive temperature coefficient like Nishi, and the present invention's (q The results show that the present invention has a small negative temperature coefficient of resistance.Thus, the present invention is of great value as it provides an excellent secondary electron multiplier material.
次に本発明に利用する具体的な材料についてのべると、
分子分散系導電剤としては、電荷移動錯体型の有機半導
体がよく、テトラシアノエチレン。Next, regarding the specific materials used in the present invention,
As a molecularly dispersed conductive agent, a charge transfer complex type organic semiconductor such as tetracyanoethylene is preferred.
TCNQ、p−クロラニル、トリニトロベンゼンなどを
電子受容体とし、アミン類、アニリン誘導体、テトラチ
オフルバレン、フェノチアジン、オニウム陽イオン、金
属などを電子供与体とする電荷移動錯体がある。これら
の分子分散性導電剤は、マトリックス高分子に混入され
てロール練や押出成形などの加熱加工をされる場合は耐
熱性にすぐれ、分解ガス放出の少ない材料が選択される
べきで、この点からは金属TCNQ塩が安定している。There are charge transfer complexes that use TCNQ, p-chloranil, trinitrobenzene, etc. as electron acceptors and amines, aniline derivatives, tetrathiofulvalene, phenothiazines, onium cations, metals, etc. as electron donors. When these molecularly dispersible conductive agents are mixed into a matrix polymer and subjected to heat processing such as roll kneading or extrusion molding, materials with excellent heat resistance and low decomposition gas release should be selected. Metallic TCNQ salts are stable.
中でもNaTCNQ、KTCNQは最も安定である。Among them, NaTCNQ and KTCNQ are the most stable.
また一方、マトリックス高分子を溶媒に溶解して塗料と
して二次電子増倍用の塗膜形成をする場合は上記のよう
な耐熱性を、心配する必要はなく、蒸気圧の低い電荷移
動錯体を選べばよく、容易に選択できる。On the other hand, when dissolving a matrix polymer in a solvent to form a paint film for secondary electron multiplication, there is no need to worry about the heat resistance as described above, and charge transfer complexes with low vapor pressure are used. You just have to choose, and it's easy to choose.
この分子分散性導電剤(電荷移動錯体)を分子分散する
マトリックス高分子は、極性高分子であると共に、大き
な二次電子放出比を持つもので、PVC,PU、ポリフ
ッ化ビニル、シリコン樹脂。The matrix polymer that molecularly disperses this molecularly dispersible conductive agent (charge transfer complex) is a polar polymer and has a large secondary electron emission ratio, such as PVC, PU, polyvinyl fluoride, and silicone resin.
酢酸ビニル、ポリフッ化ビニリデン、ポリアクリロニト
リル、ポリメチルメタアクリレート、ポリスチレン、ポ
リエステル、ポリアセタール、ポリアミド、フェノール
樹脂、エポキ7樹脂、メラミン樹脂などかあシ、これら
の高分子の共重合体あるいは混練体あるいは極性可塑剤
などを加えた高分子組成物などもこれに属す。さらに、
電子供与性をもつ高分子はよりいっそう電荷移動錯体の
溶解性を有し、ポリアミド、ポリウレタン、ポリビニル
ピリジン、ポリカチオン、ポリビニルピロドリン、ポリ
アクリルアミド、ポリビニルカルバゾール、或いはその
共重合体、混練体などがあり、マトリックス高分子とし
て適している。またこれらの組成物には、熱安定性や成
形加工性をよくするために、高分子に一般に使われ1い
る安定剤は当然混入されてよい。Vinyl acetate, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polystyrene, polyester, polyacetal, polyamide, phenol resin, epoxy 7 resin, melamine resin, etc., copolymers or kneaded products of these polymers, or polar Polymer compositions containing plasticizers and the like also belong to this category. moreover,
Electron-donating polymers have even greater solubility in charge transfer complexes, such as polyamide, polyurethane, polyvinylpyridine, polycation, polyvinylpyrodrine, polyacrylamide, polyvinylcarbazole, or copolymers and kneaded products thereof. Yes, it is suitable as a matrix polymer. Furthermore, in order to improve thermal stability and moldability, stabilizers commonly used in polymers may naturally be mixed into these compositions.
この分子分散性導電剤はマトリックス高分子に対し溶解
度(相溶性)を有するから、添加した導電剤のすべてが
必ずしも溶解する必要はなく、また導電剤を溶解した高
分子組成物か10 Ω・m以下の体積固有抵抗をもって
いればよい。Since this molecularly dispersible conductive agent has solubility (compatibility) with the matrix polymer, it is not necessary that all of the added conductive agent be dissolved, and the polymer composition in which the conductive agent is dissolved is 10 Ω・m. It suffices if it has the following volume resistivity.
導電剤を分子分散した、この10 Ω・α以下の組成物
にさらに加える粒子分散性導電剤としては、カーボンブ
ラック、グラファイトが一般的で、金属粒子もよく、中
でもN i 、 Agが安定している。Carbon black and graphite are common as particle-dispersible conductive agents added to this composition of 10 Ω・α or less in which conductive agents are molecularly dispersed, and metal particles are also good, among which N i and Ag are stable. There is.
カーボンブラックは高分子に混練されて導電剤となる以
外に、高分子組成物の機械的な補強材としても働き、成
形加工性を増す上に、成形物強度が大変向上する利点を
持っている。ここでいう「粒子Jとは、粒径が数十ミリ
ミクロンから数十ミクロンで、高分子マトリックスに対
し溶解性を持たず、粒状で分散される粒子のことであシ
、その粒径は細かい方がよいことは組成物の均一性や成
形加工上から言うまでもない。Carbon black not only serves as a conductive agent when mixed with polymers, but also serves as a mechanical reinforcement for polymer compositions, which has the advantage of increasing moldability and greatly improving the strength of molded products. . "Particles J" here refers to particles with a particle size of several tens of millimicrons to several tens of microns, which have no solubility in the polymer matrix and are dispersed in a granular form, and the particle size is fine. Needless to say, it is better from the viewpoint of uniformity of the composition and molding process.
次に本発明の実施例を記す。Next, examples of the present invention will be described.
実施例1
ポリ塩化ビニル(PVC)とポリウレタン(PU)の組
成物607にNa T CNQ 25 fを加えた体積
固有抵抗ρ2σc=2×10100・α の組成物にさ
らにカーボンブラックを15fi’を加えて170°C
の加熱ロールで混練して組成物を得た。これを内径1.
2mm1外径3.6mm、長さ11crnチユーブ状(
開口部は口径1crn、長さ1.6の)に成形して増倍
管を得た。抵抗値は109Ωで、その利得の計数率依存
性は第2図<Qに示すようにすぐれた特性を示し、3k
V の印加電圧で利得1o8、最大出力電流比■。/■
d−0,3という原理限界にほぼ達している。Example 1 15fi' of carbon black was further added to a composition of volume resistivity ρ2σc=2×10100・α, which was obtained by adding Na T CNQ 25 f to composition 607 of polyvinyl chloride (PVC) and polyurethane (PU). 170°C
A composition was obtained by kneading with a heated roll. This has an inner diameter of 1.
2 mm 1 outer diameter 3.6 mm, length 11 crn tube shape (
The opening was formed to have a diameter of 1 crn and a length of 1.6 cm to obtain a multiplier tube. The resistance value was 109Ω, and the dependence of the gain on the count rate showed excellent characteristics as shown in Figure 2 <Q.
With an applied voltage of V, the gain is 1o8, and the maximum output current ratio is ■. /■
It has almost reached the principle limit of d-0.3.
このため、本増倍管は104〜5CPS (カウント7
秒)という高計数率まで10” という高い利得で使用
することができる。また、この実施例の材料の組成を詳
しく検討したところ、(PVC−I−PU)が50−7
0%、NaTCNQが40−12%、カーボンブラック
が10〜18%の範囲で上記のすぐれた利得の計数率依
存性が示されることがわかった。For this reason, this multiplier tube has a power of 104 to 5 CPS (count 7
It can be used with a high gain of 10" up to a high count rate of 10" (PVC-I-PU).
It was found that the excellent dependence of the gain on the count rate was shown in the ranges of 0%, 40-12% for NaTCNQ, and 10-18% for carbon black.
実施例2
ポリウレタン6oグにKTCNQ3(1,カーボンブラ
ック177を加え混練の後、押出機にて実施例1と同様
の形に成形加工した。抵抗値ば4×1oΩを示し、3k
Vの印加電圧で利得は2XIQ”で最大用カ電流比工。Example 2 KTCNQ3 (1, carbon black 177) was added to polyurethane 6og, kneaded, and then molded into the same shape as in Example 1 using an extruder.The resistance value showed 4 x 1oΩ, and 3k
With an applied voltage of V, the gain is 2XIQ'' and the maximum power current ratio is 2XIQ.
/Id=0.3を示し、最大出方電流は4.6μAであ
った。/Id=0.3, and the maximum output current was 4.6 μA.
実施例3
実施例2の組成物10Pをテトラヒドロフラン40Fに
溶解分散し、塗料とした。この塗料を、内径2mm外径
3.5mm長さ10Cfnの円弧チューブ状ガラス管の
内面に塗布し、熱風を通して乾燥したあと電極を銀ペイ
ントでとり、増倍管とした。抵抗値は3×10Ωを示し
た。との増倍管の利得は印加電圧3.OkVで1.6X
10 で、最大出方電流比工。/Idはo、33を示し
、最大出力電流IOは3.3X10 Aであった。Example 3 Composition 10P of Example 2 was dissolved and dispersed in tetrahydrofuran 40F to prepare a paint. This paint was applied to the inner surface of a circular arc tubular glass tube with an inner diameter of 2 mm, an outer diameter of 3.5 mm, and a length of 10 Cfn, and after drying with hot air, the electrodes were removed with silver paint to prepare a multiplier tube. The resistance value was 3×10Ω. The gain of the multiplier tube with the applied voltage 3. 1.6X at OkV
10, the maximum output current ratio. /Id indicated o, 33, and the maximum output current IO was 3.3×10 A.
さらに、本発明は、今までに記した〔マトリックス高分
子十分子分散系導電剤十粒子分散性導電剤〕という組成
物以外に、〔高分子有機半導体子粒子分散性導電剤〕と
いう組成物においても可能である。高分子有機半導体と
は高分子自身が電導性を有するもので、高分子マ) I
Jフックス中分子分散した分子状の導電剤分子が高分子
マトリックスの主鎖あるいは分枝に、化学結合によって
結合して、高分子鎖中に導電部分を形作ったものである
。それ故、前記のすべての考え方は、この〔高分子有機
半導体子粒子分散系導電剤〕という組成物においても成
り立つことがわかる。なぜなら、有機化合物の電子導電
性は、すべて共役π電子構造部分間の導電チャネルの形
成に基づくものであるからである。しかしながら、この
高分子有機半導体はπ電子系導電部分を高分子鎖中に含
むために、実際の工業面では、この高分子の重合条件は
難かしく、生成高分子の機械加工性(成形性)や熱安定
性も汎用の高分子に比べてきわめて劣り、実用が難かし
い。しかし本発明の原理はこの〔高分子有機半導体子粒
子分散系導電剤〕の系においても成り立ち、今後のすぐ
れた高分子有機半導体の登場を待つと共に、2〜3の試
作実験は可能である。次にこれらについての実施例を示
す。Furthermore, in addition to the composition [Matrix polymeric decile-dispersed conductive agent 10-particle dispersible conductive agent] described above, the present invention also provides a composition called [Polymer organic semiconductor particle dispersible conductive agent]. is also possible. A polymeric organic semiconductor is one in which the polymer itself has electrical conductivity.
J-Fuchs molecular conductive agent molecules dispersed in molecular form are bonded to the main chain or branches of a polymer matrix through chemical bonds to form conductive portions in the polymer chains. Therefore, it can be seen that all the above-mentioned ideas also hold true in this composition of [polymeric organic semiconductor particle dispersed conductive agent]. This is because the electronic conductivity of organic compounds is entirely based on the formation of conductive channels between conjugated π-electron structure moieties. However, since this polymeric organic semiconductor contains a π-electron-based conductive moiety in the polymer chain, the polymerization conditions for this polymer are difficult in actual industrial use, and the machinability (formability) of the resulting polymer is difficult. Its thermal stability is also extremely inferior to that of general-purpose polymers, making it difficult to put it into practical use. However, the principle of the present invention also holds true in this system of [polymeric organic semiconductor particle dispersed conductive agent], and while waiting for the appearance of excellent polymeric organic semiconductors in the future, it is possible to carry out a few prototype experiments. Next, examples regarding these will be shown.
実施例4
ポリ−2−ビニルピリジン・酢酸ビニル共重合体の一部
をTCNQで錯体化した体積固有抵抗1o10Ω・口
の高分子有機半導体粉末8.61にカーボンブラック1
.62を加え、ジメチルフォルムアミド4.0り溶解さ
せて、アトライタ(攪拌式ボールミル)で1時間分散さ
せて塗料を得た。この塗料を実施例3と同じ円弧チュー
ブ状ガラス管の内面に塗布して、同様に7×108Ωの
増倍管を得た。3kV の印加電圧で利得は7×107
を示しその計数依存性を測定したところ、最大出力電流
比I0/Id=0.28という大きな出力を得た。この
時の最大出力電流は1.2μAである。Example 4 Part of poly-2-vinylpyridine/vinyl acetate copolymer was complexed with TCNQ to give a volume resistivity of 1010Ω.
of polymeric organic semiconductor powder 8.61 and carbon black 1
.. 62 was added thereto, 4.0% of dimethylformamide was dissolved therein, and the mixture was dispersed in an attritor (stirring ball mill) for 1 hour to obtain a paint. This paint was applied to the inner surface of the same circular arc tubular glass tube as in Example 3 to obtain a 7×10 8 Ω multiplier tube. The gain is 7×107 with an applied voltage of 3kV.
When the count dependence was measured, a large output of maximum output current ratio I0/Id=0.28 was obtained. The maximum output current at this time is 1.2 μA.
このようにして本発明は、高分子からなる二次電子増倍
材料に関して、非常にすぐれた組成物を提供するもので
ある。本発明の組成物が、大きな増倍・利得を有する増
倍管を構成し、その利得の計数率依存性は、原理限界の
高計数率まで利得が変化せず、最大出力電流は管電流の
数十係という限界値に達している。このようなすぐれた
増倍特性をもつ本発明の組成物は、この他に、広い材料
選択範囲、熱安定性、成形加工性、小さな抵抗温度係数
、強い機械強度などの工業的な製造上のすぐれた利点を
有するものである・
本発明による増倍材料の応用としては、二次電子増倍管
及びそれを二次元に配列したチャネルプレートを基本と
して、展開できる。二次電子増倍材料は固体イオン化ポ
テンシャルが高いため、真空紫外線、軟X線のような高
いエネルギーの電磁波によって光電子放出をし、真空紫
外線や軟X線の検出器となるほか、電子やイオンなどの
荷電粒子の検出器としても高感度で利用できる。またホ
トカソードと組合せて光電子増倍管にもなる。In this way, the present invention provides an extremely excellent composition for a secondary electron multiplier material made of a polymer. The composition of the present invention constitutes a multiplier tube having a large multiplication/gain, and the dependence of the gain on the counting rate is such that the gain does not change up to a high counting rate which is the limit of the principle, and the maximum output current is the same as the tube current. It has reached the limit of tens of coefficients. The composition of the present invention, which has such excellent multiplication properties, has other advantages in industrial manufacturing, such as a wide range of material selection, thermal stability, moldability, small temperature coefficient of resistance, and strong mechanical strength. It has excellent advantages. The multiplication material according to the present invention can be applied to secondary electron multipliers and channel plates in which they are arranged two-dimensionally. Because secondary electron multiplier materials have a high solid-state ionization potential, they emit photoelectrons in response to high-energy electromagnetic waves such as vacuum ultraviolet rays and soft X-rays, and can act as detectors for vacuum ultraviolet rays and soft It can also be used as a highly sensitive charged particle detector. It can also be used as a photomultiplier tube in combination with a photocathode.
また面状に管を配列したチャネルプレートや、スポンジ
状の多孔性チャネルプレートは、画像情報など二次元の
情報処理に利用することができ、マルチ検出器、撮像管
、高速陰極線管、X線像変換器、光電管、イメージイン
テンシファイヤなどに多くの分野へ応用でき、工業的価
値の大なるものである。In addition, channel plates with tubes arranged in a plane and sponge-like porous channel plates can be used for two-dimensional information processing such as image information, and can be used for multi-detector, image pickup tubes, high-speed cathode ray tubes, and X-ray images. It can be applied to many fields such as converters, phototubes, and image intensifiers, and has great industrial value.
第1図は粒子分散系高分子組成物の電導と電子放出のモ
デル、第2図は二次電子増倍管の利得の計数率依存特性
を示し、(〜は粒子分散系組成物からなる増倍管特性、
(B)は分子分散性組成物からなる増倍管特性、(qは
本発明一実施例にがかる増倍管の特性曲線である。第3
図は増倍管の抵抗値の温度依存性を示し、西は粒子分散
系組成物からなる増倍管の抵抗温度特性、(B)は分子
分散系組成物による特性、(qは本発明の一実施例の増
倍管の特性曲線である。第4図はK T CNQ 、
Na T CNQ 。
テトラメチルアミンTCNQ、メチルアミンTONOな
ど各電荷移動錯体のスピン濃度(ラジカル濃度)の12
0’Cにおける耐熱特性である。第5図は粒子分散系導
電剤を加えた高分子組成物における導電剤の添加量と電
気抵抗の関係図である。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
1士 l【、 牢 (刀りント/衣−
第3図
5昼贋T (”C〕Figure 1 shows a model of conduction and electron emission of a particle-dispersed polymer composition, and Figure 2 shows the counting rate dependence of the gain of a secondary electron multiplier. double tube characteristics,
(B) is the characteristic curve of the multiplier tube made of the molecularly dispersible composition, (q is the characteristic curve of the multiplier tube according to one embodiment of the present invention.
The figure shows the temperature dependence of the resistance value of a multiplier tube, where the west side shows the resistance-temperature characteristics of a multiplier tube made of a particle-dispersed composition, (B) shows the characteristics of a molecular-dispersed composition, and (q is the temperature dependence of the multiplier tube made of a particle-dispersed composition. FIG. 4 is a characteristic curve of a multiplier tube according to an embodiment.
Na T CNQ. 12 of the spin concentration (radical concentration) of each charge transfer complex such as tetramethylamine TCNQ and methylamine TONO.
This is the heat resistance property at 0'C. FIG. 5 is a diagram showing the relationship between the amount of conductive agent added and electrical resistance in a polymer composition containing a particle-dispersed conductive agent. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 1. Prison (sword lint/clothing) Figure 3.
Claims (1)
分子分散性導電剤を含む体積固有抵抗108〜1011
9・備の高分子組成物に、粒子分散性導電剤を加えたこ
とを特徴とする二次電子増倍材料。 (2)上記高分子組成物が電荷移動型有機半導体からな
る分子分散性導電剤を上記マトリックス高分子中に混練
してなることを特徴とする特許請求の第1項に記載の二
次電子増倍材料。 (3)上記分子分散性導電剤が、7.7.8.8−テト
ラシアノキノジメタンの塩であることを特徴とする特許
請求の範囲第2項に記載の二次電子増倍材料。 (4)上記7.7,8.8−テトラシアノキノジメタン
の塩が、金属カチオンとの塩であることを特徴とする特
許請求の範囲第3項に記載の二次電子増倍材料。 (+5)上記金属カチオンが、ナトリウムイオンあるい
はカリウムイオンであることを特徴とする特許請求の範
囲第4項に記載の二次電子増倍材料。 (6)上記マトリックス高分子が電子供与性高分子組成
物であることを特徴とする特許請求の範囲第2項に記載
の二次電子増倍材料。 (7) 上記電子供与性高分子組成物がウレタン結合(
−NHCOO−)を含む組成物であることを特徴とする
特許請求の範囲第6項に記載の二次電子増倍材料。 (8)上記分子分散性導電剤が、有機電子伝導性導電剤
をマトリックス高分子の主鎖あるいは分枝に化学結合し
て形成されていることを特徴とする特許請求の範囲第1
項に記載の二次電子増倍材料。 (9)上記有機電子伝導性導電剤が7.7.8.8−テ
トラシアノキノジメタンを含むことを特徴とする特許請
求の範囲第8項に記載の二次電子増倍材料。 (10)上記粒子分散性導電剤がカーボンブラックある
いはグラフフィトよシなることを特徴とする特許請求の
範囲第1項に記載の二次電子増倍材料。[Claims] (1) Volume resistivity 108 to 1011 containing a molecularly dispersed conductive agent in a matrix polymer with secondary electron multiplication effect
9. A secondary electron multiplier material characterized in that a particle-dispersible conductive agent is added to the polymer composition of item 9. (2) The secondary electron increaser according to claim 1, wherein the polymer composition is formed by kneading a molecularly dispersible conductive agent made of a charge transfer type organic semiconductor into the matrix polymer. Double material. (3) The secondary electron multiplier material according to claim 2, wherein the molecularly dispersible conductive agent is a salt of 7,7,8,8-tetracyanoquinodimethane. (4) The secondary electron multiplier material according to claim 3, wherein the salt of 7,7,8,8-tetracyanoquinodimethane is a salt with a metal cation. (+5) The secondary electron multiplier material according to claim 4, wherein the metal cation is a sodium ion or a potassium ion. (6) The secondary electron multiplier material according to claim 2, wherein the matrix polymer is an electron-donating polymer composition. (7) The electron-donating polymer composition has urethane bonds (
-NHCOO-), the secondary electron multiplier material according to claim 6, wherein the secondary electron multiplier material is a composition containing -NHCOO-). (8) The molecularly dispersible conductive agent is formed by chemically bonding an organic electronically conductive conductive agent to the main chain or branch of a matrix polymer.
The secondary electron multiplier material described in section. (9) The secondary electron multiplier material according to claim 8, wherein the organic electron conductive conductive agent contains 7.7.8.8-tetracyanoquinodimethane. (10) The secondary electron multiplier material according to claim 1, wherein the particle-dispersible conductive agent is carbon black or graphite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59194230A JPS6084735A (en) | 1984-09-17 | 1984-09-17 | Secondary electron multiplying material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59194230A JPS6084735A (en) | 1984-09-17 | 1984-09-17 | Secondary electron multiplying material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51018072A Division JPS6013257B2 (en) | 1976-02-20 | 1976-02-20 | Secondary electron multiplier and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6084735A true JPS6084735A (en) | 1985-05-14 |
Family
ID=16321124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59194230A Pending JPS6084735A (en) | 1984-09-17 | 1984-09-17 | Secondary electron multiplying material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6084735A (en) |
-
1984
- 1984-09-17 JP JP59194230A patent/JPS6084735A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4093562A (en) | Polymeric compositions for manufacture of secondary electron multiplier tubes and method for manufacture thereof | |
JP2011525246A (en) | Microchannel plate device with adjustable resistive film | |
JP6475916B2 (en) | Microchannel plate device with adjustable resistive film | |
JP3113902B2 (en) | Manufacturing method of thin film continuous dynode for electron multiplier. | |
JP6138686B2 (en) | Electron multiplier with nanodiamond layer | |
US3374380A (en) | Apparatus for suppression of ion feedback in electron multipliers | |
JP6532852B2 (en) | Electron multiplication structure used in vacuum tube using electron multiplication, and vacuum tube using electron multiplication comprising such electron multiplication structure | |
KR20170029370A (en) | X-ray detector | |
US3808494A (en) | Flexible channel multiplier | |
Aprile et al. | Performance of CsI photocathodes in liquid Xe, Kr, and Ar | |
US4071474A (en) | Secondary-electron multiplier dynode | |
JPS6084735A (en) | Secondary electron multiplying material | |
Parkes et al. | The use of cascaded channel plates as high gain electron multipliers | |
Mearini et al. | Stable secondary electron emission from chemical vapor deposited diamond films coated with alkali‐halides | |
JPS59145582A (en) | Iron silicide thermoelectric conversion element | |
Goetze | Secondary electron conduction (SEC) and its application to photo-electronic image devices | |
US20130048830A1 (en) | High Gain Photo and Electron Multipliers and Methods of Manufacture Thereof | |
Kanayama et al. | C–Al Parallel Plate Dynode Electron Multiplier | |
Shefer et al. | Composite photocathodes for visible photon imaging with gaseous photomultipliers | |
US3790840A (en) | Secondary electron multiplying device using semiconductor ceramic | |
Gullikson | Hot-electron diffusion lengths in the rare-gas solids | |
CN103000483A (en) | Bulk conductive microchannel plate | |
US3663821A (en) | Image intensifier device and method for receiving radiant energy images for conversion and intensification | |
Fujita et al. | DC electric conductivity in films of aluminum fine particles prepared by evaporation in helium gas | |
JP2021192402A (en) | Thermoelectric conversion material, method of manufacturing the same, and thermoelectric conversion element using the same |