JPS60844A - Crushing method using static crushing medium - Google Patents
Crushing method using static crushing mediumInfo
- Publication number
- JPS60844A JPS60844A JP9437383A JP9437383A JPS60844A JP S60844 A JPS60844 A JP S60844A JP 9437383 A JP9437383 A JP 9437383A JP 9437383 A JP9437383 A JP 9437383A JP S60844 A JPS60844 A JP S60844A
- Authority
- JP
- Japan
- Prior art keywords
- crushing
- temperature
- crushing agent
- agent
- static
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Working Measures On Existing Buildindgs (AREA)
- Disintegrating Or Milling (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
不発明は、岩石やコンクリート構造物ン静旧に破砕する
破砕工法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crushing method for crushing rocks and concrete structures.
従来、岩盤、岩石、鉄筋コンクリートやコンクリート構
造物等の破砕、解体作業には、火薬や大型(幾・1威類
が用いられてδ7こが、都市あるいはその周辺で作業τ
行なうにめに騒音、振動、@塵、飛石などが少ない女全
な破砕工法の開発が要望されていた。そこで開発された
のが石灰系無機化合物?主成分とする静的破砕剤の水土
1及応による体積膨張現象ン利用し、岩石、コンクリー
ト咎τ破砕する静的破砕工法である。Conventionally, gunpowder and large-sized (6.1 mm) have been used for crushing and demolition work of bedrock, rocks, reinforced concrete, concrete structures, etc.
In order to do this, there was a demand for the development of an all-female crushing method that would produce less noise, vibration, dust, and flying stones. Was it then that lime-based inorganic compounds were developed? This is a static crushing method that uses the volumetric expansion phenomenon of the static crushing agent, which is the main ingredient, due to the reaction of water and soil to crush rocks and concrete particles.
この破砕工法の概略イ説明すると、この工法は、被破砕
物としての岩盤やコンク’)−ト(4遺物に孔ゼ穿赦し
、孔の内部にスラリー化し定面的破砕剤(以下、破砕剤
と略記する)を元項して行なうもので、水ン含んだ破砕
剤が水和反応に序って膨張τ起こし、孔τ押し拡げるカ
τ発揮して被破砕物τ徐々に破砕する。従ってこの工法
によれば、騒音、#塵等がほとんど洋ゎない破砕作業が
可能である。To give an overview of this crushing method, this method involves drilling a hole in rock or concrete (4) as the object to be crushed, and forming a slurry inside the hole with a surface crushing agent (hereinafter referred to as crushing agent). In this method, the crushing agent containing water causes expansion τ due to the hydration reaction, exerts a force τ that pushes the pores τ, and gradually crushes the object τ. According to this construction method, crushing work can be carried out with almost no noise, dust, etc.
しかしながら、この種の破砕剤ン用いた破砕工法では、
破砕剤の主成分である酸化カルシウムの水和反応によっ
て膨張圧が発現するKめ、反応温度丁なわち気温や岩盤
温度てよって膨張圧発現速度が著しく変化する。7従っ
て、従来の工法において所定の破砕時間ン確保する定め
には、季節や現場の逆境温度に応じ1こ配合・ともっ破
砕メ1リン、適切に選択して施工に用い7.Cければ7
jlうないという煩雑さが、5)つ1こ。ま1こ、特に
温度条件が厳しい場合には、破砕工法が適#目できない
、 Tyよりら、極低温下でに、破砕剤の充分な反応が
得られないため破砕が難しく、尚温下では反応速度が過
大となって噴出現象τ起こ千などの問題ゼ生じていTこ
。さらに、従来の工法においては、破砕剤の充填かも破
砕までに半日〜1日程度の時間ン要した1こめ、工事サ
イクルの短い工事での使用には不適当であるという欠点
ぞ有し、加えて破砕完了の時期馨梢度良(予想すること
ができない定め、工事計画の立案が難しいという間祖点
ン有していた@本発明は、上記事情に鑑みてなされ瓦も
ので、作業現場の逆境温度の影#ン受は難(常に安定し
に破砕力・ど発揮させることができ、短時間での破砕が
可能で、かつ破砕完了時期の予想あるいな工破砕完了時
期の任意な設定が可能な破砕工法ン提供することン目的
とする。However, with this type of crushing method using crushing agents,
Expansion pressure is developed by the hydration reaction of calcium oxide, which is the main component of the crushing agent, and the rate of expansion pressure development varies significantly depending on the reaction temperature, that is, air temperature and rock temperature. 7. Therefore, in order to secure a predetermined crushing time in the conventional construction method, it is necessary to appropriately select one or more crushing materials depending on the season and adverse temperature conditions at the site and use them for construction.7. If C then 7
The complication of not having a JL is 5) one thing. First, when the temperature conditions are particularly severe, the crushing method is not suitable.For Ty, it is difficult to crush at extremely low temperatures because the crushing agent does not react sufficiently, and it is difficult to crush at extremely low temperatures. Problems such as eruption phenomenon occur due to excessive reaction rate. Furthermore, the conventional construction method has the disadvantage that it takes about half a day to one day to fill the crushing agent and crush it, making it unsuitable for use in construction with a short construction cycle. The present invention was made in view of the above circumstances, and it is difficult to predict the timing of completion of crushing at the work site. It is difficult to bear the influence of adverse temperatures (it can always exert stable crushing force, crush in a short time, and the crushing completion time can be predicted and the crushing completion time can be set arbitrarily) The purpose is to provide possible crushing methods.
以下、不発明の詳細な説明する。Hereinafter, the non-invention will be explained in detail.
本発明の破砕工法のうち、第1の破砕工法は、被破砕物
に穿設された孔の内部に静的破砕剤ン充填し、この静的
破砕剤の体積膨張現象により前記被破砕vlJゼ破砕す
る破砕工法において、前記孔内部に充填された静的破砕
剤中に、熱媒流通管の中間部分ン埋設し、前記熱媒流通
′aの内部に熱媒体ン流通せしめてこの熱媒体とAil
記静的破砕剤とτ熱的に接触させ、この静口9破砕剤の
温度調節2行なうことτ¥je、とするっ
また、第2の破砕工法は、被破砕物に穿設された孔の内
部に静的破砕剤イ充填して′rrな5破砕工法において
、IfiI記札内部に充填された静的破砕剤中に、熱媒
流通管の中間部分ン埋設し、さらに、前記孔の開ロ部乞
タンピング材で封止すると共に、必要に応じて前記タン
ピング相中にタンピング材用流通管の中間部分ン埋設し
、前記熱媒流通管の内部及びタンピング材用流通管の内
部に熱゛媒体ン流通せしめて、熱媒体と前記静1!〕破
砕剤及びタンピング材とン熱的に接触させ、前記静的破
砕剤及び必要に応じてMI記タンピング材の温度調節ン
行なうことτ特徴とする。Among the crushing methods of the present invention, the first crushing method involves filling a static crushing agent into a hole drilled in the object to be crushed, and the volume expansion phenomenon of the static crushing agent causes the In the crushing method of crushing, the middle part of a heat medium flow pipe is buried in a static crushing agent filled inside the hole, and a heat medium is made to flow inside the heat medium flow 'a. Ail
In addition, the second crushing method involves bringing the static crushing agent into thermal contact with the static crushing agent and adjusting the temperature of the static crushing agent. In the 5th crushing method, the middle part of the heat medium flow pipe is buried in the static crushing agent filled inside the IfiI tag, and The open part is sealed with tamping material, and if necessary, the middle part of the tamping material flow pipe is buried in the tamping phase, and heat is applied to the inside of the heat medium flow pipe and the tamping material flow pipe.゛Let the medium flow, and the heat medium and the static 1! ] It is characterized by thermally contacting the crushing agent and the tamping material, and controlling the temperature of the static crushing agent and, if necessary, the MI tamping material.
まず、第1の破砕工法について詳しく説明すると、この
工法においては、破砕用の孔に充填された破砕剤中に熱
媒体イ導くための熱媒流通管が用いられる。この流通管
としては、銅パイプ、鉄パイプ等の盆属パイプや、塩化
ビニルパイプ等の合成樹脂パイプ、紙パイプ7よどが適
用できる。これらのうちでも、前記熱媒体とスラリー状
の破砕剤との間の熱父挾の効率ン向上するためには、熱
伝導率が人ぎい銅パイプが好適であり、まに、パイプ乞
11g1の使用後に破砕剤と共に廃棄する工法τ採用す
る場合には、紙バイブがコスト的に有利である。First, the first crushing method will be explained in detail. In this method, a heat medium flow pipe is used to guide a heat medium into a crushing agent filled in a hole for crushing. As this flow pipe, metal pipes such as copper pipes and iron pipes, synthetic resin pipes such as vinyl chloride pipes, paper pipes 7, etc. can be used. Among these, in order to improve the efficiency of heat transfer between the heat medium and the slurry-like crushing agent, copper pipes with high thermal conductivity are suitable; When using the construction method τ in which the material is disposed of along with the crushing agent after use, paper vibrators are advantageous in terms of cost.
上記流通管の形状は、被破砕物に穿設された孔の形状に
より制限され、まに、孔内部に充填された破砕剤の全体
にわたって極力均一な温度分布乞もたせ得る形状が好ま
しい。The shape of the flow pipe is limited by the shape of the hole drilled in the object to be crushed, and preferably has a shape that can provide as uniform temperature distribution as possible throughout the crushing agent filled inside the hole.
この流通曾τ設置するにあたっては1通常、破砕用の孔
内部に流通管ンあらかじめ挿入しておき、仄いでスラリ
ー状としに破砕剤ン孔に元JAすることにより、流通管
の中間部分・ど破砕剤中に埋設する方法が、憚られるが
、流通管として金属パイプ等の強度の高いものτ用いる
場合には、孔内部に破砕剤・ど充填し7:後に、4通曾
の甲間部分省破砕剤中に挿入することもIjJ能である
。To install this flow tube, 1. Normally, a flow tube is inserted into the crushing hole in advance, and the crushing agent is poured into the hole in the form of a slurry. Although the method of burying the pipe in a crushing agent is difficult, if a strong material such as a metal pipe is used as the flow pipe, fill the inside of the hole with a crushing agent. It is also possible to insert it into a crush-saving agent.
また、この破砕工法に用いる熱媒体としては、種々の流
体が適用可り目であるが、英用土の取扱いや処理が容易
/よ点に’Mいて、水(温水、市水、水蒸気)や空気が
好適である。この熱媒体(工、用いるUIL俸の状態や
及求される温度に応じて選択されに温度調節手段により
、所望の温度に調整され之うえで、前記流通省に4かれ
る。In addition, various fluids can be used as the heat medium used in this crushing method, but English soil is easy to handle and treat, and water (hot water, city water, steam), Air is preferred. This heat medium is selected depending on the state of the UIL used and the desired temperature, and is adjusted to a desired temperature by a temperature control means, and then sent to the above-mentioned distribution center.
次に、不破砕工法に」6ける破砕剤の温度調整方法につ
いて説明する。Next, a method for adjusting the temperature of the crushing agent used in the non-crushing construction method will be explained.
通常、破砕剤は、その成分の配合割合により使用に適切
な温度範囲(以下、設定温度と略称する)が設定されて
いる。本発明の破砕工法において(工。Usually, a crushing agent has an appropriate temperature range (hereinafter abbreviated as set temperature) set according to the blending ratio of its components. In the crushing method of the present invention.
破砕剤τ使用可能な温度範囲の上限近傍となるように温
度調節することが好ましい。これは、破砕剤スラリーの
温度ン噴出現象が発生し7Lい範囲で極力高く保つこと
により、破砕剤の水和反応速度ン速め・短時間で破砕ン
行ない得る点で有利となるからである。It is preferable to adjust the temperature so that the crushing agent τ is near the upper limit of the usable temperature range. This is because by keeping the temperature of the crushing agent slurry as high as possible within the range of 7L in which the jetting phenomenon occurs, it is advantageous in that the hydration reaction rate of the crushing agent can be accelerated and crushing can be carried out in a short time.
従って、温度調節にあKつて作業現場の環境温度が、用
いる破砕剤の設定温度の上限より低い場合には、熱媒体
として温水や高温度の水蒸気等ン流11!!管に流通せ
しめ、破砕剤に熱ン与えてこの破砕剤ぞ光分に高温度に
保つようにする。一方、県境温度が破砕剤の設定温度よ
り商い場合に(工、熱媒体として冷水や低温度の空気?
流通管に流通せしめ、破砕剤力)ら熱ゼ奪って破砕剤’
al’噴出現象が生じない程度の温度まで冷却する。Therefore, when adjusting the temperature, if the environmental temperature at the work site is lower than the upper limit of the set temperature of the crushing agent used, hot water or high-temperature steam can be used as the heat medium. ! The crushing agent is supplied with heat to keep it at a relatively high temperature. On the other hand, if the prefectural border temperature is higher than the set temperature of the crushing agent, use cold water or low-temperature air as the heat medium.
Distribute the crushing agent through the distribution pipe, remove the heat from the crushing agent, and remove the crushing agent.
It is cooled to a temperature that does not cause the al' eruption phenomenon.
しかして、を記のMxの破砕工法によれば、被破砕物の
破砕用の孔に破砕剤ゼ充填した状態で、破砕剤の温度調
節ゼ任意に行なうことができるため1作業現場の環境温
度に左右されることなく良好な破砕力jal′発揮させ
得る破砕工法が可能となる。According to the Mx crushing method described above, the temperature of the crushing agent can be adjusted as desired while the crushing agent is filled in the hole for crushing the object, so the environmental temperature of one work site can be adjusted. A crushing method that can exert a good crushing force jal' without being influenced by this becomes possible.
また、従来は破砕剤が使用できなかったれ温度の環境や
低温度の環境においても、静的な破砕工法の適用が可能
となる。マニ、破砕剤の温度ン噴出現象τ生じない範囲
で極力高く保つことができるため、短時間で膨張圧イ発
現させて短時間での破砕がi]北となり、これに伴って
、破砕カゼ最大限に引き出して、従来より少量の破砕剤
を用いての施工が01龍となる。更には、従来は幅広い
作業環境温度に対して、それぞれ異なる槙々の設定温度
ゼもった多棟類の破砕剤により河応していたが、使用時
における破砕剤の温度調節が可能となるため、種々の温
度条件に対して少数の品種の破砕剤で対応することがで
き、従って破砕剤の品種乞少数として入量生産ン図り、
もってコストの低減ン図ることができる等の利点が得ら
れる。In addition, the static crushing method can be applied even in environments with low or low temperatures, where crushing agents could not be used in the past. Since the temperature of the manifold and crushing agent can be kept as high as possible within the range that does not cause the eruption phenomenon, the expansion pressure is developed in a short time, and the crushing in a short time becomes i]. 01 Dragon can be constructed using a smaller amount of crushing agent than before. Furthermore, while conventionally a wide range of working environment temperatures had to be dealt with using multiple types of crushing agents, each with a different set temperature, it is now possible to adjust the temperature of the crushing agent during use. , it is possible to cope with various temperature conditions with a small number of types of crushing agents, and therefore, we aim to produce large quantities of crushing agents with a small number of types.
This provides advantages such as cost reduction.
仄に、本発明の第2の破砕工法についてより詳しく説明
すると、第2の破砕工法は第1の破砕工法と同様な破砕
剤の温度調節ケ行なう点に加え。To explain the second crushing method of the present invention in more detail, the second crushing method uses the same temperature control of the crushing agent as the first crushing method.
破砕剤が充填された孔の開ロ部乞タンピング材で封止し
て、破砕剤が発生する膨張圧の同上と噴出現象の防止と
乞図り、更に(工必要に応じて前記タンピング材中にタ
ンピンク材用流通′#馨埋設してタンピング材の温度調
整方法なうようにして(・る。The opening of the hole filled with the crushing agent is sealed with a tamping material to prevent the expansion pressure generated by the crushing agent and the eruption phenomenon. Distribution of tamping materials'# How to adjust the temperature of tamping materials by burying them.
この第2の破砕工法に用いるタンピング材としては、ポ
ルトランドセメント、混合セメント、超速硬セメント(
例えばジェットセメント、商品名)、アルミナセメント
、急結着、硬性セメント(例えばキューストップ、商品
名;住友セメント株式会社製)1石膏プラスターなどン
あげることができる。このタンピング材は、被破砕物に
穿設されに孔の内部に破砕剤?充填し、この破砕剤中に
流通管’al’埋設した後に、孔の開口部分に充填して
用いるもので、このタンピング材の硬化によって、孔の
開口部が強固に封止される。The tamping materials used in this second crushing method include portland cement, mixed cement, and ultra-fast hardening cement (
Examples include jet cement (trade name), alumina cement, quick setting, hard cement (for example, Q-stop, trade name; manufactured by Sumitomo Cement Co., Ltd.) 1 gypsum plaster. This tamping material is drilled into the object to be crushed, and does it contain a crushing agent inside the hole? After filling the tamping material and embedding the flow pipe 'al' in this crushing agent, it is used by filling the opening of the hole, and the hardening of this tamping material firmly seals the opening of the hole.
また、上記タンピング材中には、必要に応じてタンピン
グ材用流通管が埋設される。このタンピング材用流通管
は、前述しに破砕剤用の流通管とは独立して設けられ、
タンピング材の温度調節と破砕剤の温度調節とが互いに
独立して行ない得るように設矩される。Further, a tamping material flow pipe is embedded in the tamping material as necessary. This tamping material distribution pipe is provided independently from the crushing agent distribution pipe described above,
The arrangement is such that the temperature regulation of the tamping material and the temperature regulation of the crushing agent can be carried out independently of each other.
上記タンピング材用流通管に供給する熱媒体としては、
前述した破砕剤用の熱媒体と同様なものが適用できる。The heat medium to be supplied to the tamping material flow pipe is as follows:
The same heat medium as the above-mentioned crushing agent can be used.
次に、第2の破砕工法における温圧調整方法の例ン、(
5)タンピング材の温度all整馨行なわない場合と、
181行なう場合とに分けて説明する。なお、以下のい
ずれの例においても、先ずタンピング材の硬化馨図って
孔開口部乞封止し、その後に破砕剤の膨張圧が発現され
るよう調節することが基本となる。Next, an example of the temperature and pressure adjustment method in the second crushing method, (
5) When the temperature of all tamping materials is not adjusted,
This will be explained separately for the case where 181 steps are performed. In any of the following examples, the basic principle is to first harden the tamping material to seal the hole opening, and then adjust so that the expansion pressure of the crushing agent is developed.
IAI まずタンピング材用流通管を設けず、従ってタ
ンピング材の温度tAmを行なわない場合について説明
するっ
■ 環境温度が破砕剤の設定温圧より低い場合には、タ
ンピング材の充填後、このタンピング材が硬化して充分
な強度をもつrsHに、流通管に温水等を流通させて破
砕剤の昇温を図り、水和反応を促進する。このとき、破
砕剤がタンピング材により孔内部に封じ込められた状態
にあるため、破砕剤・をその設足温度σ2上限より若干
高く設定しても噴出現象を防止することができ、これに
より短時間で破砕力を発現させて破砕力の向上を図るこ
とがuJ能となる。IAI First, we will explain the case where a flow pipe for tamping material is not provided and therefore the temperature tAm of the tamping material is not measured. When the rsH has hardened and has sufficient strength, warm water or the like is passed through the flow pipe to raise the temperature of the crushing agent and promote the hydration reaction. At this time, since the crushing agent is confined inside the hole by the tamping material, it is possible to prevent the blowout phenomenon even if the crushing agent is set slightly higher than the upper limit of its installation temperature σ2. UJ's ability is to develop crushing force and improve crushing force.
■ 県境温度が破砕剤の設定温度より高い場合には、破
砕用の孔の内部に先ず流通°uを配置し、この流通管に
冷水等の低温熱媒体を流通させた状態で、破砕剤の充填
を行なって、破砕剤の水イ°0反応を抑制しておくこと
が望ましい。破砕剤の充填後に、タンピング材で孔開口
部を閉塞する。この場合、環境温度が市いにめ、タンピ
ング材の硬化速度は速く、短時間で充分なり度に達する
。その後、破砕剤の温度を上げる定め、■流通管への低
温度熱媒体の流通′?:停止して、被破砕物のもつ熱に
より破砕剤ヲ〃ロ温する、■流通・aに供給する熱媒体
の温度ン上げて破砕剤Y〃口温する等の手段を、上は境
温度に応じて選択し、破砕剤の温度を噴出現象を起こさ
ない範囲で極力高い温度にiA[し、もって破砕剤の水
和反応を促進する。この場合にも、タンピング材の封止
効果により噴出現象が防止され、かつ短時間で膨張圧を
発現させて爾い破砕力を得ることができる◇
上記のようにタンピング材の温度調節を行なわない破砕
工法は、高温度の環境に適用し定場合にタンピング材が
その同曲から得る圧熱で硬化が促進される点において特
に有利な工法である。■ If the prefectural border temperature is higher than the set temperature of the crushing agent, first place a flow pipe inside the crushing hole, and with a low-temperature heat medium such as cold water flowing through this flow pipe, turn off the crushing agent. It is desirable to perform filling to suppress the water ion reaction of the crushing agent. After filling with the crushing agent, the hole opening is closed with tamping material. In this case, the ambient temperature is normal and the tamping material hardens quickly, reaching a sufficient degree in a short time. After that, it is decided to raise the temperature of the crushing agent, and ■ distribution of low temperature heat medium to the distribution pipe'? : Stop and use the heat of the material to be crushed to warm the crushing agent, ■ Increase the temperature of the heat medium supplied to distribution/a to warm the mouth of the crushing agent Y, etc. The temperature of the crushing agent is set to a temperature as high as possible without causing an eruption phenomenon, thereby promoting the hydration reaction of the crushing agent. In this case as well, the ejection phenomenon is prevented by the sealing effect of the tamping material, and expansion pressure is developed in a short time to obtain crushing force. ◇ Do not adjust the temperature of the tamping material as described above. The crushing method is particularly advantageous in that it is applied in high-temperature environments and hardening is accelerated by the pressure heat that the tamping material receives from the tamping material in certain cases.
tB) 仄に、破砕剤とタンピング材とに対してそれぞ
れ温度調節を行なう場合について説明する。tB) A case in which the temperatures of the crushing agent and the tamping material are individually controlled will be briefly described.
■ 環境温度が用いる破砕剤の設定温度より低い場合に
は、まず充填後のタンピング材を、温水、水蒸気等の尚
温度の熱媒体により加温して、硬化の促進9図る。タン
ピング材が充分な強度奮発現した後に、破砕剤ケ温水等
の高温度の熱媒体で所定温度に〃口温し、その水和反応
の促進を図る。この場合には、環境温度が低いにもかか
わらず、タンピング材及び破砕剤は、短時間で各々の性
能を発揮することができる。(2) If the environmental temperature is lower than the set temperature of the crushing agent used, the filled tamping material is first heated with a heating medium at a still temperature such as hot water or steam to accelerate hardening. After the tamping material has developed sufficient strength, it is warmed to a predetermined temperature using a crushing agent and a high-temperature heat medium such as hot water to promote the hydration reaction. In this case, the tamping material and the crushing agent can exhibit their respective performance in a short period of time despite the low environmental temperature.
■ 琲境温度が破砕剤の設定温度より高い場合には、破
砕剤用の流通管に冷水等を流通させ破砕剤を低温度に保
ちつつ、タンピング材の充填を行なう。この場合にも、
先ずタンピング材を加温し℃その硬化を促し1次いで破
砕剤を加温して膨張圧の発現を図る。■ If the ambient temperature is higher than the set temperature of the crushing agent, fill the tamping material while keeping the crushing agent at a low temperature by flowing cold water or the like through the flow pipe for the crushing agent. Also in this case,
First, the tamping material is heated to promote its hardening, and then the crushing agent is heated to develop expansion pressure.
を記のようIL破砕剤とタンピング材とをそれぞれ独立
させて温度調節を行なう破砕工法は。As described above, there is a crushing method in which the temperatures of the IL crushing agent and the tamping material are adjusted independently.
特に低温度の環境条件での施工に適用して大巾な工期の
短縮を図ることができる点で効果が大きいつ
しかして、上記第2の破砕工法によれば、前述しに第1
の破砕工法と同様に、
■県境温度に左右さ沿、ない破砕工法が用詣であること
、
■短時間で破砕を行なうことがh]北となること、■種
々の作業温度争件に対して少数の品種の破砕剤で対応す
ることが可能と7.Cす、少数品種の大量生産によるコ
ストダウンを図ることができるなどの利点に3口え、タ
ンピング材によって破砕剤を孔内部に封じ込め、先ずタ
ンピング材に充分な封止強度をもたせ、その後に破砕剤
の膨張圧を発現させるように温度調節を行なうため。The second crushing method is particularly effective in that it can be applied to construction under low-temperature environmental conditions to significantly shorten the construction period.
Similar to the crushing method of 7. It is possible to handle the problem with a small number of types of crushing agents. C. We have three advantages, such as being able to reduce costs by mass producing a small number of products, and seal the crushing agent inside the hole with the tamping material, first give the tamping material sufficient sealing strength, and then crush it. To adjust the temperature to develop the expansion pressure of the agent.
破砕剤を前記第1の工法より高温度に調節しに場合にも
噴出現象を防止することかでさ、従って破砕に要する時
間の一鳩の短縮がijJ能と7よると共に、この破砕時
間の積度の艮い制岬がtlIJ能となる。また、これに
伴つ℃、工事サイクルの短い工事への適用も可能となる
と共に、工事計画の立案が容易となる等の効果が得られ
る。By adjusting the temperature of the crushing agent to a higher temperature than in the first method, the blowout phenomenon can be prevented. Therefore, the time required for crushing can be drastically shortened, and the crushing time can also be reduced. The cape of Sekido becomes tlIJ Noh. In addition, it becomes possible to apply the present invention to construction work with a short construction cycle and to facilitate construction planning.
仄に、実施例を示して本発明を更に具体的に説明する。The present invention will now be explained in more detail by way of examples.
〔実施例1;第lの破砕工法〕
第1図に示すように一辺が1mの立方ta=のコンクリ
ート供試体lに径55mm、4さ9Ccmの孔2を穿設
し、これをgIL夏56CのI氾温室に1日放置して温
度の安定化2図りに。引続ぎ恒温室内部で、前記孔2の
内部に、径1ginmの塩化ビニル樹脂梨のパイプff
U字状に成形した流通管3ン配置し、水比22チのスラ
リーとして調製し定破砕剤(8−−マイトvl!jl;
住友セメント株式会社製、*破砕体・の温度適用信性1
.0’c以下)Sを孔2の口部まで充填した。充填後、
流通管3に温度50°Cの温水を流通させ定場合と、温
度40’Cの温水を流通させた場合とについて、破砕に
至るまでの時間ケ測定した。ま范比較のために温水を供
給しない場合についても破砕時間を測定した。[Example 1; 1st crushing method] As shown in Fig. 1, a hole 2 with a diameter of 55 mm and a diameter of 49 Ccm was drilled in a cubic ta concrete specimen L with a side of 1 m. I left it in a flooded greenhouse for a day to stabilize the temperature. Subsequently, inside the thermostatic chamber, a PVC resin pipe ff with a diameter of 1 ginm was placed inside the hole 2.
Three U-shaped flow pipes were arranged, a slurry with a water ratio of 22 cm was prepared, and a constant crushing agent (8--Mite Vl!jl;
Manufactured by Sumitomo Cement Co., Ltd. *Temperature application reliability of crushed bodies 1
.. 0'c or less) S was filled up to the mouth of hole 2. After filling,
The time required to reach crushing was measured for a case in which hot water at a temperature of 50°C was passed through the flow pipe 3 and a case in which hot water at a temperature at 40'C was passed through the flow pipe 3. For comparison purposes, the crushing time was also measured when hot water was not supplied.
その結果を第2図に熱媒体温度と破砕時間の関係を示す
グラフとして示し定。The results are shown in Figure 2 as a graph showing the relationship between heat medium temperature and crushing time.
第2図に示す結果から明らかなように、破砕剤の温度調
節を行なうことによって破砕時間を著しく短縮できるこ
とが分かる。As is clear from the results shown in FIG. 2, it can be seen that the crushing time can be significantly shortened by controlling the temperature of the crushing agent.
〔実/iIg−リ2;渠2の破砕工法〕実施例1と同様
なコンクリート供試体を用い、温度・5・9C°の恒温
室内で、第3図に示すように実施例1と同じ流通管3″
+一孔2内に配置すると共に水比22チの破砕剤スラリ
ー(実施例と同じもの)Sを開口部から29cm余して
充填し、更に孔2の開口部まで、タンピング材(ジェッ
トセメントモルタル)Tを充填した。元事恢1時間でタ
ンピング材′rは、圧縮強度約50 k g f /
c n12の充分lよ強度に達し1こ。次いで、流通管
3に温度80°Cの温水ktAU通させた場合と、70
°Cの温水乞流通させた場合とについて、破砕時間の測
に及び生じた亀裂幅の測定を行7LっL0熱媒体温度と
破砕時間との関1糸を8fJ4図に、破砕時間と1ハ裂
幅との関1系を第5図にボ丁。[I/iIg-li 2; Crushing method for drain 2] Using the same concrete specimen as in Example 1, in a thermostatic chamber at a temperature of 5.9 C°, the same circulation as in Example 1 was carried out as shown in Figure 3. pipe 3″
29 cm from the opening of the crushing agent slurry (same as in the example) with a water ratio of 22 cm, and then fill the tamping material (jet cement mortar ) filled with T. The compressive strength of the tamping material after 1 hour is approximately 50 kg f/
It reached a sufficient strength of c n12. Next, the case where ktAU of hot water with a temperature of 80°C is passed through the flow pipe 3, and the case where ktAU of hot water with a temperature of 80°C is passed through
The crushing time was measured and the width of the cracks that occurred was measured for the case where warm water at ℃ was circulated. Figure 8fJ4 shows the relationship between the crushing time and the crushing time. Figure 5 shows the relationship between the fissure width and the first system.
これらの結果1J)も、孔σ目口部をタンピング材で閉
基することにより、イ18i:砕剤スフリーが噴出しな
いための上限(約50°C)より高温度に、J[しても
噴出現象を防止することができ、この定め、極めて短時
間で破砕を行えることが確認できた。These results 1J) also show that by closing the opening of the hole σ with tamping material, the It was confirmed that the eruption phenomenon could be prevented and that crushing could be accomplished in an extremely short time using this method.
ま定、第5図に示すようにより短時間で破砕を行なった
場合により幅の広い亀裂音生じ、従って短時間で膨張さ
せに場合に大きい破砕力ン得ることができγこ。As shown in FIG. 5, when the crushing is carried out in a shorter time, a wider cracking sound is produced, and therefore a larger crushing force can be obtained when the expansion is performed in a shorter time.
〔実施I+l13;第2の破砕工法〕
実施列2と同様な条件で、破砕剤スラ17 8を孔2に
充填した後、46図に示すように螺旋状のタンピング材
用流1巾管5を埋設した状態で、実施例2と剥じタンピ
ング材T 7光填した。充填と同時にタンピング材用流
通管5に温度6 (10,Cの温水を流通させ、タンピ
ング材の強度発JAを促進させたところ、15分後に圧
縮強度で約5Qkgf/ c m に達しTこ。仄いで
、流通管3に温度8゜0Cの温水を流通させて破砕剤を
加温し定ところ。[Execution I+113; Second crushing method] After filling the hole 2 with the crushing agent slurry 178 under the same conditions as in the example row 2, the spiral tamping material flow 1-width pipe 5 was inserted as shown in Fig. 46. In the buried state, Example 2 was removed and the tamping material T7 was optically filled. Simultaneously with filling, hot water at a temperature of 6 (10°C) was passed through the tamping material flow pipe 5 to promote the strength development of the tamping material, and after 15 minutes the compressive strength reached approximately 5 Q kgf/cm. In the meantime, hot water at a temperature of 8° 0C was passed through the flow pipe 3 to warm the crushing agent and keep it at a fixed point.
コンク’J −ト供試体は充填後2時間で破砕され。The concrete 'J' specimen was crushed 2 hours after filling.
破砕時間を大幅に短縮することができた。We were able to significantly shorten the crushing time.
〔実施同4;第1の破砕1反〕
実IUfHJ ]と同様な条件で第1図に示すように破
砕剤スラIJ−8を充填し、仄いで流通管3に温度10
0°C以上の蒸気を通して破砕剤を加熱し定。[Implementation 4; First crushing 1 round] Under the same conditions as in Actual IUfHJ], crushing agent slurry IJ-8 was filled as shown in Fig. 1, and the flow pipe 3 was heated to a temperature of 10
Heat the crushing agent through steam above 0°C.
その結果、コンクリート供試体を約2時間で破砕するこ
とができた。As a result, the concrete specimen could be crushed in about 2 hours.
〔実施例5;第1の破砕工法〕
温度を40°Cに1場った恒温室内で、実m列lと同様
な供試体1及び流通管3を用い、孔2内部に設定温度1
0〜30°Cの破砕剤スラリー(水比22俤)8ft充
填した。次いで、流通管3に温度5°Cの冷水を流通さ
せに場合と、流通させない場合とについて、スラリー温
度の経時変化及び破砕時間の測定を行なった。[Example 5; First crushing method] Using the same specimen 1 and flow pipe 3 as in the actual m-row 1 in a thermostatic chamber at a temperature of 40°C, a set temperature of 1 was set inside the hole 2.
8 feet of crushing agent slurry (water ratio 22 tons) at 0 to 30°C was filled. Next, changes in slurry temperature over time and crushing time were measured for cases in which cold water at a temperature of 5° C. was passed through the flow pipe 3 and cases in which it was not allowed to flow.
スラリー温度の経時変化?第7図に示す。Change in slurry temperature over time? It is shown in FIG.
上記の測定において、冷却を行なわなかった破砕剤は、
m7図に示すように充填後約2時間10分後に噴出現象
を起こした。これに対して、冷却水により温度調節を行
TKつた場合には、スラリー温度が約40°Cに保たれ
、元項後約5時間後に供試体を破砕できた。In the above measurements, the crushing agent that was not cooled was
As shown in Figure m7, an eruption phenomenon occurred approximately 2 hours and 10 minutes after filling. On the other hand, when the temperature was adjusted using cooling water, the slurry temperature was maintained at about 40°C, and the specimen could be crushed about 5 hours after the initial heating.
〔実施例6;第2の破砕工法〕
実施例1と同様なコンクIJ−ト供試体lに径Iggm
m、iさ80Cmの孔lを穿設し、この供試体を温1f
fi 5°Cに保った恒温室内に置いに0この供試体】
の孔!内部に、第8図に示すように塩化ビニル樹脂から
なり、基部13)ら先端部に向けて徐々に縮径された螺
旋状のoit通管6を配置し、仄いで孔グ内部に実施例
1と同様な破砕剤スラリーSを充填すると共にタンピン
グ、材Tで開口部を封じた。[Example 6; Second crushing method] A concrete IJ specimen l similar to that in Example 1 was given a diameter Iggm.
A hole l with a diameter of m and i of 80 cm was drilled, and the specimen was heated to a temperature of 1 f.
This specimen was placed in a constant temperature room kept at 5°C.
hole! As shown in FIG. 8, a spiral oit passage tube 6 made of vinyl chloride resin and whose diameter is gradually reduced from the base 13) to the tip is arranged inside the hole, and the example The same crushing agent slurry S as in 1 was filled, and the opening was sealed with tamping and material T.
前記流通管6に、温度90°Cの温水を流通させたとこ
ろ、供試体1は、1時間後に破砕された。When hot water at a temperature of 90° C. was passed through the flow pipe 6, the specimen 1 was crushed after one hour.
上記のよう゛な流通′け6によれば、タンピング材単位
衰あKりにR−rる流通管6の接触面積が広いため、タ
ンピング材が充分に加温されて急速に硬化し、大きい破
砕力を発現させろことができる。According to the above-mentioned flow path 6, since the contact area of the flow tube 6 R-r is wide as the tamping material unit decays, the tamping material is sufficiently heated and hardens rapidly, resulting in a large It is possible to develop crushing force.
また、上記のような流通管6においては、#、旋のピッ
チ及び径等を選択することにより、破砕力。In addition, in the above-mentioned flow pipe 6, the crushing force can be adjusted by selecting the #, the pitch of the spiral, the diameter, etc.
破砕時間等の調整が円曲である。Adjustment of crushing time, etc. is circular.
〔実施例7;第2の破砕工法〕
実施例6と同様な供試体1を温度35°Cに保った恒温
室内に置いた。この供試体λ′の孔2′内部に、第9図
に示すように基部から先端部に向けて徐々に拡径されに
螺旋状の流通管7を配置し、仄いで孔l内部に実施例6
と同様1よ破砕剤スラ17−8を充填すると共に、タン
ピング材Tで開口部乞封じに0
前記流通管7に温度5°Cのは水を10分間流通さ・ぜ
て破砕剤を低温度に保った状態で、高温度雰囲気に曝さ
れ1こタンピング材の硬化を図り、仄いで流通管7に温
度5.0°Cの温水を流通させたところ、供試体lは9
0分後に破砕されたつ上記のような流通f7によれば、
熱の逃げにくい供試体深部の温度調節ン充分に行なうこ
とができる定め、破砕剤の金座にわたって均一な温度分
布をもにせ、破砕剤の性能を充分に引き山王ことができ
る。[Example 7; Second crushing method] Specimen 1 similar to Example 6 was placed in a thermostatic chamber kept at a temperature of 35°C. Inside the hole 2' of this specimen λ', as shown in FIG. 6
Fill the crushing agent slurry 17-8 in the same manner as in step 1, and seal the opening with tamping material T. 0. Flow water at a temperature of 5°C through the flow pipe 7 for 10 minutes to lower the crushing agent to a low temperature. The tamping material was exposed to a high temperature atmosphere to harden it, and hot water at a temperature of 5.0°C was passed through the flow pipe 7.
According to the distribution f7 as above, which was crushed after 0 minutes,
It is possible to adequately control the temperature in the deep part of the specimen where it is difficult for heat to escape, and to achieve a uniform temperature distribution over the crushing agent plate, which can sufficiently improve the performance of the crushing agent.
第1図は、実施例1,4.5の方法を説明するための供
試体の断面図、第2図は実施9111において得られた
熱媒体温度と破砕時間との関係を示すグラフ、第3図は
実施例2の方法を説明するたy)の供試体の断面図、第
4図は実施例2において得られた熱媒体温度と破砕時間
との関係な示すグラフ、第5図は実施例2において得ら
れ定破砕時間と亀裂幅との関係馨示すグラフ、第6図は
、実施例3の方法を説明するための供試体の断面図、第
7図は、実施例5において得られたスラリー温度の経時
変化を示すグラフ、第8図は実施例6の方法を説明する
たど)の・供試体の断囲図、第9図は実施例7の方法を
説明する定めのIR−試体のbjt面図で′ある。
1・・・供試体(被破砕′v/J )、2・・・孔、3
、6 、 ’7・・・流通管、・5・・・タンピング
;l:llJ Ill流通管、S・・・破砕剤、T・・
・タンピング材。
出願人 住友セメント休式会社
第6図
第7図
8寿間
第8図
第9図FIG. 1 is a cross-sectional view of a specimen for explaining the methods of Examples 1 and 4.5, FIG. 2 is a graph showing the relationship between heat medium temperature and crushing time obtained in Example 9111, and FIG. The figure is a cross-sectional view of the specimen of y) to explain the method of Example 2, Figure 4 is a graph showing the relationship between the heat medium temperature and crushing time obtained in Example 2, and Figure 5 is the example of Example 2. 2 is a graph showing the relationship between constant crushing time and crack width obtained in Example 2, FIG. 6 is a cross-sectional view of a specimen for explaining the method of Example 3, and FIG. A graph showing the change in slurry temperature over time; FIG. 8 is a cross-sectional view of a specimen for explaining the method of Example 6; and FIG. 9 is a prescribed IR specimen for explaining the method of Example 7. ' is the bjt plane view of '. 1... Specimen (to be crushed'v/J), 2... Hole, 3
, 6 , '7... Flow pipe, 5... Tamping; l:llJ Ill flow pipe, S... Crushing agent, T...
・Tamping material. Applicant Sumitomo Cement Closed Company Figure 6 Figure 7 Figure 8 Lifetime Figure 8 Figure 9
Claims (1)
剤イ充填し、この静的破砕剤の体積膨張現象により前記
被破砕物ン破砕する破砕工法において。 前記孔内部に充填されに静的破砕剤中に、熱媒流通管の
中間部分ン埋設し、 m射熱媒流通管の内部に熱媒体τ流通せしめてこの熱媒
体と前記静的破砕剤とン熱的に接触させ、この静的破砕
剤の温度調節ぞ行なうことン特徴とする静的破砕剤ゲ中
いに破砕工法。 2) 被破砕物に穿設されに孔の内部に靜旧破砕剤τ光
填し、この静的破砕剤の体積膨張現象により前記被破砕
物乞破砕する破砕工法において、 前記孔内部に充填され定静的破砕剤中に、熱媒流通管の
中間部分τ埋設し、 前記孔の開口部ぞタンピング材で封止すると共に、会費
に応じて前記タンピング材中にタンピング材用流通管の
中間部分?埋設し。 前記熱媒流通管及びタンピング材用流通管の内部に熱媒
体ン流通せしめて、熱媒体と前記静的破砕剤及びタンピ
ング材とン熱旧に接触させ、前記静的破砕剤及び必要に
応じて前記タンピング材の温度調節τ行1.cうことゼ
特徴とする静的破砕剤ン用いた破砕工法03) 前記静
的破砕剤とタンピング材との温度調節にあ茫って、 まず前記タンピング材の温度ン調節してこのタンピング
材の硬化τ計り、 仄いで、前記静的破砕剤の温度ゲ調節してこの静的破砕
剤の膨張反応ぞ保工ことン特徴とする特Iff請求の範
囲第2項に記載の靜釣破砕剤乞用いた破砕工法。[Scope of Claims] l) A crushing method in which a static H''J crushing agent is filled inside a hole drilled in a wL crushed object, and the object to be crushed is crushed by the volume expansion phenomenon of the static crushing agent. A middle portion of a heat medium flow pipe is buried in a static crushing agent filled in the inside of the hole, and a heat medium τ is caused to flow inside the radiant heat medium flow pipe to combine this heat medium and the static crushing agent. This static crushing agent is characterized by thermal contact and temperature control of the static crushing agent. In a crushing method in which a crushing agent τ is filled with light and the object to be crushed is crushed by the volume expansion phenomenon of this static crushing agent, the intermediate portion τ of the heat medium flow pipe is filled in the constant static crushing agent filled inside the hole. The opening of the hole is sealed with a tamping material, and the middle part of the tamping material flow pipe is buried in the tamping material according to the membership fee. Flowing a heat medium through the interior, bringing the heat medium into contact with the static crushing agent and the tamping material, and adjusting the temperature of the static crushing agent and, if necessary, the tamping material, step 1.c. Crushing method using a static crushing agent characterized by Kotoze 03) By failing to adjust the temperature of the static crushing agent and the tamping material, first adjust the temperature of the tamping material to harden τ of the tamping material. The static crushing agent according to claim 2 is characterized in that the temperature of the static crushing agent is adjusted by measuring and the temperature of the static crushing agent is controlled to prevent the expansion reaction of the static crushing agent. Crushing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9437383A JPS60844A (en) | 1983-05-28 | 1983-05-28 | Crushing method using static crushing medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9437383A JPS60844A (en) | 1983-05-28 | 1983-05-28 | Crushing method using static crushing medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60844A true JPS60844A (en) | 1985-01-05 |
Family
ID=14108509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9437383A Pending JPS60844A (en) | 1983-05-28 | 1983-05-28 | Crushing method using static crushing medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60844A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6117673A (en) * | 1984-07-05 | 1986-01-25 | 吉澤石灰工業株式会社 | Reaction control of static crushing agent |
KR100322451B1 (en) * | 1999-04-23 | 2002-03-18 | 김순택 | beam index CRT |
-
1983
- 1983-05-28 JP JP9437383A patent/JPS60844A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6117673A (en) * | 1984-07-05 | 1986-01-25 | 吉澤石灰工業株式会社 | Reaction control of static crushing agent |
JPH0374307B2 (en) * | 1984-07-05 | 1991-11-26 | ||
KR100322451B1 (en) * | 1999-04-23 | 2002-03-18 | 김순택 | beam index CRT |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shafigh et al. | Concrete as a thermal mass material for building applications-A review | |
Insana et al. | Experimental and numerical investigations on the energy performance of a thermo-active tunnel | |
Riding | Early age concrete thermal stress measurement and modeling | |
Kim | Effect of heat generation from cement hydration on mass concrete placement | |
Saeed et al. | Early age thermal cracking of mass concrete blocks with Portland cement and ground granulated blast-furnace slag | |
JPS62192B2 (en) | ||
Tian et al. | Coupling effect of temperature and relative humidity diffusion in concrete under ambient conditions | |
US4409030A (en) | Material for destroying concrete structures | |
United States. Federal Highway Administration et al. | Fast-track paving: concrete temperature control and traffic opening criteria for bonded concrete overlays | |
Allan et al. | Performance characteristics and modelling of cementitious grouts for geothermal heat pumps | |
Tatro | Thermal properties | |
Vargas et al. | Experimental assessment of energy storage in microencapsulated paraffin PCM Cement mortars | |
JPS60844A (en) | Crushing method using static crushing medium | |
Gajda et al. | A low temperature rise mixture for mass concrete | |
Wang et al. | Preparing gypsum-based self-levelling energy storage mortar via fly ash cenospheres/paraffin used for floor radiant heating | |
Toufigh et al. | Experimental and numerical investigation of thermal enhancement methods on rammed-earth materials | |
Allan et al. | Ground water protection issues with geothermal heat pumps | |
Shi et al. | Temperature field of concrete cured in winter conditions using thermal control measures | |
Pimentel et al. | Case studies of artificial ground freezing simulations for urban tunnels | |
Pulyaev et al. | Research of hydration heat of Portland cement used in bridge construction of Kerch Strait | |
Mukhopadhyay et al. | Moisture-related cracking effects on hydrating concrete pavement | |
Yang | A temperature prediction model in new concrete pavement and a new test method for concrete fracture parameters | |
Siang | Determination of Temperature Rise and Temperature Differentials of CEMII/BV Cement for 20MPa Mass Concrete using Adiabatic Temperature Rise Data | |
Pimentel et al. | Thermal control of the swelling of anhydritic claystones in tunnelling | |
Morris | Evaluation of cement systems for permafrost |