JPS608446A - Control device for internal-combustion engine - Google Patents

Control device for internal-combustion engine

Info

Publication number
JPS608446A
JPS608446A JP11560483A JP11560483A JPS608446A JP S608446 A JPS608446 A JP S608446A JP 11560483 A JP11560483 A JP 11560483A JP 11560483 A JP11560483 A JP 11560483A JP S608446 A JPS608446 A JP S608446A
Authority
JP
Japan
Prior art keywords
engine
load
sensor
rotational speed
ignition timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11560483A
Other languages
Japanese (ja)
Other versions
JPH0517394B2 (en
Inventor
Kazumi Nakano
和美 中野
Masahiro Kondo
雅洋 近藤
Koichi Shimizu
幸一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11560483A priority Critical patent/JPS608446A/en
Publication of JPS608446A publication Critical patent/JPS608446A/en
Publication of JPH0517394B2 publication Critical patent/JPH0517394B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/008Reserve ignition systems; Redundancy of some ignition devices

Abstract

PURPOSE:To eliminate a load sensor or render an engine controllable even in an abnormal operation of the sensor, by processing a signal from a speed sensor by a speed difference and a statistical operation to produce a load signal, and utilizing the load signal for control of an ignition timing or a fuel injection quantity. CONSTITUTION:A basic advance value thetai is computed from an average engine rotational speed N as measured, and a rate of change dN/dt of the rotational speed N is determined. If the rate of change is within a fixed value, it is judged that an engine is under an ordinary condition, while if it is over the fixed value, it is judged that the engine is under a transitional condition. When the engine is under the transitional condition, the basic advance value thetai is defined as an ignition timing theta and is fed to an ignition drive circuit 15. When the engine is under the ordinary condition, a rotational speed N1 at the moment when a first cylinder reaches a top dead center is read. Reaching CA at 90 deg. after the top dead center, a rotational speed N2 is read to compute the difference DELTAN between both the rotational speeds N1 and N2. The DELTAN is added to a variable SUM to count up a variable M by one. Next, when a statistical processing loop reaches a prescribed frequency, an average value DELTANave of the difference DELTAN is computed, and a data from a compensated advance map is read out to compute a load compensated advance thetac and then generate the ignition timing theta.

Description

【発明の詳細な説明】 この発明は、内燃機関用制御装置に関し、特に回転速度
を検出する速度センサの信号により機関の負荷を検出し
て制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for an internal combustion engine, and more particularly to a device that detects and controls the load of the engine using a signal from a speed sensor that detects the rotational speed.

従来、内燃機関の点火時期又は燃料噴射量など{よ、吸
気量センサ、吸気負圧センサなどの負荷センサと、機関
の回転速度を検出する速度センサとからの信号に基いて
コンピュータにより演算していた。
Conventionally, the ignition timing or fuel injection amount of an internal combustion engine has been calculated by a computer based on signals from load sensors such as an intake air amount sensor and intake negative pressure sensor, and a speed sensor that detects the rotational speed of the engine. Ta.

このため、高価な負荷センサが必要であったり、あるい
は負荷センサの異常時に制御が行なえないという問題が
あった。
Therefore, there is a problem that an expensive load sensor is required or that control cannot be performed when the load sensor is abnormal.

この発明は、上記の問題に鑑みなされたもので、第12
図に示すように速度センサの信号を速度差演算、統計演
算処理することによって機関の負荷を示す信号を作り、
これを点火時期又は燃料噴射量の制御に利用して、負荷
センサを不要、あるいは負荷センサの異常時にも制御可
能とすることを目的とする。
This invention was made in view of the above problem, and is the 12th invention.
As shown in the figure, a signal indicating the engine load is created by processing the speed sensor signal by speed difference calculation and statistical calculation.
The purpose of this invention is to use this to control the ignition timing or fuel injection amount to enable control even when a load sensor is unnecessary or when the load sensor is abnormal.

以下この発明を図に示す実施例により説明する。The present invention will be explained below with reference to embodiments shown in the drawings.

第1図において、1は4気筒火花点火式内燃機関で、気
化器2で形成された空気/燃料混合気を吸気管3を経て
吸入し、燃焼後の排気ガスを排気管4から排出する。
In FIG. 1, reference numeral 1 denotes a four-cylinder spark ignition internal combustion engine, which takes in an air/fuel mixture formed in a carburetor 2 through an intake pipe 3, and discharges exhaust gas after combustion through an exhaust pipe 4.

5及び6は、機関1のクランク軸と同期して回転するロ
ータであって、ロータ5は1個の歯5aを有し、ロータ
6は所定クランク角毎に多数の歯6aを有する。
Rotors 5 and 6 rotate in synchronization with the crankshaft of the engine 1. The rotor 5 has one tooth 5a, and the rotor 6 has a large number of teeth 6a at each predetermined crank angle.

7は基準位置センサ、8は速度センサであっていずれも
電磁ビックアップなどから構成されている。そして、セ
ンサ7はクランク軸1回転毎に1個のパルス信号を発生
し、センサ8は所定クランク毎(例えば5℃A毎)にパ
ルス信号を発生する。
7 is a reference position sensor, and 8 is a speed sensor, both of which are composed of an electromagnetic pickup and the like. The sensor 7 generates one pulse signal every rotation of the crankshaft, and the sensor 8 generates a pulse signal every predetermined crankshaft (for example, every 5°C).

10はマイクロコンピュータで、センサ7、8あるいは
図示しない水温センサ、油温センサなどの信号に基いて
機関1の点火時期を演算する。9はコンピュータ10か
らの信号に基いて高電圧を発生する点火コイルで、高電
圧は図示しないディストリビュー夕を経て各気簡のスパ
ークプラグへ配電される。
A microcomputer 10 calculates the ignition timing of the engine 1 based on signals from sensors 7 and 8 or a water temperature sensor, an oil temperature sensor, etc. (not shown). Reference numeral 9 denotes an ignition coil that generates high voltage based on a signal from the computer 10, and the high voltage is distributed to each spark plug via a distributor (not shown).

第2図は、マイクロコンピュータ10を示すブロソク図
で、マイクロコンピュータ10は、CPUll、ROM
.RAMを含むメモリ12、I/O(入出力)回路13
、センサ7,8の出力信号を波形整形する。波形整形回
路14、点火コイル9を駆動するための点火駆動回路1
5及びコモンパス16からなる。各ブロックは公知であ
るため詳細なハードウェアの説明は省略する。
FIG. 2 is a block diagram showing the microcomputer 10. The microcomputer 10 includes a CPUll, ROM,
.. Memory 12 including RAM, I/O (input/output) circuit 13
, waveform-shapes the output signals of the sensors 7 and 8. Waveform shaping circuit 14, ignition drive circuit 1 for driving the ignition coil 9
5 and a common path 16. Since each block is well known, a detailed description of the hardware will be omitted.

上記構成において、コンピュータ10は第3図に示すフ
ローチャートにしたがって動作する。まずステノプ20
からスタートし、初期化を行う。
In the above configuration, the computer 10 operates according to the flowchart shown in FIG. First, Stenop 20
Start from and initialize.

ステソブ2lで機関のクランク軸1回転の機関で測定し
た平均的な機関回転速度Nを読み込み、ステソブ22で
回転速度Nから基本進角値θiをメモリ12内のマップ
又は計算式により演算する。
The average engine rotation speed N measured by the engine with one revolution of the crankshaft is read in the SteSob 2l, and the basic advance angle value θi is calculated from the rotation speed N using the map or formula in the memory 12 in the SteSob 22.

次にステソプ23で、回転速度Nの変化率dN/dtを
め、これから機関1が定常状憇か過渡状態かを判別する
。変化率が一定値以内であると定常であると判別し、そ
れ以外は過渡状態と判別する。
Next, the stepper 23 determines the rate of change dN/dt of the rotational speed N, and determines from this whether the engine 1 is in a steady state or a transient state. If the rate of change is within a certain value, it is determined to be in a steady state, and otherwise it is determined to be in a transient state.

過渡状憇と判別されたときはステップ35で基本進角値
θiを点火時期θとし、ステソプ36で点火駆動回路1
5に出力する。
If it is determined that the transient state is present, the basic advance value θi is set as the ignition timing θ in step 35, and the ignition drive circuit 1 is changed in step 36.
Output to 5.

定常状態と判別されたときは、ステソブ24で平均化(
統計)処理を行うための変数SUMとMをゼロにセソト
ずる。次にステップ25で4気筒のうらの1番気筒のピ
ストンが上死点(TDC)に達するのを待つ。これはセ
ンサ7の出力信号に基いて行う。つまりロータ5の歯5
aは1番気筒の上死点でセンサ7と対向するよう位置決
めしてあり、センサ7からパルス信号が出力されたとき
が、1番気筒の上死点である。
When it is determined that it is in a steady state, it is averaged (
Set the variables SUM and M for statistical processing to zero. Next, in step 25, the program waits for the piston of the first cylinder among the four cylinders to reach top dead center (TDC). This is done based on the output signal of the sensor 7. In other words, tooth 5 of rotor 5
A is positioned to face the sensor 7 at the top dead center of the first cylinder, and when a pulse signal is output from the sensor 7, it is the top dead center of the first cylinder.

1番気筒が上死点に到達したらステソプ26において上
死点での瞬時の機関回転速度N1を読み込む。これはセ
ンサ7,8からの信号に見いて上死点から上死点後の所
定値(ATDC5゜〜10゜の範囲内の値)までの機関
で計劃した回転速度である。
When the No. 1 cylinder reaches the top dead center, the step 26 reads the instantaneous engine rotational speed N1 at the top dead center. This is the rotational speed measured by the engine from the top dead center to a predetermined value after the top dead center (a value within the range of 5° to 10° ATDC) based on the signals from the sensors 7 and 8.

次にステノブ27で1番気筒が上死点後90℃Aに達す
るのを待ち、ATDC90゜CAに到達したら、ステソ
ブ28でATDC90℃八での瞬時の回転速度N2を読
み込む。これはATDC90”CAから所定値(ATD
C95゜〜100゜の範囲内の値)までの期間で計測し
た回転速度である。
Next, wait for the No. 1 cylinder to reach 90°A after top dead center using the stem knob 27, and when it reaches ATDC 90°CA, read the instantaneous rotational speed N2 at ATDC 90°CA using the stem knob 28. This is a predetermined value (ATD
This is the rotational speed measured during the period up to (a value within the range of C95° to 100°).

そして、ステップ29で回転速度N2とN1の速度差Δ
Nを次式によって演算する。
Then, in step 29, the speed difference Δ between the rotational speeds N2 and N1 is
N is calculated using the following equation.

ΔN=N2−Nl ステソプ30では、変数SUMに今回の速度差ΔNを加
箕し、変数Mを1だけカウントアソプする。
ΔN=N2−Nl The step controller 30 adds the current speed difference ΔN to the variable SUM, and counts the variable M by 1.

ステップ31ではステソプ25〜31までの平均化(統
計)処理ループを規定回数(MTH)回、実行したかど
うかを判別し、規定回数(MTH回)に達しない場合に
はステップ25に戻り再び処理を繰返す。規定回数に達
した場合にはステップ32で統計量であるΔNの平均値
ΔNaveを演算する。
In step 31, it is determined whether the averaging (statistical) processing loop from steps 25 to 31 has been executed a specified number of times (MTH), and if the specified number of times (MTH) has not been reached, the process returns to step 25 and is processed again. Repeat. If the predetermined number of times has been reached, the average value ΔNave of ΔN, which is a statistical amount, is calculated in step 32.

ΔNave=SUM/MTH そして、ステップ33でこの負荷を示すΔNaveに基
いてメモリ12に記憶されている補正進角マソプからデ
ータを読み出して負荷補正進角θ。
ΔNave=SUM/MTH Then, in step 33, based on ΔNave indicating this load, data is read from the correction advance angle maso stored in the memory 12 and the load correction advance angle θ is determined.

を演算する。ステップ34で点火時期θを次式で演算す
る。
Calculate. In step 34, the ignition timing θ is calculated using the following equation.

θ=θi+θC 次にステソブ36で、この点火時期θを出力する。そし
て、ステソプ21に戻り、再び同じループ処理を行う。
θ=θi+θC Next, the stesub 36 outputs this ignition timing θ. Then, the process returns to step 21 and performs the same loop process again.

なお、点火駆動回路26は、コンピュータ10から新し
い点火時期θが出力されるまで、前回計算した点火時期
で点火を行う。
Note that the ignition drive circuit 26 performs ignition at the previously calculated ignition timing until a new ignition timing θ is output from the computer 10.

ここで、速度差ΔNとその平均値ΔNaveについて詳
細に説明する。第4図は代表的な4サイクル、4気筒機
関の行程図と、その運転中のエンジン回転速度を示した
ものである。この行程図から見ると、上死点(TDC)
付近で点火を行なうと、TDC付近から燃焼による膨張
エネルギーにより内燃機関の回転速度が上昇し、その後
その膨張エネルギーを使い果たし、ATDC90℃A近
傍で内燃機関の回転速度がピーク値を示した後に次の気
簡の圧縮入力により内燃機関の回転速度が低下(TDC
で最低となる)するという内燃機関の特性があることが
わかる。この特性をもう少し詳しく示したのが、m5図
である。第5図は機関の負荷によりこの機関回転速度の
変化が異なることを示している。即ち、高負荷時は吸入
空気量が多くなるため、圧縮時、爆発時の回転変動幅が
大きくなる。逆に軽負荷時には、吸入空気量が少なくな
るため、回転変動も少なくなる。
Here, the speed difference ΔN and its average value ΔNave will be explained in detail. FIG. 4 shows a stroke diagram of a typical 4-cycle, 4-cylinder engine and the engine rotational speed during its operation. Looking at this process chart, top dead center (TDC)
When ignition is performed near TDC, the rotational speed of the internal combustion engine increases due to expansion energy due to combustion, and then the expansion energy is used up, and the rotational speed of the internal combustion engine reaches a peak value near ATDC90℃, and then the next The rotational speed of the internal combustion engine decreases due to the slight compression input (TDC
It can be seen that there is a characteristic of the internal combustion engine that the maximum value is the lowest. The m5 diagram shows this characteristic in more detail. FIG. 5 shows that the change in engine rotational speed varies depending on the engine load. That is, when the load is high, the amount of intake air increases, so the range of rotational fluctuations during compression and explosion increases. On the other hand, when the load is light, the amount of intake air is reduced, so rotational fluctuations are also reduced.

しかして、速度差ΔN(=N2N+)が概略機関の負荷
に対応していることがわかる。しかし、この速度差ΔN
だけでは機関回転のバラッキ、回転の微少変動を負荷変
動として誤検出してしまうが、この発明では速度差ΔN
を平均化(統計)処理して、ΔNaveを演算して機関
負荷を示す信号としており、誤検出の少ないものとなっ
ている。
Therefore, it can be seen that the speed difference ΔN (=N2N+) roughly corresponds to the engine load. However, this speed difference ΔN
However, with this invention, the speed difference ΔN
is averaged (statistically) processed and ΔNave is calculated as a signal indicating the engine load, resulting in fewer false detections.

これを示したのが、第6図でこの図から平均値ΔNav
eは、機関の負荷にほぼリニアに変化するのがわかる。
This is shown in Figure 6, which shows the average value ΔNav
It can be seen that e changes almost linearly with the engine load.

なお、上記実施例では平均値ΔN3’veを演算後、こ
れ−を碁にしてメモリマソプから補正進角量θC@演算
したが、第7図に示すように機関の負荷を高負荷、中負
荷、軽負荷の3種類に分けて負荷補正進角を決め点火時
期制御を行うようにしてもよい。
In the above embodiment, after calculating the average value ΔN3've, the corrected advance angle amount θC@ was calculated from the memory map using the average value ΔN3've as a Go, but as shown in FIG. The load correction advance angle may be determined for three types of light loads and the ignition timing may be controlled.

第8図に上記制御(第2実施例)の要部フローチャート
を示す。ブロックA内のステソプ20〜32は第3図に
示すブロックA内のステソブと同様である。そして、ス
テソブ32で平均値ΔNaveを演算した後、ステップ
41で平均値ΔNaveと高負荷判定値NT+を比較し
、ΔNaveが、N′F+よりも大きい場合には高負荷
と判別し点火時期θを基本進角θiに設定し、ステノブ
36へ進み、出力する。他方ΔNaveがNT+よりも
小さい場合にはステソプ42へ進み、軽負荷判定値NT
2と比較を行う。ΔNaveがNT2よりも大きい場合
には、中負荷と判断し、ステンブ43へ進み、点火時期
θをθ一θi+θC,に設定し、ステソプ36へ進む。
FIG. 8 shows a flowchart of the main part of the above control (second embodiment). The stems 20-32 in block A are similar to the stems in block A shown in FIG. After calculating the average value ΔNave in step 32, the average value ΔNave is compared with the high load judgment value NT+ in step 41. If ΔNave is larger than N'F+, it is determined that the load is high and the ignition timing θ is changed. The basic advance angle θi is set, and the advance is advanced to the steno knob 36 and output. On the other hand, if ΔNave is smaller than NT+, the process advances to step 42 and the light load judgment value NT
Compare with 2. If ΔNave is larger than NT2, it is determined that the load is medium, and the process proceeds to step 43, where the ignition timing θ is set to θ-θi+θC, and the process proceeds to step 36.

他方ΔNaveがNT2よりも小さい場合には軽負荷と
判断され、ステップ44へ進み、点火時期θをθ一θi
+θc2に設定する。以上の制御により第1実施例と同
様の効果が得られるものである。
On the other hand, if ΔNave is smaller than NT2, it is determined that the load is light, and the process proceeds to step 44, where the ignition timing θ is set to θ - θi.
Set to +θc2. With the above control, the same effects as in the first embodiment can be obtained.

また、第2実栴例は、負荷を高負荷中負荷軽負荷と3段
階に分けたが、単純に高負荷、軽負荷の2段階検出でも
、負荷検出は可能である。
Further, in the second practical example, the load is divided into three stages: high load, medium load, and light load, but load detection can also be performed simply by detecting two stages of high load and light load.

第9図は、この発明の第3実施例を示すものである。即
ち、燃料噴射式エンジン制御システムにおいても特別な
負荷検出センサを用いずとも、従来と同様の制御が可能
なものである。第9図において、2Aは燃料噴射用電磁
式インジェクタでその他の構成部品は、第1実施例とほ
ぼ同様である。
FIG. 9 shows a third embodiment of the invention. That is, even in the fuel injection type engine control system, the same control as the conventional one is possible without using a special load detection sensor. In FIG. 9, 2A is an electromagnetic injector for fuel injection, and the other components are almost the same as those in the first embodiment.

第10図に基づきその動作を説明する。ステソプ51で
、エンジン回転速度N、自動車のトランミソション位置
、冷却水温、潤滑油温の情報を読み込み、それらの情報
をもとにして、次のステノプ52では、基本進角θi、
基本噴射量Tiを演算する。そしてステップ23〜ステ
ップ32までは第1実施例のブロックA内のステソプ同
様の演算をする。
The operation will be explained based on FIG. The stethoscope 51 reads information on the engine rotation speed N, the transmission position of the vehicle, the cooling water temperature, and the lubricating oil temperature, and based on this information, the next stethoscope 52 calculates the basic advance angle θi,
Calculate the basic injection amount Ti. From step 23 to step 32, calculations similar to those in block A of the first embodiment are performed.

ステソプ32でめられた平均値ΔNaveに対し、次の
ステノブ53では平均値で《たNa■eが同一負荷でも
トランスミノション位置、水温、油温などに応じた変化
するのでそのために補正係数Kを乗算して補正速度差Δ
NHをめ、機関負荷以外の外乱からの影響を極力少なく
し負荷検出精度を向上している。
In contrast to the average value ΔNave determined by the stethoscope 32, the average value ΔNave determined by the stethoscope 53 changes depending on the transmission position, water temperature, oil temperature, etc. even under the same load. Correct speed difference Δ by multiplying by
By using NH, the influence from disturbances other than engine load is minimized and load detection accuracy is improved.

そして、ステソプ54では補正平均値ΔNHが異常燃焼
(プレイグニッション、失火等)によってある設定値N
,Fより大きくなっているかどうか判定し、NFより大
きいと異常と判別してステ・7ブ55に移り、点火時期
θ、燃料噴射量Tをある固定値θF,TFにセソトし、
ステソブ59で出力する。
In the stethop 54, the corrected average value ΔNH is changed to a certain set value N due to abnormal combustion (pre-ignition, misfire, etc.)
, F, and if it is larger than NF, it is determined that there is an abnormality, and the process moves to Step 7, where the ignition timing θ and the fuel injection amount T are set to fixed values θF and TF.
Output with SteSob59.

他方、補正平均値ΔNHがNFより小さく異常なしと判
別した場合はステ・ノプ56へ移り、ΔNHを基にして
負荷補正進角θC、負荷補正噴射量Tcを蘭算し、ステ
ソプ58でθC1θt,Tc,Tiを基にして点火時期
θ、燃料噴射iTを演算し、ステノプ59で出力する。
On the other hand, if it is determined that the corrected average value ΔNH is smaller than NF and there is no abnormality, the process moves to the step knob 56, calculates the load correction advance angle θC and the load correction injection amount Tc based on ΔNH, and the step step 58 calculates θC1θt. , Tc, and Ti, the ignition timing θ and fuel injection iT are calculated and outputted by the steno panel 59.

第11図は、この発明の第4実施例を示ず。即ち、従来
の負荷検出手段(例えば圧力センサ、吸気量センサ)を
有するエンジン制御装置において、通常は圧力センサ等
の負荷検出手段を用いて制御を行うが、そのセンサが故
障したりした異常の場合に、この発明を用いてエンジン
制御を行い、圧力センサが故障した場合にも出力悪化、
燃費の悪化を防止する。
FIG. 11 does not show the fourth embodiment of the invention. In other words, in an engine control device that has a conventional load detection means (for example, a pressure sensor, an intake air amount sensor), control is normally performed using a load detection means such as a pressure sensor, but in the case of an abnormality such as a failure of the sensor. In addition, this invention can be used to control the engine, so that even if the pressure sensor fails, the output will deteriorate.
Prevent deterioration of fuel efficiency.

その作動を第11図のフローチャ−1・に基づき説明す
る。まずステソプ61で、負荷検出手段の例えば圧力セ
ンサが正常か否かを、その圧力センサの出力値の異常の
有無等により判断し、もし圧力センサ正常と判断した場
合には、ステソブ62へ進み機関回転速度N吸気負圧(
負荷)P等へ情報を読み込み、ステソプ63で機関状態
に応じた最適な点火時期θ、燃料噴射量Tを演算し、次
のステソプ65でその制御値を出力する。
The operation will be explained based on flowchart 1 in FIG. First, the stethoscope 61 determines whether or not the load detection means, such as a pressure sensor, is normal or not based on the presence or absence of an abnormality in the output value of the pressure sensor. If the pressure sensor is determined to be normal, the process advances to the stethoscope 62 and the engine Rotational speed N Intake negative pressure (
(load) P, etc., a stethoscope 63 calculates the optimum ignition timing θ and fuel injection amount T according to the engine condition, and a next stethoscope 65 outputs the control values.

一方ステソブ61で圧力センサ異常と判断した場合には
ブロソクB内のステソプ51へ進み、第10図に示した
のと同一の処理51〜58を行い、その演算結果をステ
ソプ65において出力する。
On the other hand, if the pressure sensor 61 determines that the pressure sensor is abnormal, the flow advances to the step 51 in the block B, performs the same processes 51 to 58 as shown in FIG. 10, and outputs the calculation results to the step 65.

なお、上記実施例では、回転変動量ΔNの平均値ΔNa
veで負荷判定を行なったが、回転変動量ΔNの標準偏
差で負荷判定を行なっても同様の効果が得られる。また
、同ループを各気箇別に処理し、各気筒別に点火時期を
制御することも可能である。
In addition, in the above embodiment, the average value ΔNa of the rotational fluctuation amount ΔN
Although the load determination was performed using ve, the same effect can be obtained even if the load determination is performed using the standard deviation of the rotational fluctuation amount ΔN. It is also possible to process the same loop separately for each cylinder and control the ignition timing for each cylinder.

第1実施例と同様の制御を行なうにあたり気筒判別セン
サを有するものにおいては、各気箇別に回転変動量ΔN
iを検出し、各気箇別にフィルタ判定及び負荷判別を行
ない各気箇別に点火時期制御、燃料噴射制御、及び気筒
別にフィルタ処理制御を行なうことにより、正常時にと
ける気筒毎の最適制御および異常時における気筒毎の最
適制御を行なうことも可能である。
In performing the same control as in the first embodiment, in a cylinder having a cylinder discrimination sensor, the rotational fluctuation amount ΔN is determined for each cylinder.
By detecting i, filter judgment and load discrimination for each air, ignition timing control, fuel injection control, and filter processing control for each cylinder, it is possible to achieve optimal control for each cylinder during normal conditions and during abnormal conditions. It is also possible to perform optimal control for each cylinder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例を示す模式図、第2図は
第1図図示のマイクロコンピュータを示すブロック図、
第3図は作動説明に供するフローチャート、第4図.第
5図,第6図はそれぞれ作動説明に供する行程図,波形
図,特性図、第7図,第8図はこの発明のそれぞれ第2
実施例を示す特性図.フローチャート、第9図,第10
図はこの発明の第3実施例を示す模式図,フローチャ−
1・、第11図はこの発明の第4実施例を示ずフローチ
ャート、第12図はこの発明の構成図である。 7・・・基準位置センサ、8・・・速度センサ、10・
・・コンピュータ。 −287− −288− −289一
FIG. 1 is a schematic diagram showing a first embodiment of the invention, FIG. 2 is a block diagram showing the microcomputer shown in FIG. 1,
Figure 3 is a flowchart for explaining the operation, and Figure 4. Figures 5 and 6 are stroke diagrams, waveform diagrams, and characteristic diagrams for explaining the operation, respectively, and Figures 7 and 8 are the second diagrams of this invention, respectively.
Characteristic diagram showing an example. Flow chart, Figures 9 and 10
The figure is a schematic diagram and flowchart showing a third embodiment of the present invention.
1. FIG. 11 is a flowchart of the fourth embodiment of the present invention, and FIG. 12 is a block diagram of the present invention. 7... Reference position sensor, 8... Speed sensor, 10.
··Computer. -287- -288- -289-

Claims (1)

【特許請求の範囲】 (11内燃機関の回転速度を検出するための速度センサ
と、この速度センサからの信号を少な《とも2点の所定
のクランク位置で検出して、この2点の回転速度差を演
算する速度差演算手段と、前記回転速度差を統計演算し
て前記機関の負荷に対応する統計量を演算する統計演算
手段と、前記統計量に応じて前記機関の点火時期又は燃
料噴射量を含む前記機関の制御量を演算する制御演算手
段とを備えることを特徴とする内燃機関用制御装置。 (2)前記統計演算手段は、前記回転速度差を所定回数
だけ加箕し、この加算結果の平均値を前記統計量として
めるよう構成されている特許請求の範囲第1項記載の装
置。 (3)前記速度差演算手段は、気箇別に前記回転速度を
演箕し、前記統計演算手段は気箇別に前記統計量を演算
するよう構成されている特許請求の範囲第1項記載の装
置。 (4)前記速度差演算手段は、負荷センサの異常時に動
作するよう構成されている特許請求の範囲第1項記載の
装置。
[Claims] (11) A speed sensor for detecting the rotation speed of the internal combustion engine, and a signal from the speed sensor at at least two predetermined crank positions, speed difference calculation means for calculating the difference; statistical calculation means for statistically calculating the rotational speed difference to calculate a statistic corresponding to the load of the engine; and ignition timing or fuel injection of the engine according to the statistic. (2) The statistical calculation means adjusts the rotational speed difference by a predetermined number of times, and The device according to claim 1, wherein the device is configured to calculate the average value of the addition results as the statistic. (3) The speed difference calculating means calculates the rotational speed for each The apparatus according to claim 1, wherein the statistical calculation means is configured to calculate the statistical amount on a case-by-case basis. (4) The speed difference calculation means is configured to operate when the load sensor is abnormal. An apparatus according to claim 1.
JP11560483A 1983-06-27 1983-06-27 Control device for internal-combustion engine Granted JPS608446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11560483A JPS608446A (en) 1983-06-27 1983-06-27 Control device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11560483A JPS608446A (en) 1983-06-27 1983-06-27 Control device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS608446A true JPS608446A (en) 1985-01-17
JPH0517394B2 JPH0517394B2 (en) 1993-03-09

Family

ID=14666740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11560483A Granted JPS608446A (en) 1983-06-27 1983-06-27 Control device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS608446A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187765A (en) * 1984-03-07 1985-09-25 Hitachi Ltd Ignition device for internal-combustion engine
JPS63147970A (en) * 1986-12-10 1988-06-20 Hitachi Ltd Ignition device for internal combustion engine
JPH0315645A (en) * 1989-06-13 1991-01-24 Hitachi Ltd Engine control device
WO1996005418A1 (en) * 1994-08-12 1996-02-22 Briggs & Stratton Corporation Electronic engine load and revolution sensing device
CN102128098A (en) * 2011-03-21 2011-07-20 清华大学 Fuel injection control method and system for four-stroke electronic-control single cylinder diesel
CN107429626A (en) * 2014-11-06 2017-12-01 沃尔布罗有限责任公司 Engine control strategy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147327A (en) * 1978-05-08 1979-11-17 Bendix Corp Internal combustion engine controller
JPS56168135A (en) * 1979-12-20 1981-12-24 United Technologies Corp Method of and apparatus for measuring relative contribution of power between cylinders of internal combustion engine
JPS5759138A (en) * 1980-09-27 1982-04-09 Toyota Motor Corp Method and device for inspecting engine rough idling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147327A (en) * 1978-05-08 1979-11-17 Bendix Corp Internal combustion engine controller
JPS56168135A (en) * 1979-12-20 1981-12-24 United Technologies Corp Method of and apparatus for measuring relative contribution of power between cylinders of internal combustion engine
JPS5759138A (en) * 1980-09-27 1982-04-09 Toyota Motor Corp Method and device for inspecting engine rough idling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187765A (en) * 1984-03-07 1985-09-25 Hitachi Ltd Ignition device for internal-combustion engine
JPS63147970A (en) * 1986-12-10 1988-06-20 Hitachi Ltd Ignition device for internal combustion engine
JPH0315645A (en) * 1989-06-13 1991-01-24 Hitachi Ltd Engine control device
WO1996005418A1 (en) * 1994-08-12 1996-02-22 Briggs & Stratton Corporation Electronic engine load and revolution sensing device
CN102128098A (en) * 2011-03-21 2011-07-20 清华大学 Fuel injection control method and system for four-stroke electronic-control single cylinder diesel
CN107429626A (en) * 2014-11-06 2017-12-01 沃尔布罗有限责任公司 Engine control strategy

Also Published As

Publication number Publication date
JPH0517394B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US5016591A (en) System and method for controlling a combustion state in a multi-cylinder engine for a vehicle
US10221825B2 (en) Misfire detection device
RU2374474C2 (en) Method and device to optimise engine operation
US6499460B2 (en) Ignition timing control device for internal combustion engine
US4987770A (en) Combustioning condition monitoring system for internal combustion engine
JPH11125141A (en) Method and device for detecting ignition timing of real fuel in engine and method and device for controlling fuel injection timing in engine
JP2001263212A (en) Electronic control device of internal combustion engine
US4725954A (en) Apparatus and method for controlling fuel supply to internal combustion engine
JPS608446A (en) Control device for internal-combustion engine
US4966117A (en) System and method for controlling ignition timing for vehicular internal combustion engine
JPS6248944A (en) Controller for internal combustion engine
WO2022264513A1 (en) Internal combustion engine control device
JPS6181532A (en) Fuel feed controlling method of multicylinder internal-combustion engine
US4987873A (en) Method for the dynamic correction of the ignition point of an internal combustion engine
JPH10141097A (en) Control device for internal combustion engine, valve timing control device, and valve timing control method
JP3451769B2 (en) Engine control device
JPH07253042A (en) Controller of multi-cylinder internal combustion engine
JP2000352349A (en) Control system for internal combustion engine
JPH077580Y2 (en) Ignition timing control device for internal combustion engine
JPH02259251A (en) Combustion control device for internal combustion engine
JPH03124967A (en) Ignition timing control device for internal combustion engine
JPS61283748A (en) Acceleration shock relieving device in internal-combustion engine
JP2004308586A (en) Method for determining abnormal factor and device for coping with abnormality for diesel engine
JP2689034B2 (en) Ignition timing control device during idling of internal combustion engine
JP2597621B2 (en) Engine ignition timing control device