JPS608333B2 - Electronically controlled fuel injection device - Google Patents

Electronically controlled fuel injection device

Info

Publication number
JPS608333B2
JPS608333B2 JP12323076A JP12323076A JPS608333B2 JP S608333 B2 JPS608333 B2 JP S608333B2 JP 12323076 A JP12323076 A JP 12323076A JP 12323076 A JP12323076 A JP 12323076A JP S608333 B2 JPS608333 B2 JP S608333B2
Authority
JP
Japan
Prior art keywords
time width
pulse signal
signal
engine
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12323076A
Other languages
Japanese (ja)
Other versions
JPS5348125A (en
Inventor
利雄 近藤
正和 二宮
晋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12323076A priority Critical patent/JPS608333B2/en
Publication of JPS5348125A publication Critical patent/JPS5348125A/en
Publication of JPS608333B2 publication Critical patent/JPS608333B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は機関の回転数に同期した信号に依存して基本噴
射時間幅を演算するようにした電子制御燃料噴射装置の
改良に関し、特に主燃料噴射弁のみで始動時の燃料増量
を行うこの種装置等に好適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of an electronically controlled fuel injection device that calculates a basic injection time width depending on a signal synchronized with the engine rotation speed, and particularly relates to an improvement in an electronically controlled fuel injection device that calculates a basic injection time width depending on a signal synchronized with the engine rotation speed. This is suitable for this type of device that increases the amount of fuel.

従来の電子制御燃料噴射装置は通常低温時の良好なエン
ジンの始動性を得るために始動時のみ作動する始動補助
弁を有し「 これにより始動時噴霧粒径の細かい燃料を
多量に供給している。
Conventional electronically controlled fuel injection systems usually have a starting auxiliary valve that operates only during starting in order to obtain good engine starting performance at low temperatures. There is.

ところが、このようにすると始動補助弁、この開弁時間
を制御する温度時間スイッチ等を有し、それだけ装置と
してはコストアップとなるため始動補助弁を用いず主噴
射弁だけでの始動システムが種々開発、提案されている
。しかるにこれらのシステムの多くはL複雑な電子回路
を必要としたり、供給燃料量とエンジンの必要燃料量と
のマッチングが不充分であったりして簡単な構成で充分
なマッチングのとれたものはない。本発明は、これらの
問題を解消することを目的とするもので、燃料噴射弁の
閉弁時間を決めるため機関の回転数に応じた時間幅を有
する第1のパルス信号に応じて蓄積手段の蓄積増減動作
をくり返して基本噴射時間幅の第2のパルス信号を形成
するようにした電子制御燃料噴射装置において、前記第
1のパルス信号の時間幅を所定時間幅だけ減少させて前
記第2のパルス信号の基本噴射時間幅を修正する修正手
段と、この修正手段による前記第1のパルス信号の時間
幅修正作動を機関始動時に行わせる修正指令手段とを備
えることにより、機関始動時において、始動開始時の非
常に回転速度が低いときは十分に濃い燃料を機関に供給
でき「かつ回転速度が高くなるにつれて前記修正手段の
作用と相挨つて燃料供給量を急速に減少させることがで
き、従って従来の如く特別の構成を用いずとも機関始動
時の空燃比特性を一層最適化できる電子制御燃料噴射装
置を提供するものである。
However, this method requires a starting auxiliary valve, a temperature/time switch to control the valve opening time, etc., which increases the cost of the device. developed and proposed. However, many of these systems require complex electronic circuits, or there is insufficient matching between the amount of fuel supplied and the amount of fuel required by the engine, and there is no system that has a simple configuration that provides sufficient matching. . The present invention aims to solve these problems, and in order to determine the closing time of the fuel injection valve, the storage means is activated in response to a first pulse signal having a time width corresponding to the engine rotation speed. In an electronically controlled fuel injection device in which a second pulse signal having a basic injection time width is formed by repeating an accumulation increase/decrease operation, the time width of the first pulse signal is decreased by a predetermined time width to form a second pulse signal having a basic injection time width. By providing a correction means for correcting the basic injection time width of the pulse signal, and a correction command means for causing the correction means to perform the time width correction operation of the first pulse signal at the time of starting the engine, At a very low starting speed, a sufficiently rich fuel can be supplied to the engine, and as the speed increases, the amount of fuel supplied can be rapidly reduced in conjunction with the action of the correction means, so that It is an object of the present invention to provide an electronically controlled fuel injection device that can further optimize air-fuel ratio characteristics at engine startup without using a special configuration as in the past.

タ 以下本発明を一実施例に基いて説明する。The present invention will be explained below based on one embodiment.

本実施例においては内燃機関の点火系より点火信号をピ
ックアップし、この点火信号を波形整形しさらに分周し
て機関回転数(Ne)に同期した矩形波信号とする。こ
の矩形波信号を遅延回路に通した後基本パルス幅演算回
路(吸入空気量Qaと機関回転数Neとの比QaノNe
に応じた基本パルス幅tpを得る)に供給する。これに
より、燃料の基本パルス幅やはtpはQa(1一cQt
o・Ne)/Neにより与えられる函数となるようにす
る。
In this embodiment, an ignition signal is picked up from the ignition system of an internal combustion engine, and this ignition signal is waveform-shaped and further divided into a rectangular wave signal synchronized with the engine speed (Ne). After this rectangular wave signal is passed through a delay circuit, a basic pulse width calculation circuit (the ratio of intake air amount Qa to engine speed Ne
(to obtain the basic pulse width tp according to the basic pulse width tp). As a result, the basic pulse width of the fuel, tp, becomes Qa(1-cQt
o·Ne)/Ne.

ただJし、仇ま遅延時間「Cは定数である。したがって
、内燃機関に供給される空燃比は〜従来吸入空気量Qa
のみの特性によって決まっていたが〜遅延時情則oによ
って決まるNeの函数にもなる。
However, the delay time "C" is a constant. Therefore, the air-fuel ratio supplied to the internal combustion engine is ~ conventional intake air amount Qa
Although it was determined by the characteristics of Ne, it is also a function of Ne determined by the delay time law o.

さらに、上記の遅延回路を実際に作動ごZせるのをt内
燃機関の始動時のみとすることにより、内燃機関の始動
時、低回転の時程吸入空気量Qaにより決まる空燃比よ
り濃い燃料を供給し、エンジンの始動性の改善を計る。
第1図において、1は内燃機関の点火系例えば2ディス
トリビュータポィントより点火1次信号が印加される端
子で、点火1次信号は第2図1に示す如くである。
Furthermore, by actually operating the above-mentioned delay circuit only when the internal combustion engine is started, the fuel is richer than the air-fuel ratio determined by the intake air amount Qa at low engine speeds when the internal combustion engine is started. supply to improve engine startability.
In FIG. 1, 1 is a terminal to which a primary ignition signal is applied from the ignition system of an internal combustion engine, for example, 2 distributor points, and the primary ignition signal is as shown in FIG.

2は波形整形「分周回路であって、端子1に印加される
パルス信号を誤動作防止のため矩形波に波形整形した後
、機関1回転当り2の燃料噴射回数に応じて分周する。
2 is a waveform shaping/frequency dividing circuit which shapes the pulse signal applied to terminal 1 into a rectangular wave to prevent malfunction, and then divides the frequency according to the number of fuel injections per engine revolution of 2.

第2図2は波形整形信号を示し、第2図3は6気筒機関
において3分の1分周した信号を示す。3は時間幅修正
回路で、機関始動時にスター夕を作動させるときスター
タスイッチ端子Wこ「1」レベルのスター3夕作動信号
が印加されると、回路2よりの矩形波信号の前縁を一定
時間のだけ遅延させる。
FIG. 2 shows a waveform shaping signal, and FIG. 2 shows a signal frequency-divided by one-third in a six-cylinder engine. 3 is a time width correction circuit, which keeps the leading edge of the rectangular wave signal from circuit 2 constant when the starter switch terminal W is applied with a "1" level star signal. Delay by an amount of time.

第3図はこの時間幅修正回路3の具体例を示すものであ
る。入力側端子30‘こ印加される波形整形、分周回3
路よりの矩形波信号の前縁に同期して公知の単安定マル
チパイプレータ31をトリガし、その出力をインバータ
32を通してANDゲート33に入れ、さらに前記波形
整形、分周回路の出力をANDゲート33に入れる。
FIG. 3 shows a specific example of this time width correction circuit 3. Waveform shaping applied to input terminal 30', frequency division 3
A known monostable multipipulator 31 is triggered in synchronization with the leading edge of a rectangular wave signal from the circuit, and its output is inputted to an AND gate 33 through an inverter 32, and the output of the waveform shaping and frequency dividing circuit is input to an AND gate. Put it in 33.

そして、スタータス チィッチの導適時のみ単安定マル
チパイプレー夕31を作動させスタータスィッチの遮断
時には「単安定マルチノゞィブレ〜夕31の出力を常時
「0」レベルに落とすように構成してあり、スタータス
ィツチ導適時に出力側端子84には第2図4に示す如く
一定時間めだけ時間幅が短縮された信号が得られる。ス
タータスィッチの非導適時には、入力側端子3Qの信号
がそのまま出力側端子34にあらわれる。さらに第1図
において6は演算回路で〜時間幅修正回路3を経た機関
回転に同期した回転信号と吸入空気量計6からの吸入空
気量に応じた信号とによって機関の吸入空気量を機関回
転数で割算した時間幅のパルス信号TIを生じる。
The monostable multi-pipe relay 31 is activated only when the starter switch is activated, and the output of the monostable multi-pipe relay 31 is always reduced to the ``0'' level when the starter switch is shut off. When the switch is activated, a signal whose time width is shortened by a certain period of time is obtained at the output terminal 84 as shown in FIG. 2 and 4. When the starter switch is not conducting, the signal at the input terminal 3Q appears as it is at the output terminal 34. Furthermore, in Fig. 1, 6 is an arithmetic circuit which calculates the intake air amount of the engine by using a rotation signal synchronized with the engine rotation via the time width correction circuit 3 and a signal corresponding to the intake air amount from the intake air amount meter 6. A pulse signal TI having a time width divided by the number is generated.

このパルス信号TIの時間幅は機関回転数に反比例し1
つの気筒に1行程で吸い込まれた空気量に比例する。演
算回路4は例えば特開昭49−67016号公報に記載
されたパルス時間幅可変のマルチパイプレー夕が用いら
れ、時間幅修正回路3を経たパルス信号によってコンデ
ンサの充電が制御され、その放電が吸入空気量計61こ
よって制御される。第2図5は演算回路4におけるコン
デンサの充放電波形を示し、第2図鼠ま出力パルス信号
を示す。以上のように、スタ−タ作動時には時間幅修正
回路31こおいて矩形波信号は短縮されるため出力パル
ス信号TI‘ま実線で示す時間幅tp‘こ短縮されるこ
とになる。また、演算回路5においてはスタータ作動時
に空気量計6よりの入力信号を大きな吸気量に相当する
一定値に固定して始動に必要な濃い混合気が得られるよ
うにしてある。
The time width of this pulse signal TI is inversely proportional to the engine speed and is 1
It is proportional to the amount of air sucked into each cylinder in one stroke. The arithmetic circuit 4 uses, for example, a multi-pipe plate with a variable pulse time width as described in Japanese Patent Application Laid-Open No. 49-67016, and the charging of the capacitor is controlled by the pulse signal passed through the time width correction circuit 3, and the discharge thereof is controlled. It is controlled by the intake air amount meter 61. 2.5 shows the charging and discharging waveforms of the capacitor in the arithmetic circuit 4, and FIG. 2 shows the output pulse signal. As described above, when the starter operates, the rectangular wave signal is shortened in the time width correction circuit 31, so that the output pulse signal TI' is shortened by the time width tp' shown by the solid line. Further, in the arithmetic circuit 5, the input signal from the air flow meter 6 is fixed at a constant value corresponding to a large amount of intake air when the starter is operated, so that a rich air-fuel mixture necessary for starting can be obtained.

第4図は空気量センサ6と前述のマルチパイプレータに
接続されるクランプ回路と示すものである。空気量計6
の信号は抵抗R1,R2亨 町3で形成され、抵抗R軍
,R3は固定抵抗で可変抵抗R2は吸入空気量によって
抵抗値の位置が変化し、A点とB点の電位差と十VB−
接地間の電位差との比で前述のコンデンサの放電の傾斜
を変化させるように構成してある。抵抗R4,R5?
R6,R7,R8「ダイオード○17D2?D3、トラ
ンジスタTrl,Tr2,Tr3はクランプ回路を構成
しており、スタータスィッチが導通して端子4に「1」
レベルが生ずるとトランジスタTrl,Tr2,Tr3
は導通し、B点のレベルはトランジスタTr富の導通に
よりダイオード○2にてクランプされ、前記マルチパイ
プレータへの信号は抵抗R2,R3で決定される電位に
固定され吸入空気量との関係を断つ。一方、スタータス
ィッチの遮断時にはトランジスタTrl,Tr2,Tr
3は遮断し、B点の信号がマルチパイプレータへ導かれ
る。さらに第1図において、7は乗算回路で、演算回路
5から出力されるパルス信号TIのパルス時間幅に、機
関の冷却水温「吸入空気温等を検出する運転状態検出手
段8からの各種信号を公知の方法で秦算してパルス時間
幅を補正したパルス信号T2を出力する。
FIG. 4 shows the air amount sensor 6 and a clamp circuit connected to the multipipelator described above. Air flow meter 6
The signal is formed by resistors R1, R2 and 3, resistors R and R3 are fixed resistors, and variable resistor R2 has a resistance value that changes depending on the amount of intake air.
The configuration is such that the slope of the discharge of the capacitor described above is changed depending on the ratio to the potential difference between the ground and the ground. Resistance R4, R5?
R6, R7, R8 "Diode ○17D2?D3, transistors Trl, Tr2, Tr3 constitute a clamp circuit, and the starter switch conducts and outputs "1" to terminal 4.
When a level occurs, transistors Trl, Tr2, Tr3
is conductive, and the level at point B is clamped by diode ○2 due to the conduction of transistor Tr, and the signal to the multipipulator is fixed at a potential determined by resistors R2 and R3, and the relationship with the intake air amount is determined. cut off. On the other hand, when the starter switch is shut off, transistors Trl, Tr2, Tr
3 is cut off, and the signal at point B is guided to the multipipulator. Furthermore, in FIG. 1, 7 is a multiplier circuit which inputs various signals from the operating state detection means 8 that detects the engine cooling water temperature, intake air temperature, etc. to the pulse time width of the pulse signal TI output from the arithmetic circuit 5. A pulse signal T2 whose pulse time width is corrected by arithmetic calculation using a known method is output.

なお、検出手段8にスタータスィッチの端子4が接続さ
れるのはスタータ停止後に燃料補正を行う、いわゆる始
動後増量のためでZある。9は電圧補正回路で「乗算回
路7からのパルス信号T2を入力し、電磁噴射弁11の
燃料噴射量が電源電圧によって変化するのを補正し、電
源電圧に応じた時間幅のパルス信号T3を出力する。
Note that the terminal 4 of the starter switch is connected to the detection means 8 in order to perform fuel correction after the starter is stopped, that is, to increase the amount after starting. 9 is a voltage correction circuit which inputs the pulse signal T2 from the multiplier circuit 7, corrects the change in fuel injection amount of the electromagnetic injection valve 11 depending on the power supply voltage, and generates a pulse signal T3 with a time width corresponding to the power supply voltage. Output.

101まOR回路及び出力回路で、前記演算回せ路5、
乗算回路7、および電圧補正回路8からのパルス信号T
1,T2,T3を入力して、パルス時間幅(TI十T2
十T3)のパルス信号Tを発生し、増幅した後電磁噴射
弁11に供給する。
101 is an OR circuit and an output circuit, and the arithmetic circuit 5,
Pulse signal T from multiplication circuit 7 and voltage correction circuit 8
1, T2, T3 and calculate the pulse time width (TI + T2
A pulse signal T (T3) is generated, amplified, and then supplied to the electromagnetic injection valve 11.

上述した構成において、機関始動時にスタータスィッチ
端子4に「11レベル信号が印加されると、波形整形、
分周回路2よりの矩形波信号は時間幅修正回路3にて第
2図4に示す如く遅延時間のだけ短縮される。よって、
演算回路5の出力である基本のパルス信号TIは次式で
示される時間幅tpを有する。まず波形整形、分周回路
2の矩形波信号の時間幅をroとするとTo=K/Ne
(Kは定数)であり、tpは、tp戊Qa(To−to
)=Qa(KノNe−to)=KOQa(1−tocN
e/K)/Neつまり「tpはQa(1一c。
In the above-mentioned configuration, when the ``11 level signal'' is applied to the starter switch terminal 4 when starting the engine, the waveform shaping,
The rectangular wave signal from the frequency dividing circuit 2 is shortened by the delay time in the time width correction circuit 3 as shown in FIG. Therefore,
The basic pulse signal TI, which is the output of the arithmetic circuit 5, has a time width tp expressed by the following equation. First, if the time width of the rectangular wave signal of the waveform shaping circuit 2 is ro, then To=K/Ne
(K is a constant), and tp is tpQa(To-to
)=Qa(KノNe-to)=KOQa(1-tocN
e/K)/Ne, that is, “tp is Qa(11c.

to・Ne)Neとなる。ただし、Qaは吸入空気量計
6の出力電圧、Ne2は機関回転数、toは遅延時間、
Cは定数である。
to・Ne)Ne. However, Qa is the output voltage of the intake air flow meter 6, Ne2 is the engine speed, to is the delay time,
C is a constant.

一方、スタータスィッチ端子4に「1」レベル信号が印
加されたときは「演算回路5に入力される空気量計6か
らの信号Qaは一定値Qa′‘こ固定され「大きな空気
量に相当する入力が与えられる。2したがって「機関に
供給される燃料噴射量を表す噴射パルス信号Tは主に機
関回転数に依存して変化し、回転速度の遅いときは充分
に濃い燃料を機関に供給し「かつ内燃機関が蓮爆し完爆
に至るにつれて回転速度が増すと、時間幅修正回路3の
出3力である矩形波信号の時間幅が常に一定時間幅to
だけ短縮されるため、前述したマルチパイプレータにお
けるコンデンサの充電量が減少し噴射パルス信号Tの時
間幅は急速に減少する。
On the other hand, when a "1" level signal is applied to the starter switch terminal 4, the signal Qa from the air flow meter 6 input to the arithmetic circuit 5 is fixed at a constant value Qa'', which corresponds to a large amount of air. 2 Therefore, the injection pulse signal T, which represents the amount of fuel injection supplied to the engine, changes mainly depending on the engine speed, and when the rotation speed is slow, it is difficult to supply sufficiently rich fuel to the engine. "And when the internal combustion engine explodes and its rotational speed increases as it reaches complete explosion, the time width of the rectangular wave signal, which is the output 3 of the time width correction circuit 3, always changes to a constant time width to
As a result, the amount of charge of the capacitor in the multipipulator described above decreases, and the time width of the injection pulse signal T rapidly decreases.

始動が終了し、スタータスィッチ端子4に印加3される
信号が「0」レベルになると時間幅修正回路3の作動は
停止し、波形整形、分周回路2よりの矩形波信号はその
まま演算回路に入力され、これと同時に空気量計6より
信号入力が開始されるため、演算回路5の出力である基
本パルス信号T4川ま機関回転数Neと吸入空気量Qa
に依存して定められる。
When the start is completed and the signal 3 applied to the starter switch terminal 4 reaches the "0" level, the operation of the time width correction circuit 3 stops, and the rectangular wave signal from the waveform shaping and frequency dividing circuit 2 is directly sent to the arithmetic circuit. At the same time, the air flow meter 6 starts inputting signals, so the basic pulse signal T4, which is the output of the arithmetic circuit 5, the engine speed Ne and the intake air flow Qa.
It is determined depending on.

第5図は時間幅修正回路3の作動を示す特性図で、吸入
空気量が一定のときの、機関回転数に対するパルス幅の
変化示す。
FIG. 5 is a characteristic diagram showing the operation of the time width correction circuit 3, and shows the change in pulse width with respect to the engine speed when the amount of intake air is constant.

曲線aは時間幅修正回路3が非作動のとき、つまり遅延
時間toが零のようすを示し、時間幅修正回路3が作動
状態になり遅延時間toが発生すると曲線bに移行する
。なお、遅延時間■の値を複数個設定すれば曲線cQd
のように特性を変えることが可能である。また、本発明
によれば、例えば上述した実施例における時間幅修正回
路3の作動、非作動を切換えるためのスタータスィッチ
を、機関回転数が設定値以上のとき、あるいは設定値以
下のとき「1」レベル信号を発生する回転数検出回路と
置き換えることにより「機関回転速度に伴って空燃比を
変えることも可能である。以上述べたように、本発明に
よれば機関の回転数に応じた時間幅を有する第1のパル
ス信号に応じて蓄積手段の蓄積増減動作をくり返して基
本噴射時間幅の第2のパルス信号を形成するようにした
装置において「機関始動時には前記第1のパルス信号の
時間幅を所定時間幅だけ減少させることにより、機関回
転数を見かけ上操作して蓄積手段の蓄積増減特性を変更
でき、機関始動時に要求される空燃比特性、すなわち初
嬢までは濃く、蓮爆時に回転数上昇に併つて急速に薄く
するという特性を容易に与えることができ、主噴射弁の
みによる始動システムに対して極めて有益である。
Curve a shows the state when the time width correction circuit 3 is inactive, that is, the delay time to is zero, and when the time width correction circuit 3 is activated and the delay time to occurs, the curve shifts to curve b. In addition, if multiple values of delay time ■ are set, the curve cQd
It is possible to change the characteristics as follows. Further, according to the present invention, for example, the starter switch for switching between activation and deactivation of the time width correction circuit 3 in the above-described embodiment is set to "1" when the engine speed is higher than the set value or lower than the set value. By replacing it with a rotation speed detection circuit that generates a level signal, it is also possible to change the air-fuel ratio according to the engine rotation speed.As described above, according to the present invention, the air-fuel ratio can be changed depending on the engine rotation speed. In an apparatus in which a second pulse signal having a basic injection time width is formed by repeating the accumulation increase/decrease operation of an accumulation means in response to a first pulse signal having a width, "When starting the engine, the time of the first pulse signal is By reducing the width by a predetermined time width, it is possible to change the accumulation increase/decrease characteristics of the accumulation means by apparently manipulating the engine speed. The characteristic of rapid thinning as the rotational speed increases can be easily provided, which is extremely beneficial for starting systems using only the main injector.

【図面の簡単な説明】[Brief explanation of drawings]

第i図は本発明装置の一実施例を示すブロック線図、第
2図は第1図図示装置の作動を示すタイムチャート、第
3図は第1図中時間幅修正回路3の詳細構成図、第4図
は第1図中吸入空気量計6および演算回路5の一部の詳
細構成図、第5図は本発明装置の作動説明に供する特性
図である。 1……ディストリビュータポィント、2……波形整形、
分周回路、3・・…・時間幅修正回路〜 4…・・・修
正指令手段をなすスタータスィッチ端子、5…・・・演
算回路。 第1図 第2図 第3図 第4図 第5図
Fig. i is a block diagram showing one embodiment of the device of the present invention, Fig. 2 is a time chart showing the operation of the device shown in Fig. 1, and Fig. 3 is a detailed configuration diagram of the time width correction circuit 3 in Fig. 1. 4 is a detailed configuration diagram of a part of the intake air amount meter 6 and arithmetic circuit 5 in FIG. 1, and FIG. 5 is a characteristic diagram for explaining the operation of the device of the present invention. 1...distributor point, 2...waveform shaping,
Frequency dividing circuit, 3... Time width correction circuit ~ 4... Starter switch terminal serving as correction command means, 5... Arithmetic circuit. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 燃料噴射弁の開弁時間を決めるため機関の回転数に
応じた時間幅を有する第1のパルス信号に応じて蓄積手
段の蓄積増減動作をくり返して基本噴射時間幅の第2の
パルス信号を形成するようにした電子制御燃料噴射装置
において、前記第1のパルス信号の時間幅を所定時間幅
だけ減少させて前記第2のパルス信号の基本噴射時間幅
を修正する修正手段と、この修正手段による前記第1の
パルス信号の時間幅修正作動を機関始動時に行わせる修
正指令手段とを備えることを特徴とする電子制御燃料噴
射装置。
1. In order to determine the opening time of the fuel injection valve, a second pulse signal having a basic injection time width is generated by repeating the accumulation increase/decrease operation of the accumulation means in response to the first pulse signal having a time width corresponding to the engine speed. In the electronically controlled fuel injection device, the correction means corrects the basic injection time width of the second pulse signal by reducing the time width of the first pulse signal by a predetermined time width, and the correction means an electronically controlled fuel injection device, comprising correction command means for causing a time width correction operation of the first pulse signal to be performed at engine start-up.
JP12323076A 1976-10-14 1976-10-14 Electronically controlled fuel injection device Expired JPS608333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12323076A JPS608333B2 (en) 1976-10-14 1976-10-14 Electronically controlled fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12323076A JPS608333B2 (en) 1976-10-14 1976-10-14 Electronically controlled fuel injection device

Publications (2)

Publication Number Publication Date
JPS5348125A JPS5348125A (en) 1978-05-01
JPS608333B2 true JPS608333B2 (en) 1985-03-02

Family

ID=14855410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12323076A Expired JPS608333B2 (en) 1976-10-14 1976-10-14 Electronically controlled fuel injection device

Country Status (1)

Country Link
JP (1) JPS608333B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223239A (en) * 1985-03-28 1986-10-03 Fujitsu Ten Ltd Starting fuel injection controller of internal-combustion engine

Also Published As

Publication number Publication date
JPS5348125A (en) 1978-05-01

Similar Documents

Publication Publication Date Title
US3483851A (en) Fuel injection control system
US3463130A (en) Fuel injection control system
US3812830A (en) Electronic fuel injection control devices for internal combustion motors
US4116169A (en) Electronic control system
CA1051997A (en) Altitude compensation system for a fuel management system
US4148282A (en) Method and apparatus for cold starting fuel injected internal combustion engines
US4184460A (en) Electronically-controlled fuel injection system
US4058709A (en) Control computer for fuel injection system
JPH0318017B2 (en)
JPS6029824B2 (en) Cold starting method and device for internal combustion engines
US3734068A (en) Fuel injection control system
US4327689A (en) Combined warm-up enrichment, engine roughness and exhaust gas sensor control for EFI engine
US4143621A (en) Fuel injection system with augmented temperature sensitive fuel enrichment for transient engine loads
US4180023A (en) Electronically-controlled fuel injection system for internal combustion engine having odd numbers of cylinders
US4362144A (en) Contactless ignition system for internal combustion engine
US4480621A (en) Control apparatus for a fuel metering system in an internal combustion engine
JPS608333B2 (en) Electronically controlled fuel injection device
JPS6014185B2 (en) Electronically controlled fuel injection device
US5590633A (en) Fuel injection control system for engine
JPH0615841B2 (en) Electronically controlled fuel injection device
JPS6148624B2 (en)
JPH0610439B2 (en) Electronically controlled fuel injection device
JPH0577867B2 (en)
JP2884875B2 (en) Ignition timing control device for resuming fuel supply of internal combustion engine
JPH0134294B2 (en)