JPS608329A - Manufacture of poly-4-methyl-1-pentene foam, and foam produced thereby - Google Patents

Manufacture of poly-4-methyl-1-pentene foam, and foam produced thereby

Info

Publication number
JPS608329A
JPS608329A JP11607783A JP11607783A JPS608329A JP S608329 A JPS608329 A JP S608329A JP 11607783 A JP11607783 A JP 11607783A JP 11607783 A JP11607783 A JP 11607783A JP S608329 A JPS608329 A JP S608329A
Authority
JP
Japan
Prior art keywords
temperature
mold
methyl
pentene
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11607783A
Other languages
Japanese (ja)
Other versions
JPH0322900B2 (en
Inventor
Takashi Hashimoto
隆 橋本
Zenichi Sasaki
佐々木 善市
Akifumi Kasagi
昭文 笠置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP11607783A priority Critical patent/JPS608329A/en
Publication of JPS608329A publication Critical patent/JPS608329A/en
Publication of JPH0322900B2 publication Critical patent/JPH0322900B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled semirigid or soft foam having high heat-resistance and useful as a high-temperature heat-insulation material, etc., by carrying out the foaming of the resin under compression at a restricted temperature using a specific foaming agent. CONSTITUTION:(A) poly-4-methyl-1-pentene (preferably having a melt-flow rate of 0.1-30g/10min under the load of 5kg at 260 deg.C and a melting point of <=235 deg.C) is mixed with (B) a foaming agent having a decomposition initiation temperature of higher than the softening point of the component A (e.g. azodicarbonamide), and the mixture is filled in a mold which can be subjected to the compression, heating and cooling, and pressed while keeping the temperature of the mold below the decomposition point of the foaming agent. The mold is heated above the melting point of the component A to decompose the foaming agent, cooled and opened when the mold temperature reaches (the crystallization temperature of the component A)+ or -10 deg.C, or the mold is cooled to a temperature lower than the crystallization temperature by >=10 deg.C, heated again, and opened when the mold temperature reaches (the melting point of the component A)-20 deg.C-(the melting point) to effect the foaming of the resin.

Description

【発明の詳細な説明】 本発明はポリ4−メチル−1−ペンテン発泡体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing poly4-methyl-1-pentene foam.

ポリエチレン、ポリスチレン、ポリプロピレン等の発泡
体は断熱材、保冷材、防音4K 。
Foams such as polyethylene, polystyrene, and polypropylene are heat-insulating, cold-insulating, and soundproofing materials.

緩衝材として建築資材、自動車部品、包装資材として広
く使用されている。また、これらの発泡体の製造方法も
蒸発形発泡剤をポリエチレン等に含浸させて押出発泡さ
せる方法、分解形見泡剤とポリエチレン等及び必要に応
じて架橋剤とを混練して常圧下あるいは加圧下で加熱後
発泡させる方法等が知られている。
It is widely used as a cushioning material in construction materials, automobile parts, and packaging materials. In addition, these foams can be produced by impregnating polyethylene with an evaporative foaming agent and extruding it into foam, or by kneading the decomposed foaming agent, polyethylene, etc., and if necessary, a crosslinking agent under normal pressure or pressure. A method of foaming after heating is known.

しかしながら、これらポリエチレン、ボリスヂレンやポ
リプロピレンの発泡体は軟イヒ温度が低いので、耐熱性
が要求される分野には適用できない。一方、ポリ4−メ
チル−1−ペンテン(以下TPXと略すことがある)は
同じポリオレフィンの範躊でありながら融点が高く、耐
熱性に優れた樹脂であることが知られている。ところが
TPXは融点が4通常使用されるアゾジカルボンアミド
、アゾビスイソブチロニトリル等の分解形発泡剤の分解
開始温度より高いため、従来の発泡方法では、TPXと
発泡剤とを溶融混練する工程でTPXが融解する前に発
泡剤が分解し、発生ガスが逃散するので良好な発泡体が
得られない。また仮に発泡剤を加圧下に含有せしめ得た
としても、TPXは融点以上では粘弾性(溶融張力)か
急激に低下するため、該TPX溶融体を発泡させようと
してもガスの逃散が速く良好な発泡体が得られない。こ
れらの欠点を改良する方法としては、TPXの融点より
高い分解温度を有する分解彫発泡剤を使用し、更に溶融
張力を改善するために架橋する方−法等が考えられるが
、前者においては現在市販されている高温用発泡剤でも
せいぜいTPXの融点N近のものであり、且つ分解がシ
ャープでなく、実質上TPXの融点以下でガスが発生し
はじめるので、従来の発泡方法では満足な結果が得られ
ず、後者においてもTPXはポリエチレンと異なり、通
常用いられる過酸化物等の架橋剤で架橋しようとしても
分子鎖切断反応の方が速く逆に溶融張力か低下して何ら
解決にはならないのが現状であった。したかつて、これ
までTPXの発泡体、特に発泡体の比容が3.5Crn
’/g以上の発泡体は全く知られていなかった。
However, these polyethylene, borisdylene, and polypropylene foams have a low softening temperature and cannot be applied to fields where heat resistance is required. On the other hand, poly-4-methyl-1-pentene (hereinafter sometimes abbreviated as TPX) is known to be a resin with a high melting point and excellent heat resistance, although it is in the same category as polyolefin. However, since the melting point of TPX is higher than the decomposition start temperature of commonly used decomposable blowing agents such as azodicarbonamide and azobisisobutyronitrile, conventional foaming methods require a step of melt-kneading TPX and the blowing agent. Since the foaming agent decomposes before the TPX melts and the generated gas escapes, a good foam cannot be obtained. Furthermore, even if a blowing agent could be contained under pressure, the viscoelasticity (melt tension) of TPX rapidly decreases above the melting point, so even if you try to foam the TPX melt, the gas escapes quickly and does not work well. Foam cannot be obtained. Possible methods to improve these drawbacks include using a decomposition blowing agent with a decomposition temperature higher than the melting point of TPX and crosslinking to further improve the melt tension, but the former method is currently not available. Even commercially available high-temperature foaming agents are at most close to the melting point N of TPX, and the decomposition is not sharp, and gas begins to be generated substantially below the melting point of TPX, so conventional foaming methods cannot produce satisfactory results. Even in the latter case, unlike polyethylene, TPX is different from polyethylene, and even if you try to crosslink it with a commonly used crosslinking agent such as peroxide, the molecular chain scission reaction is faster and the melt tension decreases, so there is no solution. was the current situation. In the past, the specific volume of TPX foam, especially foam, was 3.5Crn.
'/g or higher was not known at all.

本発明者らは、かかる状況から良好な’I”PX発ia
体を製造する方法を開発すべく種々横割した結果、特定
の分解開始温度を有する発泡剤を使用して且つ圧縮下に
加熱温度を規制することにより良好なTPX発泡体が得
られることを見出し、本発明を完成するに至った。
The present inventors have found that a good 'I'PX ia
As a result of conducting various cross-sections to develop methods for producing TPX foam, we discovered that a good TPX foam can be obtained by using a foaming agent with a specific decomposition start temperature and by regulating the heating temperature under compression. The present invention has now been completed.

すなわち本発明は、ポリ4−メチル−1−ペンテン(A
)とポリ4−メチル−1−ペンテン(/1)の軟化温度
を越える分解開始温度を有する発泡剤(B)とを混合し
て圧縮、加熱及び冷却が可能な型内に、成型の温度を前
記発泡剤(B)の分解開始温度以下に保って充填後、型
内を圧縮し、次いで前記ポリ4−メチル−1−ペンテン
(A)の融点以上まで加熱して前記発泡剤(B)を分解
させた後冷却し、型の温度が前記ポリ4−メチル−1−
ペンテン(A)の結晶化温度±10°Cに達した時点で
開放、もしくば前記ポリ4−メチル−1−ペンテン(A
)の結晶化温度より少なくとも1[]”C以上低い温度
迄冷却した後、再度加熱し、型の温度が前記ポリ4−メ
チル−1−ペンテン(10の融点−20”Cから融点ま
での温度範囲に達した時点で開放することにより発泡さ
せることを特徴とするポリ4−メチル−1−ペンテン発
泡体の製造方法及び比容が3.5Off3/ g以上の
ポリ4−メチル−1−ペンテン発泡体を提供するもので
ある。
That is, the present invention provides poly4-methyl-1-pentene (A
) and a blowing agent (B) having a decomposition start temperature exceeding the softening temperature of poly-4-methyl-1-pentene (/1) are mixed and placed in a mold that can be compressed, heated and cooled at a molding temperature. After filling the blowing agent (B) by keeping it at a temperature below the decomposition start temperature, the inside of the mold is compressed, and then the blowing agent (B) is heated to a temperature above the melting point of the poly-4-methyl-1-pentene (A). After decomposition, it is cooled and the temperature of the mold becomes the same as the poly-4-methyl-1-
When the crystallization temperature of pentene (A) reaches ±10°C, it is released, or the poly-4-methyl-1-pentene (A)
) is cooled to a temperature at least 1[ ]"C lower than the crystallization temperature of the poly(4-methyl-1-pentene), and then heated again until the temperature of the mold is between the melting point of poly4-methyl-1-pentene (10 - 20"C and the melting point of A method for producing a poly-4-methyl-1-pentene foam, which is characterized by foaming by opening the foam when the foam reaches a certain range, and a poly-4-methyl-1-pentene foam having a specific volume of 3.5 Off3/g or more. It provides the body.

本発明の方法に用いるポリ4−メチル−1−ペンテン(
A)は、4−メチル−1−ペンテンの単独重合体もしく
は4−メチル−1−ペンテンと通常20モル%以下の他
のα−オレフィン、例えばエチレン、プロピレン、1−
ブテン、1−ヘキセン、1−オクテン、1−デセン、1
−テトラデセン、1−オクタデセン等の炭素数2なし)
し20のα−オレフィンとの共重合体で結晶性のもので
ある。ポリ4−メチル−1−ペンテン(A)は通常メル
トフローレー)(raFR:荷重5 kQ 、温度26
0”C)力30.1ないし5 0g/ 1 0min,
好ましくは0.1なl/Xシ′50g710minの範
囲のもの、好ましくGま削l,a力i2′55”C以下
のものか発泡成形性かよし)。
Poly-4-methyl-1-pentene (
A) is a homopolymer of 4-methyl-1-pentene or 4-methyl-1-pentene and usually 20 mol% or less of other α-olefins, such as ethylene, propylene, 1-
Butene, 1-hexene, 1-octene, 1-decene, 1
- Tetradecene, 1-octadecene, etc. without 2 carbon atoms)
It is a crystalline copolymer with 20 α-olefins. Poly 4-methyl-1-pentene (A) is usually melt flow rate) (raFR: load 5 kQ, temperature 26
0”C) Force 30.1 to 50g/10min,
Preferably, it is in the range of 0.1 l/X, 50 g, 710 min, preferably G machining l, a force i2, 55'' C or less, or foam moldable.

本発明におけるポリ4−メチル−1−ペン5−ン(At
の軟化温度、融点及び結晶化温度心ま次σ〕方法により
測定した値である。
Poly 4-methyl-1-pen 5-one (At
These are the values measured by the softening temperature, melting point, and crystallization temperature of

軟化温度:熱変形試験機(東洋精機(株)製)を用いて
、ASTM.D1525に準拠するビカット軟化点全測
定し、軟化温度と′1−る。
Softening temperature: ASTM. All Vicat softening points were measured in accordance with D1525, and the softening temperature was calculated as '1-'.

但し、荷重は1kg、試験片寸法c才13mmX 1 
5 mm X 5.2 mmとした0融点および結晶化
温度:示差走査型蟹髪i貸言1(パーキン・エルマー社
製DSCl)を+nいて、ASTMI)+417に準拠
する面社,祖(Tm)および結晶化温度(TC)をmu
 定−1−る。測定条件およびTm、Tcの決定方法は
次のとおりとした。
However, the load is 1 kg, and the test piece size is 13 mm x 1.
0 melting point and crystallization temperature: 5 mm x 5.2 mm: Differential scanning type 1 (Perkin-Elmer DSCl) +n, Mensha, So (Tm) according to ASTM + 417 and crystallization temperature (TC) mu
Fixed-1-ru. The measurement conditions and methods for determining Tm and Tc were as follows.

260°Cで10分間保持後、10”C/分の降温速度
で20°Cまで冷却する過程で検出される最大の発熱側
のピーク温度をToとする。
After holding at 260°C for 10 minutes, the maximum peak temperature on the exothermic side detected in the process of cooling down to 20°C at a cooling rate of 10''C/min is defined as To.

続いて、直ちに、10°C/分の昇温速度で加熱する過
程で検出される最大の吸熱側のピーク温度を’rmとす
る。
Subsequently, the maximum endothermic side peak temperature detected in the process of immediately heating at a temperature increase rate of 10° C./min is defined as 'rm.

本発明の方法に用いる発泡剤(B)は、前記ポリ4−メ
チル−1−ペンテン(〜の軟化温度を越える分解開始温
度、好ましくは軟化温度+10℃以上の分子¥f開始温
度を有し、ガスを発生する発泡剤であり、具体的には、
アゾジカルボンアミド、アゾジカルボン酸バリウム、N
、N’−ジニトロソペンタメチレンテトラミン、トリヒ
ドラジノトリアジン、パラトルエンスルホニル七ミカル
バジド、4,4−オキシビス(ベンゼンスルホニルビド
ラジド)、ジフェニルスルホン−6,6−シスルホニル
ヒドラシト等が挙げられるが、分解開始温度が高く、か
つ分解がシャープで、分解ガス量の多いアゾジカルボン
アミド、N、N’−ジニトロソペンタメチレンテトラミ
ンが好ましい。
The blowing agent (B) used in the method of the present invention has a decomposition start temperature exceeding the softening temperature of the poly-4-methyl-1-pentene (~, preferably a molecular start temperature of 10°C or higher than the softening temperature), A blowing agent that generates gas, specifically:
Azodicarbonamide, barium azodicarboxylate, N
, N'-dinitrosopentamethylenetetramine, trihydrazinotriazine, para-toluenesulfonyl heptamicarbazide, 4,4-oxybis(benzenesulfonylhydrazide), diphenylsulfone-6,6-cissulfonylhydracite, etc. Preferred are azodicarbonamide and N,N'-dinitrosopentamethylenetetramine, which have a high decomposition initiation temperature, sharp decomposition, and a large amount of decomposed gas.

発泡剤の分解開始温度が前記ポリ4−メチル−1−ペン
テン(A)の軟化温度以下であると、型内を圧縮し加熱
する過程で該ポリ4−メチル−1−・くンテン(A)が
軟化し、圧縮力により変形し、該ポリ4−メチル−1−
ペンテン(〜の粒相互および発泡剤とが緊密に圧着する
以前に発泡剤か分解を開始しガス化するので、後続する
前記ポリ4−メチル−1−ペンテン(〜の軟化、圧縮力
による変形に際し、該ガスが該ポリ4−メチル 1−・
匂デン(Δ)の未圧着の粒間の空隙を辿って、該ポリ4
−メチル−1−ペンテン(A)の圧着体の外に排出され
Cしまうため、該ガスを発泡に利用することができない
If the decomposition start temperature of the blowing agent is below the softening temperature of the poly-4-methyl-1-pentene (A), the poly-4-methyl-1-pentene (A) will decompose during the process of compressing and heating the inside of the mold. is softened and deformed by compressive force, and the poly-4-methyl-1-
Since the blowing agent starts to decompose and gasify before the particles of pentene (~) and the blowing agent are tightly pressed together, the poly-4-methyl-1-pentene (~) softens and deforms due to compressive force. , the gas is the poly-4-methyl 1-.
The poly 4
- Methyl-1-pentene (A) is discharged outside of the pressed body and the gas cannot be used for foaming.

本発明の方法は、前記ポリ4−メチル−1−ペンテン(
A)の粒と前記発泡剤(■3)とを例えばヘンシェルミ
キサー、■−ブレンダー、リボンブレンダー、タンブラ
ープレンダー等を用いて、前記発泡剤(B)の分解開始
温度以下で混合して、発泡性ポリ4−メチル−1−ペン
テン混合物(C)とし、圧縮、加熱及び好ましくは強制
冷却可能な型、例えば、通常の加熱加圧成形機と、充填
物を圧縮しうる型内空間を有する型で該型中に冷媒の流
路を有する型と、原型の温度を検出して冷媒の流量を制
御して型の温度を制御する装置との王者を組み合わせて
なる型を、前記発泡剤(B)の分解開始温度以下、好ま
しくは前記発泡剤(B)の分解開始温度以下且つ前記ポ
リ4−メチル−1−ペンテン(A)の軟化温度以上の温
度に保ち、該型内に所望の重量の前記発泡性ポリ4−メ
チル−1−ベンゾン混合物(C)を充填し、該型内を圧
縮し、次いで型を電熱、加熱オイル等により前記ポリ4
−メチル−1−ペンテン(A)の融点以上まで加熱した
後、冷却し、型の温度が前記ポリ4−メチル−1−ペン
テン(〜の結晶化温度±10℃の温度範囲に達した時点
で好ましくは一定時間保持したのち開放、もしくは前記
ポリ4−メチル−1−ペンテン(A)の結晶化温度より
少なくともNl”C以上低い温度迄冷却して前記ポリ4
−メチル−1−ペンテン(/、)を結晶化させた後、再
度加熱し、型の温度が前記ポリ4−メチル−1−ペンテ
ン<tyの融点−20″Cから融点まで、好ましくは1
に1!点−10°Cから融点までの温度に達した時点で
、好ましくは一定時間保持したのち開放することにより
発泡させる方法であり、該方法により初めて比容が5.
5Cm37g以上のポリ4−メチル−1−ペンテン発泡
体が得られるのである。
The method of the present invention comprises the poly-4-methyl-1-pentene (
The particles of A) and the foaming agent (■3) are mixed using, for example, a Henschel mixer, a ■-blender, a ribbon blender, a tumbler blender, etc. at a temperature below the decomposition start temperature of the foaming agent (B) to form foam. poly-4-methyl-1-pentene mixture (C), and a mold capable of compression, heating and preferably forced cooling, for example, a mold having an ordinary heating and pressure molding machine and an inner space capable of compressing the filling. A mold that combines a mold having a refrigerant flow path in the mold and a device that detects the temperature of the master mold and controls the flow rate of the refrigerant to control the temperature of the mold is manufactured using the blowing agent (B). ), preferably below the decomposition start temperature of the blowing agent (B) and above the softening temperature of the poly-4-methyl-1-pentene (A), and place the desired weight in the mold. The foamable poly-4-methyl-1-benzone mixture (C) is filled, the inside of the mold is compressed, and then the mold is heated with electric heat, heated oil, etc.
- After heating to the melting point of methyl-1-pentene (A) or higher, it is cooled, and when the temperature of the mold reaches the crystallization temperature of the poly-4-methyl-1-pentene (A) ± 10°C, Preferably, after holding for a certain period of time, the poly(4-methyl-1-pentene) is released or cooled to a temperature at least Nl"C lower than the crystallization temperature of the poly(4-methyl-1-pentene) (A).
- After crystallizing the methyl-1-pentene (/,), it is heated again so that the temperature of the mold ranges from the melting point of -20"C to the melting point of the poly4-methyl-1-pentene<ty, preferably 1
1 to 1! When the temperature reaches a temperature from -10°C to the melting point, it is preferably held for a certain period of time and then released to cause foaming.
A poly-4-methyl-1-pentene foam weighing more than 5 cm and 37 g is obtained.

前記の型内を圧縮する方法としては、例えば、上、下二
個の型よりなる割型の下型に四部を設け、該凹部の開口
部から底部に向って断面積が減少するように傾斜を備え
た該凹部に充填物を該四部の開口部よりも上方に盛り上
げるように充J(iし、四部を設けない上型と対向せし
め、プレス成形機の加圧力あるいはネジ締め機構による
加圧力等を用いて上、下型を当接せしめるように加圧す
ることによって型内を圧縮する方法、または前例の下型
の四部と対向し、摺動可能に嵌合する凸部を上型に設け
、前例と同様の加圧力を用いて下型四部に充填した充填
物を圧縮する方法が例示できるが、要は、前記発泡性ポ
リ4−メチル−1−ペンテン混合物(C)を、該混合物
<C>中の前記ポリ4−メチル−1−ペンテン(A)粒
が加熱により軟化した時点で変形するように圧縮でき、
以後型を開放して発泡させるまで圧縮、密閉を保つこと
ができれば限定はされない。
As a method of compressing the inside of the mold, for example, a split mold consisting of two molds, an upper mold and a lower mold, is provided with four parts in the lower mold, and the recess is tilted so that the cross-sectional area decreases from the opening to the bottom part. Fill the concave portion with the filling material so that it rises above the openings of the four parts (i), and make it face the upper mold without the four parts, and pressurize it with the pressurizing force of the press molding machine or the pressurizing force with the screw tightening mechanism. A method of compressing the inside of the mold by applying pressure so that the upper and lower molds come into contact with each other using a tool, or a method of providing a convex part on the upper mold that faces and slidably fits into the four parts of the lower mold in the previous example. An example is a method of compressing the filler filled in the four parts of the lower mold using the same pressure as in the previous example, but the point is that the foamable poly-4-methyl-1-pentene mixture (C) is When the poly-4-methyl-1-pentene (A) particles in C> are softened by heating, they can be compressed to deform,
There is no limitation as long as the mold can be kept compressed and sealed until the mold is opened and foamed.

なお、前記の型内を圧縮する圧縮力は、前記ボ1J4−
メヂルー1−ペンテン(Δ)ヲ、該ポリ4−メチル−1
−ペンテン(A)の軟化温度において変形させ、かつ以
後の前記発泡剤(B)の分解ガスの膨張を抑制しうる圧
縮力以上とする必要があるが、通常は50Aν槍2以上
あれば良い。
Note that the compression force that compresses the inside of the mold is
Medilu-1-pentene (Δ), the poly-4-methyl-1
- It is necessary to have a compressive force that is at least capable of deforming the pentene (A) at its softening temperature and suppressing the subsequent expansion of the decomposed gas of the blowing agent (B), but usually 2 or more of 50 Av spears is sufficient.

更に、前記の本発明の方法の主な工程の特徴と夫々の工
程におけるTPXと発泡剤との混合物の状態変化につい
て詳しく説明する。まず、TPX粒と発泡剤とを該発泡
剤の分解開始温度以Fで混合し、発泡性TPX混合物を
作製する。次いで該混合物を、従来の発泡方法において
は常法である溶融混練工程を経ることなく、圧縮、加熱
及び冷却が可能な型内に、成型の温度を該発泡剤の分解
開始温度以下の温度に保った状態で充填し、型内を圧縮
し、次いで該TPXの融点以上まで加熱する。この+3
11熱過程において、型内で圧縮されている発泡性TP
X混合物の温度が該TPXの峻化温度より高くなると、
該混合物中のTPX粒は型内の圧縮力とTPX自身の熱
膨張力により変形し、TPX粒相互および未分解の発泡
剤と緊密に圧着する。
Furthermore, the characteristics of the main steps of the method of the present invention and changes in the state of the mixture of TPX and blowing agent in each step will be explained in detail. First, TPX particles and a foaming agent are mixed at a temperature equal to or higher than the decomposition starting temperature of the foaming agent to prepare a foamable TPX mixture. Next, the mixture is placed in a mold that can be compressed, heated, and cooled without going through the melt-kneading process that is common in conventional foaming methods, and the molding temperature is lower than the decomposition starting temperature of the blowing agent. The TPX is filled in the same state, compressed inside the mold, and then heated to a temperature higher than the melting point of the TPX. This +3
11 Expandable TP compressed in a mold during a thermal process
When the temperature of the X mixture is higher than the thickening temperature of the TPX,
The TPX grains in the mixture are deformed by the compression force in the mold and the thermal expansion force of the TPX itself, and are tightly compressed with each other and with the undecomposed blowing agent.

続いて、発泡剤の分解開始温度に達すると、分解ガスが
発生ずるが、該カスは圧縮・密着さJ+、ているTPX
粒の界面間に閉じ込められ、次いて、TPXの融点に達
すると、TPX粒が融解するのと並行して、該ガスがT
PX融液中に溶解し、TPX粒自体は融合し、ガスを溶
解含有した均質な発泡性融液となる。ここまでの工程で
、発泡性’rpχ1Jjl!液を圧縮下に調製する。
Subsequently, when the decomposition start temperature of the blowing agent is reached, decomposed gas is generated, but the scum is compressed and adhered to the TPX.
The gas is trapped between the grain interfaces and then, upon reaching the melting point of TPX, the T
Dissolved in the PX melt, the TPX particles themselves fuse to form a homogeneous foamable melt containing dissolved gas. With the steps up to this point, foaming 'rpχ1Jjl! The liquid is prepared under compression.

次に、前記の発泡性TPX融液を冷却、または冷却後、
再加熱することにより、型開放++:;に膨張する含有
ガスの発泡膨張力に見合う抗張力をTP′1.ムこ与え
る操作を行なうが、前者の型の冷却によりTPxに発泡
に好適な抗張力を与える方法では、TPXが結晶性であ
ることから、該TPXの結晶化温度近傍まで前記発泡性
TPX融液を冷却し、結晶化を開始させることにより該
TPXの粘弾性を上昇させ、発泡に好適な抗張力の範囲
に達したR点で型を開放し、発泡させる。一方、後者の
型を冷却後、再加熱することによりTPXに発泡に好適
な抗張力を与える方法では、該TPXの結晶化温度より
も充分低い温度まで前記発泡性TPX融液を冷却して結
晶化を終了させ、いったん発泡に好適な抗張力の範囲を
越える粘弾性を付与したのち、該TpXの融点近傍まで
再び加熱昇温することにより、該TPXの結晶を部分的
に融解せしめることによりTPXの粘弾性を低下させて
発泡に好適な抗張力の範囲に達した時点で型を開放し、
発泡させる。前記二つの方法のいずれを用いても良し1
゜すなわち、本発明の製造方法の主たる工程は、TPx
の軟化温度以上の分解温度を′有する発泡剤の分解ガス
をjJIl熱、圧縮下にTPX粒間に閉じ込め、次いで
該分解ガスをTPXに溶解含有せしめて発泡性TPX融
液を調製する工程と、該発泡性TPX融液中のTPXの
抗張力を、該TPXの結晶化過程または結晶化後の再融
解過程で、温度と好ましくG′!更に該温度における保
持時間を制御することにより」泡に好適な抗張力の範囲
に達せしめ、そのIIヲ点で5jJをUN放することに
より発泡させる工程と力)ら本質「0に成るものである
Next, the foamable TPX melt is cooled, or after cooling,
By reheating, the tensile strength corresponding to the foaming expansion force of the gas contained in the mold is increased to TP'1. However, in the former method of imparting tensile strength suitable for foaming to TPX by cooling, since TPX is crystalline, the foamable TPX melt is heated to a temperature close to the crystallization temperature of the TPX. By cooling and starting crystallization, the viscoelasticity of the TPX is increased, and at point R, when the tensile strength range suitable for foaming is reached, the mold is opened and foamed. On the other hand, in the latter method of giving TPX a tensile strength suitable for foaming by cooling and reheating the mold, the foamable TPX melt is cooled to a temperature sufficiently lower than the crystallization temperature of the TPX to crystallize it. After completing the process and once imparting viscoelasticity that exceeds the range of tensile strength suitable for foaming, the TPX crystals are partially melted by heating the TpX again to a temperature close to its melting point, thereby increasing the viscosity of the TPX. When the elasticity is reduced and the tensile strength range suitable for foaming is reached, the mold is opened.
Foam. Either of the above two methods may be used 1
゜That is, the main step of the manufacturing method of the present invention is to
trapping decomposed gas of a blowing agent having a decomposition temperature equal to or higher than the softening temperature between the TPX particles under heat and compression, and then incorporating the decomposed gas dissolved in TPX to prepare a foamable TPX melt; The tensile strength of TPX in the foamable TPX melt is determined by adjusting the temperature and preferably G'! during the crystallization process of the TPX or the remelting process after crystallization. Furthermore, by controlling the holding time at this temperature, the tensile strength range suitable for the foam is reached, and the foaming process and force is essentially zero by releasing 5JJ at point II. .

ポリ4−メチル−1−ペンテン(A)と混合1−るイ凸
泡剤(B)の量は、目的とする発泡体の密度および使用
する発泡剤(B)のガス発生量により適宜選択さ1Lる
べきであるが、前記発泡剤がアゾシカ−7+?ンアミド
の場合には、低発泡倍率の発泡体(中密度、比容5.5
ないし1 (3cyn’/g)で番まボー)4−メチル
−1−ペンテン(A)100重量部に対シ”C1ffl
 ’7ft1.5 fi ksし5重量部、高発泡倍率
の発泡体(低密度、比容10ないし5oaR’/g )
では通常5なし1し25重量部添加すればよい。なお、
前記の比容と&ま、発泡1本の容積(単位:33)を該
発泡体の重さく単イ立:g)で除してめた単位重さ当り
の該発泡f水の容積(単位:aR5/g)である。(比
容の単位&ま以下OC/g。
The amount of the foaming agent (B) mixed with poly-4-methyl-1-pentene (A) is appropriately selected depending on the density of the desired foam and the amount of gas generated by the foaming agent (B) used. It should be 1L, but is the foaming agent Azoshika-7+? In the case of Namide, a foam with a low expansion ratio (medium density, specific volume 5.5) is used.
or 1 (3cyn'/g) per 100 parts by weight of 4-methyl-1-pentene (A)
'7ft1.5 fi ks, 5 parts by weight, high expansion ratio foam (low density, specific volume 10 to 5oaR'/g)
Generally, it is sufficient to add 5 to 1 to 25 parts by weight. In addition,
The above specific volume and the volume of the foamed water per unit weight (unit: 33) divided by the weight of the foam (unit: g). :aR5/g). (The unit of specific volume is OC/g.

と略記する。) またポリ4−メチル−1−ペンテン(〜にGi前記発泡
剤(B)の他に耐熱安定剤、耐候安定剤、発泡助剤、帯
電防止剤、界面活性剤、可i剤、油剤、吸湿剤、顔料、
染料、無機充填剤、無機または有機繊維状強化相、無機
微小中空体、カップリング剤およびマレイン酸またはア
クリル@等の酸変性ポリ4−メチル−1−ペンテン等を
本発明の目的を損わない範囲で配合しておいてもよい。
It is abbreviated as ) Poly4-methyl-1-pentene (in addition to the above-mentioned foaming agent (B), heat-resistant stabilizers, weather-resistant stabilizers, foaming aids, antistatic agents, surfactants, lubricants, oil agents, moisture absorbers) agents, pigments,
Dyes, inorganic fillers, inorganic or organic fibrous reinforcing phases, inorganic microhollow bodies, coupling agents, and acid-modified poly-4-methyl-1-pentene such as maleic acid or acrylic @ may be used without impairing the purpose of the present invention. They may be blended within a certain range.

本発明のポリ4−メチル−1−ペンテン発泡体は、従来
のポリエチレン、ポリスチレンおよびポリプロピレン等
の発泡体に比べ耐熱性に優れ、かつポリオレフィンとし
ての耐水性、電気特性等を保持しており、従来のフェノ
ール樹脂発泡体、ユリア樹脂発泡体等の耐熱性発泡体の
欠点である脆さも改善されているので、半硬質乃至軟質
発泡体で、かつ高耐熱性を兼ね備えるというこれまでに
ない特徴を有する。したがって、本発明のポリ4−メチ
ル−1−ペンテン発泡体は高温断熱材、高温雰囲気下で
の防音材、防振材、緩衝材、高温液体中の浮力材および
高温の液体まkは気体のフィルター材、または高温熱処
理、例えば加熱滅菌、加圧蒸気滅菌等の処理をうける衛
生材Flおよびそれらの緩衝性包装材料、さらに高温で
処理される物質を担持または収容する軽量または多孔性
の基材および容器等として広く適用でき、従来の発泡体
ではなしえなかった用途に使用できるものである。
The poly-4-methyl-1-pentene foam of the present invention has superior heat resistance compared to conventional foams such as polyethylene, polystyrene, and polypropylene, and retains the water resistance, electrical properties, etc. of polyolefin. The fragility, which is a drawback of heat-resistant foams such as phenolic resin foam and urea resin foam, has been improved, so it has the unprecedented feature of being a semi-rigid to soft foam and having high heat resistance. . Therefore, the poly-4-methyl-1-pentene foam of the present invention can be used as a high-temperature insulation material, a soundproof material in a high-temperature atmosphere, a vibration-proof material, a buffer material, a buoyancy material in a high-temperature liquid, and a buoyancy material in a high-temperature liquid or gas. Filter materials or sanitary materials Fl that undergo high-temperature heat treatment, such as heat sterilization and autoclaved steam sterilization, and their cushioning packaging materials, as well as lightweight or porous substrates that support or accommodate substances that are treated at high temperatures. It can be widely applied as containers, etc., and can be used for applications that could not be achieved with conventional foams.

実施例1〜6、比較例1〜2 MFRが0.5 g710 min 、軟化温度+ 7
0”C、融点230℃、結晶化温度210°CのTPX
(1)粉末(商品名TPX 、銘柄名RT−18P :
三井石油化学工業(株)製)90重量部(以下、部と略
す)、発泡剤(縁として、分解開始温度200°Cのア
ゾジカルボンアミド(商品名ビニホールAC#3=永和
fヒ或]二票(株)製)10部および耐熱安定剤(商品
名イ/l/ガノックス1010:チハカイキー社111
′り0.2部、if rs安定剤(商品名snT「タケ
グ」:武田薬品工業(株)製)0.2部゛をミキーリー
(商品名マイミキサーMX−M2:松下電気産業(株)
製)を用いて6分間混合し、発泡性TPX中混中物合物
1)を作製した。
Examples 1 to 6, Comparative Examples 1 to 2 MFR is 0.5 g710 min, softening temperature +7
0”C, melting point 230°C, crystallization temperature 210°C TPX
(1) Powder (product name TPX, brand name RT-18P:
(manufactured by Mitsui Petrochemical Industries, Ltd.) 90 parts by weight (hereinafter abbreviated as "parts"), a blowing agent (as a border, azodicarbonamide (trade name: Vinyhole AC #3 = Eiwa fhi) with a decomposition start temperature of 200°C 10 parts of a heat-resistant stabilizer (trade name: I/L/Ganox 1010: Chihakaiki Co., Ltd.) 111
0.2 part of IFRS stabilizer (trade name snT "Takegu", manufactured by Takeda Pharmaceutical Co., Ltd.), 0.2 part of MIKILY (trade name Mymixer MX-M2, manufactured by Matsushita Electric Industrial Co., Ltd.)
The mixture was mixed for 6 minutes using a foaming TPX compound 1).

一方、開口部の直径5Qmm、底部の直径44mm、深
さ2mmの概ね円板状の四部を上側面に有する金属製下
型(以下、下型と略す)を加熱〃u圧成形機(商品名ワ
ンサイクル自動成形機8FA−50型:神藤金属工業所
製)の移動(F)型盤に取り付け、更に下側面に四部を
有しないもう一つの金属製上型(以下、上型と略す)を
該加熱加圧成形機の固定O]型盤に懸架して取り付ける
ことにより構成された一組の金型(以下、発泡成形型と
略す)を温度180°Cに予熱しておき、該発泡成形型
の下型の上側面に設けた凹部に、前記発泡性TPX中混
中物合物l)3.5gを盛り上げて充填した後、前記加
熱加圧成形機の移動旧型盤を上昇させ、作動油圧力15
0kg/an2で前記発泡成形型を加圧することにより
型内を圧縮し、5次いで240℃まで加熱することによ
り、前記TPX(1)粉末の軟化(快化温度170”C
)、型の圧縮力および該TPX中自身の熱膨張に伴なう
該TPX(1)粉末相互および前記発泡剤(B)との間
の圧着および型の密閉、次いで前記発泡剤(B)の熱分
解による分解ガス発生(分解温度範囲200〜210°
C)および前記TPX中の融解(融点2ろ0”C)を再
百次行なわしめた後、該発泡成形型の上/下型に夫々設
けた冷却媒体流路に空気と冷水との混合流体を流量を制
御しながら流すことにより該上/下型を前記TPX中の
結晶化温度(210”C)近傍の第1表に示す種々の温
度に冷却し、3分間保持した後、加熱加圧成形機4の作
動油圧力を除くことにより該発泡成形型を開放し、脱圧
、発泡させる工程をくり返した結果を、型開放時の保持
温度C以下、降温発泡温度と略す)とともに第1表にま
とめて示す。
On the other hand, a metal lower mold (hereinafter referred to as the lower mold), which has four generally disc-shaped parts on the upper side with an opening diameter of 5Q mm, a bottom diameter of 44 mm, and a depth of 2 mm, was heated by a pressing machine (product name: It was attached to the movable (F) mold plate of a one-cycle automatic molding machine Model 8FA-50 (manufactured by Shindo Metal Industry Co., Ltd.), and another metal upper mold (hereinafter referred to as the upper mold) that did not have four parts on the lower surface was attached. Fixation of the heating and pressure molding machine] A set of molds (hereinafter abbreviated as foam molds) configured by being suspended and attached to a mold plate is preheated to a temperature of 180°C, and the foam molding After 3.5 g of the foamable TPX medium mixture l) was filled into the recess provided on the upper surface of the lower mold, the movable old mold plate of the heating and pressure molding machine was raised and activated. Hydraulic pressure 15
The inside of the mold was compressed by pressurizing the foaming mold at 0 kg/an2, and then heated to 240°C to soften the TPX (1) powder (completion temperature 170"C).
), pressure bonding between the TPX (1) powder and the foaming agent (B) and sealing of the mold due to the compressive force of the mold and the thermal expansion of the TPX itself, and then the foaming agent (B) Decomposition gas generation due to thermal decomposition (decomposition temperature range 200-210°
C) and melting in the TPX (melting point 2 to 0"C) is repeated 100 times, and then a mixed fluid of air and cold water is poured into the cooling medium channels provided in the upper and lower molds of the foam mold, respectively. The upper/lower molds were cooled to various temperatures shown in Table 1 near the crystallization temperature (210"C) of the TPX by controlling the flow rate, held for 3 minutes, and then heated and pressurized. The foaming mold is opened by removing the hydraulic pressure of the molding machine 4, and the process of depressurizing and foaming is repeated. The results are shown in Table 1 along with the holding temperature C or lower when the mold is opened (abbreviated as cooling foaming temperature). are summarized in

第 1 表 第1表かられかるように該TPX(1)の結晶化温度(
210°C)±10°Cの温度範囲で型を開放した時、
良好な高発泡体が得られた。
Table 1 As shown in Table 1, the crystallization temperature (
210°C) ±10°C when the mold is opened,
A good highly foamed product was obtained.

実施例4〜7、比較例3〜4 実施例1と同じ発泡性TPX(I)混合物(cl)を用
いて、実施例1の発泡工程のうち、冷却開始までの工程
は実施例1と全く同様に行なったのち、その後の工程を
変えて上/下型を+80’Cまで冷却して該TPX(1
)を結晶化させ、次いて、冷却を停止し、上/下型を再
加熱することにより該TPX(1)の融点(260°C
)近傍の第2表に示す種々の温度まで加熱した後、直ち
に上/下型の抑圧を除くことによって型を開放し、発泡
させる工程をくり返した結果を、型開放時の温度(以下
、再昇温発泡湯温 2 表 第2表かられかるように、該T P X (1)の融点
(230°C)−20°Cから融点までの温度範囲で型
を開放した時、良好な発泡体が得られた。
Examples 4 to 7, Comparative Examples 3 to 4 Using the same foamable TPX (I) mixture (cl) as in Example 1, the foaming process of Example 1 up to the start of cooling was completely the same as in Example 1. After doing the same, the subsequent steps were changed and the upper/lower molds were cooled to +80'C and the TPX (1
), then the melting point of the TPX (1) (260 °C
) After heating to various temperatures shown in Table 2, the mold is immediately opened by removing the upper/lower mold suppression, and the foaming process is repeated. As can be seen from Table 2, when the mold was opened in the temperature range from -20°C to the melting point of T P X (1), good foaming was achieved. I got a body.

実施例8、比較例5 実施例6において、前記発泡性T P X (1)混合
物(C1)を充填する時の型の温度(以下、予熱温度と
略す)を150°Cまたは210”Cとした他は実施例
6と全く同じ操作をくり返した結果を第3表に示す。
Example 8, Comparative Example 5 In Example 6, the temperature of the mold (hereinafter abbreviated as preheating temperature) when filling the foamable T P Table 3 shows the results obtained by repeating the same operations as in Example 6 except for the above steps.

第 5 表 第6表の実施例日と前記第2表の実施例6とを比べるこ
とにより、予熱温度を前記TPX(1)の軟化温度(1
70°C)より低くしても、高発泡体は得られるものの
、発泡体の比容は、該Tpx(1)の軟化温度以上(+
 80”C)で予熱した実施例6の場合より低下してお
り、予熱温度は該TPX(1)の軟化温度以上であるこ
とが好ましいことがわかる。また、予熱温度を前記発泡
剤(B)の分解開始温度(200”’C)より高温にし
た場合には、前記発泡性TPX(1)混合物(C1)を
型に充填した直後から前記発泡剤(B)の分解ガスが発
生し、型を加圧した後も該分解ガスが予熱された型に接
触しない部分の未軟化、未圧着の前記Tpx(1)粒の
間隙を辿って型外に敵失し、発泡体は得られなかった。
Table 5 By comparing the example date in Table 6 with Example 6 in Table 2, the preheating temperature was determined to be the softening temperature (1
Although a highly foamed product can be obtained even if the temperature is lower than 70°C, the specific volume of the foam is lower than the softening temperature of Tpx (1) (+
The temperature is lower than that of Example 6, which was preheated at 80"C), and it can be seen that the preheating temperature is preferably equal to or higher than the softening temperature of the TPX (1). Also, the preheating temperature is lower than that of Example 6, which was preheated at 80"C. When the temperature is higher than the decomposition start temperature (200''C) of the foaming agent (B), the decomposition gas of the foaming agent (B) is generated immediately after filling the foaming TPX (1) mixture (C1) into the mold. Even after pressurizing, the decomposed gas traced the gaps between the unsoftened and unpressed Tpx (1) grains in the portions that did not contact the preheated mold and was lost outside the mold, and no foam was obtained.

実施例9、比較例6〜7 実施例6において、冷却温度を200°C乃至220℃
に変えた他は実施例6と全く同じ操作をくり返した結果
を第4表に示す。
Example 9, Comparative Examples 6 to 7 In Example 6, the cooling temperature was 200°C to 220°C.
Table 4 shows the results obtained by repeating the same operations as in Example 6, except that .

第 4 表 実施例6および第4表かられかるように、冷却温度が該
T P X (1)の結晶化温度(21o”C)よりも
10°C以上低い温度の時、良好な高発泡体が得られた
Table 4 As can be seen from Example 6 and Table 4, when the cooling temperature is 10°C or more lower than the crystallization temperature (21°C) of the T P I got a body.

比較例8 実施例乙において、発泡剤(13)を、分解温度100
°Cのアゾ゛ビスインブチロニトリル(商品名セルマイ
ク〜B:三協化成(株)製)に変えた他は、実施例6と
全く同じ操作を行なった結果、型を加圧後も発泡剤の分
解ガスが上/下型の間隙より散失して発泡能力を失い、
発泡体は得られなかった。
Comparative Example 8 In Example B, the blowing agent (13) was heated to a decomposition temperature of 100
The same procedure as in Example 6 was carried out, except for changing the temperature to azobisinbutyronitrile (trade name: Cellmic~B, manufactured by Sankyo Kasei Co., Ltd.) at °C. The decomposed gas of the agent is dispersed through the gap between the upper and lower molds, and the foaming ability is lost.
No foam was obtained.

実施例10〜18 実施例6のTPX(1)に変えて、第5表に示すメルト
フローレー) (MFII)の異なる各種TPX (全
て三井石油化学工業(株)製)を用いて、該第5表に示
した操作条件以外は実施例6と全く同様にして発泡成形
をくり返した結果を該第5表中の発泡第5表かられかる
とおり、↑pxのMFR値が0−5 g710 mlH
から約50g/+0m1n以下の範囲で良好な発泡体が
得られた。
Examples 10 to 18 In place of TPX (1) in Example 6, various TPXs (all made by Mitsui Petrochemical Industries, Ltd.) with different melt flow rate (MFII) shown in Table 5 were used. The foam molding was repeated in the same manner as in Example 6 except for the operating conditions shown in Table 5. As can be seen from the foaming Table 5 in Table 5, the MFR value of ↑px was 0-5 g710 mlH
Good foams were obtained in a range of about 50 g/+0 m1n or less.

実施例19〜24 実施例6のTPX(1)に変えて、第6表に示す主に熱
的性質の異なる各種TPX(全て三井石油化学工業(株
)製)を用いて該第6表に示した操作条件以外は実施例
6と全く同様にして発泡成形を繰り返した結果を該第6
表中の発泡体の比容の欄に示第6表かられかるとおり、
用いるTPXの融点が異なっても、再昇温発泡温度を、
該TPXの融点−20℃から融点までの温度範囲に制御
することにより良好な発泡体が得られ、また該TPXが
低い融点を有する方が、該TPXの発泡体が高い比容を
与える発泡温度範囲が広い。
Examples 19 to 24 In place of TPX (1) in Example 6, various TPXs shown in Table 6 with mainly different thermal properties (all manufactured by Mitsui Petrochemical Industries, Ltd.) were used to produce the results shown in Table 6. The results of repeating foam molding in the same manner as in Example 6 except for the operating conditions shown are shown in the sixth example.
As shown in Table 6 in the foam specific volume column,
Even if the melting point of the TPX used is different, the re-heating foaming temperature can be changed.
A good foam can be obtained by controlling the temperature in the range from -20°C to the melting point of the TPX, and the lower the melting point of the TPX, the higher the foaming temperature at which the foam of the TPX can give a high specific volume. Wide range.

出願人 三井石油化学工業株式会社 代理人 山 口 和Applicant: Mitsui Petrochemical Industries, Ltd. Agent Kazu Yamaguchi

Claims (2)

【特許請求の範囲】[Claims] (1) ポリ4−メチル−1−ペンテン(A)とポリ4
−メチル−1−ペンテン(Nの軟化温度を越える分解開
始温度を有する発泡剤(B)とを混合して、圧縮、加熱
及び冷却が可能な型内に該型の温度を前記発泡剤Φ)の
分解開始温度以下に保って充填後、型内を圧縮し、次い
で前記ポリ4−メチル−1−ペンテン(A)の融点以上
まで加熱して前記発泡剤(H)を分解させた後冷却シ、
型の温度が前記ポリ4−メチル−1−ペンテン(/V)
の結晶化温度±10”Cに達した時点で開放、もしくは
前記ポリ4−メチル−1−ペンテン(Nの結晶化温度よ
り少なくとも10℃以上低い温度迄冷却した後、再度加
熱し、型の温度が前記ポリ4−メチル−1−ペンテン(
Nの融点−20℃から融点までの温度範囲に達した時点
で開放することにより発泡させることを特徴とするポリ
4−メチル−1−ペン誉ン発泡体の製造方法。
(1) Poly4-methyl-1-pentene (A) and poly4
- Methyl-1-pentene (mix with a blowing agent (B) having a decomposition start temperature exceeding the softening temperature of N) and set the temperature of the mold in a mold that can be compressed, heated and cooled. After filling the mold by keeping the temperature at or below the decomposition start temperature of poly-4-methyl-1-pentene (A), the mold is then heated to a temperature higher than the melting point of the poly-4-methyl-1-pentene (A) to decompose the blowing agent (H), followed by a cooling cylinder. ,
The temperature of the mold is the poly-4-methyl-1-pentene (/V)
When the crystallization temperature of the poly-4-methyl-1-pentene (N) reaches ±10"C, the mold is opened or cooled to a temperature at least 10 °C lower than the crystallization temperature of the poly-4-methyl-1-pentene (N), then heated again, and the temperature of the mold is lowered. is the poly-4-methyl-1-pentene (
A method for producing poly-4-methyl-1-penhon foam, which comprises foaming by opening the foam when the temperature reaches a temperature range from -20° C. to the melting point of N.
(2) 発泡体の比容が3.5ffi3/g以上である
ことを特徴とするポリ4−メチル−1−ペンテン発泡体
(2) A poly-4-methyl-1-pentene foam, characterized in that the foam has a specific volume of 3.5 ffi3/g or more.
JP11607783A 1983-06-29 1983-06-29 Manufacture of poly-4-methyl-1-pentene foam, and foam produced thereby Granted JPS608329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11607783A JPS608329A (en) 1983-06-29 1983-06-29 Manufacture of poly-4-methyl-1-pentene foam, and foam produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11607783A JPS608329A (en) 1983-06-29 1983-06-29 Manufacture of poly-4-methyl-1-pentene foam, and foam produced thereby

Publications (2)

Publication Number Publication Date
JPS608329A true JPS608329A (en) 1985-01-17
JPH0322900B2 JPH0322900B2 (en) 1991-03-27

Family

ID=14678136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11607783A Granted JPS608329A (en) 1983-06-29 1983-06-29 Manufacture of poly-4-methyl-1-pentene foam, and foam produced thereby

Country Status (1)

Country Link
JP (1) JPS608329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201499A (en) * 1989-12-28 1991-09-03 Hitachi Ltd Overturning preventing leg and electronic equipment case provided therewith
WO2021006059A1 (en) * 2019-07-08 2021-01-14 Dmノバフォーム株式会社 4-methyl-1-pentene based resin foam and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201499A (en) * 1989-12-28 1991-09-03 Hitachi Ltd Overturning preventing leg and electronic equipment case provided therewith
WO2021006059A1 (en) * 2019-07-08 2021-01-14 Dmノバフォーム株式会社 4-methyl-1-pentene based resin foam and method for producing same
JP2021011550A (en) * 2019-07-08 2021-02-04 Dmノバフォーム株式会社 4-methyl-1-pentene based resin foam and method for producing the same
CN114080417A (en) * 2019-07-08 2022-02-22 Dm新星泡株式会社 4-methyl-1-pentene resin foam and process for producing the same

Also Published As

Publication number Publication date
JPH0322900B2 (en) 1991-03-27

Similar Documents

Publication Publication Date Title
US7867416B2 (en) Thermoplastic elastomer composition for core-back system foam injection molding and foam injection molding method using the same
JP2577455B2 (en) Method for producing thermoplastic elastomer laminate
JP3368431B2 (en) Method for producing cross-linked ethylene-based polymer foam structure
US4680317A (en) Molding composition for crosslinked foam material from polyolefins and ethylene-propylene elastomer, and process for the production of the foam material
JPH06234878A (en) Preparation of foamed propylene polymer article
EP0214858A2 (en) Open-cell foam materials
JP2004529231A (en) Blends of ethylene polymers with improved modulus and melt strength and articles made from these blends
US4442233A (en) Method for the manufacture of cross-linked and optionally foamed polypropylene
JPH033702B2 (en)
JPH08318542A (en) Foamed molded object and production thereof
JP3382499B2 (en) Crosslinked polyethylene resin foam and method for producing the same
JPS608329A (en) Manufacture of poly-4-methyl-1-pentene foam, and foam produced thereby
JPS6219294B2 (en)
US6197841B1 (en) Crosslinked ethylene-olefin copolymer foams
JP4837644B2 (en) Injection foam molding method using a thermoplastic elastomer composition for core back type injection foam molding
KR20000023418A (en) Product made of compliant crosslinked polyolefin foam
JP3399845B2 (en) Vibration damping resin open cell and method for producing the same
JPS6221525A (en) Manufacture of polyolefin foam
JP5055664B2 (en) Polypropylene resin composition for injection foam molding
JP2002146075A (en) Polyolefin-based resin foam and polyolefin based resin composition
JP4782306B2 (en) Open-cell cross-linked polyolefin foam and method for producing the same
JPH11315161A (en) Crosslinked polyethylene-based resin foam with open cells and its production
JP2002161161A (en) Crosslinked polyethylene foam containing potassium titanate fiber and method of manufacturing the same
JPH06339998A (en) Polyofelin substrate particulate foam molded piece having compressed smooth outer layer and its production
JPH07138397A (en) Foamed propylene resin molding and its preparation