JPS6082968A - Method for flow injection analysis - Google Patents

Method for flow injection analysis

Info

Publication number
JPS6082968A
JPS6082968A JP19078783A JP19078783A JPS6082968A JP S6082968 A JPS6082968 A JP S6082968A JP 19078783 A JP19078783 A JP 19078783A JP 19078783 A JP19078783 A JP 19078783A JP S6082968 A JPS6082968 A JP S6082968A
Authority
JP
Japan
Prior art keywords
solvent phase
sample
solvent
phase
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19078783A
Other languages
Japanese (ja)
Other versions
JPH0336195B2 (en
Inventor
Junichi Kirie
桐栄 純一
Tetsuo Ikushige
生重 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP19078783A priority Critical patent/JPS6082968A/en
Publication of JPS6082968A publication Critical patent/JPS6082968A/en
Publication of JPH0336195B2 publication Critical patent/JPH0336195B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • G01N35/085Flow Injection Analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To perform extraction of substance to be tested quickly and efficiently so as to perform detection by causing confluence of a first solvent phase and a second solvent phase being immiscible with each other, then introducing a sample to be measured into the flow of the confluent fluid. CONSTITUTION:The analytical apparatus suitable for the practice of this invention is constituted of pumps 1, 1' for forcing a first solvent phase and a second solvent phase immiscible with each other to a confluence device 10, a sample introducing device 4 for transporting sample liquid injected by a specified amt. by a microsyringe, etc. into the passage and transported to a reaction tube 5 by the confluent liquid from the confluence device 10, a reaction tube 5, a phase separation device 6 for separating the fluid transported from the reaction tube 5 into a first solvent phase and a second solvent phase, and a detection part 9. The substance to be detected contained in the sample which has been transported together with the confluent liquid separated to the first solvent phase segment and the second solvent phase segment is dissolved or separated in either one of the two solvent phases in the reaction tube 5, and then separated into the first or second solvent phase, and detected in the detection part 9.

Description

【発明の詳細な説明】 本発明はフローインジェクション分析方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow injection analysis method.

分析化学においては単位時間あたりに多くの試料を分析
できること、および試料が少量であっても精度よく分析
できることが要求されている。
In analytical chemistry, it is required to be able to analyze many samples per unit time, and to be able to analyze even small amounts of samples with high accuracy.

ところで、日常分析では分析すべき成分が他の多くの成
分と共存する場合が多く、そのためそれら共存する成分
から分析すべき成分のみを分離して分析する事が必要で
ある。さて、分析すべき成分を多くの共存する成分の中
から分離する従来からの最もよい方法は試料中の分析す
べき成分を試料とは混和しない他の相へ抽出し、例えば
吸光光度測定によって分析する事である。
By the way, in daily analysis, the component to be analyzed often coexists with many other components, and therefore it is necessary to separate and analyze only the component to be analyzed from those coexisting components. The best conventional method for separating a component to be analyzed from among many coexisting components is to extract the component to be analyzed from a sample into another phase that is immiscible with the sample and analyze it, for example, by spectrophotometry. It is something to do.

従来、これらの抽出操作は煩雑で、時間のかかる手作業
で行っていた。しかし、最近流体流れを用いた自動分析
いわゆるフローインジェクション分析方法の発展によシ
、いわば自動的に抽出の作業ができるようになった。こ
のフローインジェクション分析方法による抽出方法とし
ては、第一の溶剤相に溶解する試料を第一の溶媒相の流
体流れ内に導入し、その後、第一の溶媒相の流体流れと
第一の溶媒相とは混和してない第二の溶媒相の流体流れ
とが合流し、セグメント化されて抽出反応が起こシ、第
一の溶媒相と第二の溶媒相とを分離する相分離装置へと
導かれるというものである。
Conventionally, these extraction operations have been performed manually, which is complicated and time-consuming. However, with the recent development of automatic analysis using fluid flow, the so-called flow injection analysis method, it has become possible to perform the extraction process automatically. The extraction method using this flow injection analytical method involves introducing a sample to be dissolved in a first solvent phase into a fluid stream of the first solvent phase, and then and the immiscible fluid stream of the second solvent phase are combined and segmented to undergo an extraction reaction and are directed to a phase separator that separates the first and second solvent phases. It is said that it will be destroyed.

しかし、この抽出方法においては、試料導入の際、不必
要な試料の拡散が生じ、高い感度で分析できなかったシ
、第一の溶媒相と第二の溶媒相が合流し、セグメント化
される際の性質に抽出反応が大きく左右されるなど未だ
多くの問題点をかかえている。
However, in this extraction method, unnecessary diffusion of the sample occurs during sample introduction, making it impossible to analyze with high sensitivity. There are still many problems, such as the fact that the extraction reaction is greatly affected by the properties of the extract.

本発明者らは、これらの欠点を改善しうるフローインジ
ェクション分析方法の抽出方法について探索した結果、
迅速に、しかも、効率のよい抽出方法を見い出し、本発
明を完成したものである。
As a result of searching for a method for extracting a flow injection analysis method that can improve these drawbacks, the present inventors found that
The present invention was completed by discovering a quick and efficient extraction method.

すなわち、本発明は70−インジェクション分析方法に
おいて、相互に混和しない第一の溶媒相と第二の溶媒相
を合流させた後、該流体流れ内に測定試料物質を導入す
るフローインジェクション分析方法を提供するものであ
る。
That is, the present invention provides a flow injection analysis method in which a first solvent phase and a second solvent phase that are immiscible with each other are combined and then a measurement sample substance is introduced into the fluid stream. It is something to do.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の一実施態様の70−ダイヤグラムを第1図に図
示し、第1図に基すいて説明する。
A 70-diagram of one embodiment of the invention is illustrated in FIG. 1 and will be described with reference to FIG.

第1図は相互に混和しない第一の溶媒相を合流装置(至
)へ圧送するポンプ(1)および第二の溶媒相を合流装
置(ト)へ圧送するポンプ(1つとがそれぞれ別個に配
置され、かつ、ポンプ(1)および(1′)の吐出液が
、合流装置C1Oで合流する様それぞれチ=−ブ(2)
Figure 1 shows a pump (1) for pumping a mutually immiscible first solvent phase to a merging device (1) and a pump (1) for pumping a second solvent phase to a merging device (G), each arranged separately. and pipes (2) so that the discharge liquids of pumps (1) and (1') join together in a confluencer C1O.
.

(3)によシ接続されている。さらに、合流装置■Q。(3) is connected. Furthermore, there is a merging device ■Q.

マイクロシリンジ等によって流路に所定量注入されるサ
ンプル液を合流装置(1(lがらの合流液によって反応
チューブ(5)へ搬送するサンプル導入装置(勢。
A sample introduction device (system) that transports a predetermined amount of sample liquid injected into the flow channel by a microsyringe or the like to the reaction tube (5) by a combined liquid of 1 (liter).

反応チューブ(5)1反応チューブ(5)から搬送され
る流体を第一の溶媒相をチューブ(7)に、第二の溶媒
相を検出部(9)に液を導くチューブ(8)へそれぞれ
分離する相分離装置(6)がそれぞれ直列に接続されて
構成されている70−ダイヤグラムである。
Reaction tube (5) 1 The fluid conveyed from the reaction tube (5) is transferred to the tube (8) that leads the first solvent phase to the tube (7) and the second solvent phase to the detection section (9). 70-diagram in which phase separators (6) to be separated are each connected in series.

本発明は第1図において、測定試料物質が合流装置01
で相互に混和しない第一および第二の溶媒相が合流しセ
グメント化した合流液中にサンプル導入装置(優により
導入するフローインジェクション分析方法である。
In the present invention, in FIG.
This is a flow injection analysis method in which the first and second solvent phases, which are immiscible with each other, are combined and segmented into the combined liquid using a sample introduction device.

第一および第二の溶媒相とは、相互に混和しなく、かつ
、測定試料物質中の成分物質の少なくとも一種を溶解さ
せて、分離することができる通常の溶媒抽出に用いられ
る溶媒から構成されるものであれば、任意に選ぶことが
できるが、特に溶媒相として水/クロロホルム、水/四
塩化炭素、水/ベンゼン、メタノール/デカリンが好ま
しい。
The first and second solvent phases are composed of solvents used in normal solvent extraction that are immiscible with each other and can dissolve and separate at least one component substance in the measurement sample substance. Although any solvent phase can be selected as long as it is suitable, water/chloroform, water/carbon tetrachloride, water/benzene, and methanol/decalin are particularly preferred as the solvent phase.

セグメント化した合流液とは、流体流れが交互的な第一
溶媒相セグメントと第二溶媒相セグメントからなってい
るものである。
A segmented combined liquid is one in which the fluid flow consists of alternating first and second solvent phase segments.

各溶媒相の流量は0.3〜2 ml / min、好ま
しくは(L5〜1.5麻/ mlnが望ましい。流量が
0.3ゴ/min未満では、送液中の試料の拡散が著し
く(クロマトグラムのピークがブロードになシ)高い精
度が得られ難い。また、2 ral / minを越え
ると送液中の圧力損失が著しく、精度良い送液が難しく
、また相分離が効率良く行い難い。
The flow rate of each solvent phase is 0.3 to 2 ml/min, preferably (L5 to 1.5 ml/ml). If the flow rate is less than 0.3 ml/min, the diffusion of the sample during liquid transfer will be significant ( If the peak of the chromatogram is broad, it is difficult to obtain high precision.Also, if it exceeds 2 ral/min, the pressure loss during liquid transfer is significant, making it difficult to transfer liquid with high precision and difficult to perform phase separation efficiently. .

測定試料物質は通常の70−インジェクション分析が行
える金属イオン、陰イオンおよび界面活性剤などの物質
であれば任意に選ぶことができる。
The measurement sample substance can be arbitrarily selected as long as it is a metal ion, anion, surfactant, or other substance that can be used for normal 70-injection analysis.

その注入量は、測定試料物質の種類、濃度および用いる
溶媒相によりいちがいに特定できにくいが、数μl〜5
0μlが好ましい。
The injection volume is difficult to specify depending on the type and concentration of the measurement sample substance and the solvent phase used, but it ranges from several μl to 5 μl.
0 μl is preferred.

第一および第二の溶媒相のセグメント化した合流液と共
に搬送された測定試料物質中の成分物質は、反応チュー
ブ(5)において、いずれか一方の溶媒相に溶解・分離
する。次いで第一および第二の溶媒相にそれぞれ分離す
る多孔性膜を有する相分離装置(6)によシ分離された
後、検出部(9)により検出される。
The component substances in the measurement sample substance conveyed together with the segmented combined liquid of the first and second solvent phases are dissolved and separated into one of the solvent phases in the reaction tube (5). The solvent is then separated into a first and second solvent phase by a phase separator (6) having a porous membrane, and then detected by a detection unit (9).

反応チューブは、内径[13〜0.8頷、長さ5〜10
m0)テフロン製、ステンレス−スチール製すどのチュ
ーブを軸方向の2次流れが発生し、効率よい抽出反応が
起りやすいコイル状の形状にしたものが好ましい。内径
がα5mm未満では、送液中の圧力損失が大きく精度の
高い送液ができ難く、またCL8tsを超えると試料の
拡散が大きく、効率よい抽出反応が進みにくい。また、
長さが5m未満では抽出反応が完全に進行しないし、1
0mを超えると試料の拡散が犬きく、th度良い分析が
できにくい。
The reaction tube had an inner diameter of [13 to 0.8 mm, a length of 5 to 10 mm]
m0) A tube made of Teflon or stainless steel is preferably formed into a coiled shape that generates secondary flow in the axial direction and facilitates efficient extraction reaction. If the inner diameter is less than α5 mm, the pressure loss during liquid feeding will be large and it will be difficult to transfer the liquid with high precision.If the inner diameter exceeds CL8ts, the sample will be diffused so much that it will be difficult to proceed with an efficient extraction reaction. Also,
If the length is less than 5 m, the extraction reaction will not proceed completely;
If it exceeds 0 m, the sample will diffuse too much and it will be difficult to perform a good analysis.

以下に本発明を実施例および比較例により具体的に説明
する。
The present invention will be specifically explained below using Examples and Comparative Examples.

実施例1 第1図において、ポンプ(1)よシ、Q、 I N N
H,OI(/’NI%C]、 pH9,5の組成の水溶
液が1 ml / minの流速で、捷だ、同時にポン
プ(1つによって200rn9/lのジメチルグリオキ
シムを含有したクロロホルム溶液が1 rttl / 
mi nの流速で合流装置(6)へ流れている。両液は
合流後セグメント化されて、サンプル導入装置(4)か
反応チー−ブ(5)→相分離装置(6)へ流れ、水相は
廃液チューブ(7)へ有機相はチューブ(8)−+検出
部〈9)へ流れている。
Example 1 In FIG. 1, pump (1), Q, I N N
An aqueous solution with a composition of H, OI (/'NI%C), pH 9.5, was pumped at a flow rate of 1 ml/min, and at the same time, a chloroform solution containing 200rn9/l of dimethylglyoxime was pumped by one pump (1 ml/min). rttl/
It flows into the converging device (6) at a flow rate of min. After the two liquids are combined, they are segmented and flow from the sample introduction device (4) or the reaction chamber (5) to the phase separation device (6). The aqueous phase is sent to the waste tube (7) and the organic phase is sent to the tube (8). -+ Flows to the detection section <9).

この合流液が流れている状態で、サンプル導入装置(褐
にて0.1N塩酸水溶液に塩化ニッケルを溶解させたニ
ッケル標準液、すなわち、N12+とじて1、2.1 
s、 i arm)/l (ppm )のイオン種を含
む液20μlを溶離液の流れの中に注入し、内径O65
順、長さ10mの反応チューブ内で反応させ、相分離接
有機相の流れを紫外可視吸光度計(東洋曹達工業株式会
社製 紫外可視吸光光度計 商品名U V −8mod
ei>を用いて450 nmの波長で各3回測定した。
While this combined liquid is flowing, the sample introduction device (brown) contains a nickel standard solution prepared by dissolving nickel chloride in 0.1N hydrochloric acid aqueous solution, that is, 1, 2.1 as N12+.
s, i arm)/l (ppm) of ionic species was injected into the eluent stream, with an inner diameter of O65.
The reaction was carried out in a reaction tube with a length of 10 m, and the flow of the phase-separated organic phase was measured using an ultraviolet-visible absorbance photometer (manufactured by Toyo Soda Kogyo Co., Ltd., UV-visible absorbance photometer, product name: UV-8mod).
ei> at a wavelength of 450 nm.

その結果得られたクロマトグラムを第2図に示す。また
、このクロマトグラムよりニッケルのピーク高さと濃度
とを比較した結果を第6図に示す。ニッケルがきわめて
高い精度で分析された事がわかる。また、ニッケル1o
■/1 (ppm)のクロマトグラムについて、時間軸
を拡大したものを第6図−(a)に示す。きわめて高い
感度で、しかも短時間に分析された事がわかる。
The resulting chromatogram is shown in FIG. Further, FIG. 6 shows the results of comparing the peak height and concentration of nickel from this chromatogram. It can be seen that nickel was analyzed with extremely high accuracy. Also, nickel 1o
FIG. 6-(a) shows an enlarged time axis of the chromatogram of 1/1 (ppm). It can be seen that the analysis was performed with extremely high sensitivity and in a short time.

比較例1 第1図に示されたサンプル導入装置(4)が同図のポン
プ(1)と合流装置(2)との間に直列に接続された通
常の70−インジェクション分析において、実施例1と
同じ分析条件で測定を行った結果、第4図に示すクロマ
ドグシムが得られた。このクロマトグラムよりニッケル
のピーク高さと濃度とを比較した結果を第5図に示す。
Comparative Example 1 In a normal 70-injection analysis in which the sample introduction device (4) shown in FIG. 1 was connected in series between the pump (1) and the merging device (2) shown in FIG. As a result of measurement under the same analytical conditions as above, the chromadogsim shown in FIG. 4 was obtained. The results of comparing the peak height and concentration of nickel from this chromatogram are shown in FIG.

感度、精度ともに滴定のゆく結果は得られなかった。ま
た、第4図のニッケル10■/7(ppm)のクロマト
グラムについて時間軸を虻大したものを第6図−(b)
に示す。
Titration results with both sensitivity and precision could not be obtained. In addition, the time axis of the chromatogram of nickel 10/7 (ppm) in Figure 4 is magnified as shown in Figure 6-(b).
Shown below.

低い感度で分析時間も長す事がわかる。It can be seen that the sensitivity is low and the analysis time is long.

実施例2 実施例1においてポンプ(1)よりl I N NaO
H/Na、B、O,pHiα0の組成の水溶液をα8 
ml / m i n。
Example 2 In Example 1, l I N NaO from pump (1)
An aqueous solution with a composition of H/Na, B, O, pHiα0 is α8
ml/min.

ポンプ(1つよI)20my/lのメチレンブルーを含
有した四塩化炭素をt 2 ml / m1nで用い、
測定試て、5.10 q / l!(ppm)のイオン
種を含む液20μlを注入し、650 nmの波長とし
た以外は実施例1と同様に測定した。その結果、得られ
たクロマトグラムを第7図に示す。きわめて高い感度で
、しかも短時間に分析されていることがわかる。
Pump (one piece I) using carbon tetrachloride containing 20 my/l methylene blue at t 2 ml/ml,
Try measuring 5.10 q/l! Measurement was carried out in the same manner as in Example 1, except that 20 μl of a solution containing (ppm) of ion species was injected and the wavelength was set to 650 nm. The resulting chromatogram is shown in FIG. It can be seen that the analysis is performed with extremely high sensitivity and in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様を示すフローダイヤグラム
、第2図、第4図、第6図および第7図は得られたクロ
マトグラム、@6図および第5図は第2図および第4図
において得られたクロマトグラムのピーク高さと濃度と
の関係を示した図である。 (1)、(1’) ポンプ (2八(3)、 (7L (8) チューブ(4) サ
ンプル導入装置 (5) 反応チューブ (6) 相分離装置 (9) 検出部 舛 合流装置 特許出願人 東洋曹達工業株式会社 第1図 7 第2図 0 12 3 5 10ppm 第5図 012 3 5 10ppm 第6図 ”” (b) 第7図 4m]、n。
Figure 1 is a flow diagram showing one embodiment of the present invention, Figures 2, 4, 6 and 7 are the obtained chromatograms, and Figures 6 and 5 are the chromatograms obtained. 4 is a diagram showing the relationship between the peak height and concentration of the chromatogram obtained in FIG. 4. FIG. (1), (1') Pump (28 (3), (7L) (8) Tube (4) Sample introduction device (5) Reaction tube (6) Phase separation device (9) Detector tube Merging device Patent applicant Toyo Soda Kogyo Co., Ltd. Figure 1 7 Figure 2 0 12 3 5 10ppm Figure 5 012 3 5 10ppm Figure 6 "" (b) Figure 7 4m], n.

Claims (1)

【特許請求の範囲】[Claims] フローインジェクション分析方法において、相互に混和
しない第一の溶媒相と第二の溶媒相を合流させた後、該
流体流れ内に測定試料物質を導入することを特徴とする
フローインジェクション分析方法。
A flow injection analysis method, characterized in that a first solvent phase and a second solvent phase that are immiscible with each other are combined, and then a measurement sample substance is introduced into the fluid stream.
JP19078783A 1983-10-14 1983-10-14 Method for flow injection analysis Granted JPS6082968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19078783A JPS6082968A (en) 1983-10-14 1983-10-14 Method for flow injection analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19078783A JPS6082968A (en) 1983-10-14 1983-10-14 Method for flow injection analysis

Publications (2)

Publication Number Publication Date
JPS6082968A true JPS6082968A (en) 1985-05-11
JPH0336195B2 JPH0336195B2 (en) 1991-05-30

Family

ID=16263728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19078783A Granted JPS6082968A (en) 1983-10-14 1983-10-14 Method for flow injection analysis

Country Status (1)

Country Link
JP (1) JPS6082968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143263U (en) * 1986-03-04 1987-09-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143263U (en) * 1986-03-04 1987-09-09

Also Published As

Publication number Publication date
JPH0336195B2 (en) 1991-05-30

Similar Documents

Publication Publication Date Title
Kawase Automated determination of cationic surfactants by flow injection analysis based on ion-pair extraction
Jacintho et al. Flow injection systems with inductively-coupled argon plasma atomic emission spectrometry: Part 1. Fundamental Considerations
Anthemidis et al. Development of an on-line solvent extraction system for electrothermal atomic absorption spectrometry utilizing a new gravitational phase separator. Determination of cadmium in natural waters and urine samples
CN110208401B (en) Online analysis system and method of solid phase dehydration extraction-supercritical fluid chromatography-mass spectrometry
Amran et al. Determination of arsenic species in marine organisms by HPLC-ICP-OES and HPLC-HG-QFAAS
US4399102A (en) Process and apparatus for flow injection extraction
US6902937B2 (en) Method for the determination of low-concentration anions in the presence of an excess of another anion
Lancaster et al. Trace metal atomic absorption spectrometric analysis utilizing sorbent extraction on polymeric-based supports and renewable reagents
EP3816622A1 (en) Interface system and corresponding method
KR20220108185A (en) Flow analysis device and flow analysis method
JPS6082968A (en) Method for flow injection analysis
Stamna et al. Sequential injection solvent dispersive micro solid phase extraction (SI-SD-μSPE) platform coupled with atomic absorption spectrometry for lead determination in water samples
Carter et al. A solvent-extraction technique with the Technicon AutoAnalyzer
JP2012047655A (en) Liquid chromatograph apparatus and analysis method
JP7036472B1 (en) Filtration device and filtration method
Hattingh Incorporation of electrodialysers into the conduits of flow injection–atomic absorption spectrometry systems. Determination of copper (ii) ions in multivitamin tablets after enhancement of mass transfer through a passive neutral membrane
Van Staden et al. Preconcentration of an analyte dialysate in a flow-injection system
Lin et al. Design and application of a new phase separator for flow injection liquid—liquid extraction
JP7368027B1 (en) Flow analysis device and flow analysis method
CN110715996B (en) Method for full-automatic online detection of free-state small molecular compound in serum
JPH10142234A (en) Oil content measuring device
JP2806398B2 (en) Trihalomethane analyzer
JP3340775B2 (en) Continuous analysis of slurry composition
JPH08173703A (en) Method for solvent extraction-separation and analysis using the method
WO2005019815A2 (en) Improvements to liquid chromatography coupled to mass spectrometry in the investigation of selected analytes