JPS6082495A - Independent square tank for liquefied gas tanker - Google Patents

Independent square tank for liquefied gas tanker

Info

Publication number
JPS6082495A
JPS6082495A JP19103783A JP19103783A JPS6082495A JP S6082495 A JPS6082495 A JP S6082495A JP 19103783 A JP19103783 A JP 19103783A JP 19103783 A JP19103783 A JP 19103783A JP S6082495 A JPS6082495 A JP S6082495A
Authority
JP
Japan
Prior art keywords
joint
tank
welding
stress
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19103783A
Other languages
Japanese (ja)
Other versions
JPH0333557B2 (en
Inventor
Kazumichi Motozuna
元綱 数道
Yasuyoshi Miyanari
宮成 恭慶
Keiichi Sakai
酒井 啓一
Masaki Kitagawa
正樹 北川
Kazuyuki Minoda
蓑田 和之
Toshio Irisawa
入澤 敏夫
Osamu Atokawa
後川 理
Hidenobu Amano
天野 秀信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP19103783A priority Critical patent/JPS6082495A/en
Publication of JPS6082495A publication Critical patent/JPS6082495A/en
Publication of JPH0333557B2 publication Critical patent/JPH0333557B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve reliability for fatigue strength in a structure, by welding a weld joint part as holding a stree concentration factor in the weld stopping end part of a tank member down to below the specified value. CONSTITUTION:In the case where a joint 13 between an upright plate 12 and a lower plate 11 is welded by a torch nozzle 14 through MIG welding using a wire electrode, an aimed position of an electrode 15 at the tip of the torch nozzle 14 is directed at the joint 13, keeping a torch angle thetat in a constant value. Under this condition, when the torch nozzle 14 is oscillated in both directions 150-250 times per minute, a stree concentration factor Kt in a stop end part is controllable to below 3.0. With this constitution, the reciprocal joint of a tank member inside an independent tank can be welded at below 3.0 in the stress concentration factor, thus reliability in the tank is improvable.

Description

【発明の詳細な説明】 本発明はLNG、LPGなどを積荷リ−る液化ガスタン
カーに関し、更に詳しくは液化ガスタンカー内に設りら
れる独立方形タンクに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquefied gas tanker that carries LNG, LPG, etc. as cargo, and more particularly to an independent rectangular tank installed in the liquefied gas tanker.

液化ガスタンカーは、第1図に示゛りように船殻1内に
独立方形タンク2がローリングチョック3及びサポート
4にて殻1内面と隙間をもって支持され、独立方形タン
ク2内にLNG、LPGなどを積荷した際に低温による
収縮移動を許容できるようになっている。低温液体を収
容づる独立方形タンク2は収縮時の変形応力に対して十
分な強度を有するような4Fj造となっている。
As shown in Fig. 1, the liquefied gas tanker has an independent rectangular tank 2 in a hull 1 supported by rolling chocks 3 and supports 4 with a gap between the inner surface of the shell 1 and the inner surface of the shell 1. It is designed to allow shrinkage and movement due to low temperatures when cargo is loaded. The independent rectangular tank 2 containing the low-temperature liquid has a 4Fj structure that has sufficient strength against deformation stress during contraction.

この独立方形タンク2はアルミニウム合金からなり例え
ば第2図に示すにうに、タンク2内にブラケットやリブ
、型材、ス4:ンプレーi・など多数のタンク部材5を
骨組し、各タンク部材5の継目を溶接して横築している
。ところでこの種の液化ガスタンカーでIMOCode
にお【ノるT−ypc[3に属するタンカーはI M 
OCodeによって詳細な疲労強度解析を行なうことを
義務づ【)られている。このBタイプタンクの定義はタ
ンクの安全性が正確な解析と実験で確認され、一時にタ
ンクの大破壊が生じることのないタンクであり、そのた
め疲労解析、破壊解析に重点が83かれている。独立方
形タンクはその内部が多数のタンク部材が溶接された骨
イリき構造で不静定次数が高いので完全な解析は困難で
あったが、最近コンピューターにより比較的簡単に解析
できるようになっている。
This independent rectangular tank 2 is made of an aluminum alloy, and as shown in FIG. It is built horizontally with welded seams. By the way, IMO Code for this type of liquefied gas tanker
Tankers belonging to [NoruT-ypc[3] are IM
It is mandatory to perform detailed fatigue strength analysis using OCode. The definition of a Type B tank is that the safety of the tank has been confirmed through accurate analysis and experimentation, and the tank will not undergo major destruction at any one time.Therefore, emphasis is placed on fatigue analysis and fracture analysis. An independent rectangular tank has a bone-solid structure with many welded tank parts inside, and has a high static constant order, so it was difficult to completely analyze it, but recently it has become possible to analyze it relatively easily with computers. There is.

しかしながら骨イリき構造には必然的に隅肉)d接など
が多用されており、溶接形状が不規則なためこの溶接部
については個々に疲労試験を行なう必要がある。従来こ
の溶接部の疲労強度解析は部材の公称応力を基礎に行な
っており各溶接継手の種類毎に、応ツノが繰り返しかか
った場合に、疲労し破壊する回数とその応力との関係を
示したS−N曲線を実験によりめそれをもとに公称応力
に対する溶接継手の耐疲労強度をめている。しかしなが
ら部材の形状や継手形状、或いは溶接ビートの形状によ
り耐疲労強度が相違づるため各種のS−N +tlt線
を必要とJるので多くの試験が必要、である。
However, in a bone-cut structure, fillets) and d-joints are often used, and since the welded shape is irregular, it is necessary to conduct a fatigue test on each welded part individually. Conventionally, this fatigue strength analysis of welded joints has been conducted based on the nominal stress of the member, and for each type of welded joint, we have shown the relationship between the stress and the number of times the welded joint will fatigue and break if stress is repeatedly applied. The fatigue strength of the welded joint against the nominal stress is estimated based on the S-N curve determined experimentally. However, since the fatigue strength differs depending on the shape of the member, the shape of the joint, or the shape of the weld bead, various S-N+TLt wires are required, and many tests are required.

事実上、独立方形タンクに表われるすべての継手を各々
の試験でめたS−N曲線でカバーすることは不可能であ
る。
In fact, it is impossible to cover all the joints that appear in an isolated rectangular tank with the S-N curve obtained in each test.

本発明者らは溶接継手部材の疲労強度は溶接部の継手形
状や冶金的特性、残留応力などの影響因子のうち、溶接
継手部材の疲労強度にもつとも影響を与えるのは、溶接
継手形状に起因する疲労亀裂発生部の応力集中係数、特
に溶接止端部の応力集中係数であることを見い出し本発
明に至ったものである。
The present inventors found that among the influencing factors such as the joint shape, metallurgical properties, and residual stress of the welded joint, the fatigue strength of welded joint members is influenced by the shape of the welded joint. The inventors have discovered that this is the stress concentration factor of the fatigue crack occurrence area, particularly the stress concentration factor of the weld toe, which led to the present invention.

本発明の目的は、上述した独立方形タンクの各種溶接継
手の疲労解析が容易に行なえ、しかも、各梗タンク部材
の11疲労設fiが容易に行なえる液化ガスタンカーの
独立方形タンクを提供するものである。
An object of the present invention is to provide an independent rectangular tank for a liquefied gas tanker in which fatigue analysis of various welded joints of the above-mentioned independent rectangular tank can be easily performed, and in addition, 11 fatigue settings of each tank member can be easily performed. It is.

本発明は、多数のアルミ合金製のタンク部材で構成し、
かつその部材相互の継目を溶接しIC液化ガスタンカー
内の独立方形タンクにおいて、上記部月相互の溶接継手
部の溶接止端部にJ3りる応力集中係数K[を3.0以
下にしたことを特徴とり゛るもので、止端部にJUGブ
る応力集中係数Ktを3゜0以下に制御しながら溶接す
ることで、母Iを含めた一本のS−N曲線でづべての溶
接継手部の耐疲労強度の段削が行なえるようにしたもの
である。
The present invention consists of a large number of aluminum alloy tank members,
In addition, in an independent rectangular tank in an IC liquefied gas tanker by welding the joints between the members, the stress concentration factor K[J3 at the weld toe of the welded joint between the above parts shall be 3.0 or less. By welding while controlling the JUG stress concentration coefficient Kt to 3°0 or less at the toe, welding can be performed using a single S-N curve including the base I. This allows the fatigue strength of welded joints to be stepped down.

以下本発明に係る液化ガスタンカーの独立方形タンクの
好適一実施例を添イ]図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of an independent rectangular tank for a liquefied gas tanker according to the present invention will be described below with reference to the accompanying drawings.

先ず、第3図の十字溶接継手を例に応力集中係数Ktを
説明づる。
First, the stress concentration coefficient Kt will be explained using the cross-welded joint shown in FIG. 3 as an example.

第3図にJ3いて、6は縦板、7は横板で、その縦板6
と横板7に隅肉溶接8がされていたとする。
In Figure 3, there is J3, 6 is the vertical board, 7 is the horizontal board, and the vertical board 6
Assume that a fillet weld 8 is applied to the horizontal plate 7.

この場合、溶接8の余盛角(以下フランク角という)を
θ、ビード高さを11、溶接8の止端部9のヒート止端
半径をρ、横板7の板厚をtとづる。
In this case, the reinforcement angle (hereinafter referred to as flank angle) of the weld 8 is θ, the bead height is 11, the heat toe radius of the toe 9 of the weld 8 is ρ, and the thickness of the horizontal plate 7 is t.

今横板7に公称応力σ、がかかったとすると、その応力
分布は10で示すように、溶接の施されていない横板7
で公称応力σ、のままであるが止端部9に近づくにつれ
て応力集中が起り、止端部9で略最大の局部応力σ、が
作用する。従ってこの止端部9にあける応力集中係数を
K[とり゛るとK tは下式で表わされる。
If a nominal stress σ is now applied to the horizontal plate 7, the stress distribution will be as shown at 10 on the horizontal plate 7 without welding.
Although the nominal stress σ remains the same, stress concentration occurs as it approaches the toe 9, and a substantially maximum local stress σ acts at the toe 9. Therefore, the stress concentration factor created in this toe portion 9 is K [where Kt is expressed by the following formula.

−71・ ・・・・・・ (す σN またこのKtは、上述したフランク角θ、止端半径ρ、
ビードの高ざ1)の関数で上式で表わされる。
-71・ ...... (SσN Also, this Kt is the above-mentioned flank angle θ, toe radius ρ,
It is expressed by the above equation as a function of the bead height 1).

Kt−〔1+f(の(g(ρ) −1):IIc(a/
L) −−・ (2)ここで、f(θ)はフランク角の
影] (1(ρ)は溶接止端半径の影響、C(a /l
 )は未溶首部の存在の影響による関数であり夫々下式
で表わされる。
Kt-[1+f(g(ρ)-1):IIc(a/
L) --- (2) Here, f(θ) is the shadow of the flank angle] (1(ρ) is the influence of the weld toe radius, C(a/l
) are functions affected by the presence of the unmelted neck, and are expressed by the following formulas.

フランク角: 止端半径; g(ρ)−α1・gt(ρ)十α、・gb(ρ) ・・
・・・・(4)ここでgt(ρ)は引張荷重の場合で次
式で与えられる。
Flank angle: Toe radius; g (ρ) - α1・gt (ρ) 10 α,・gb (ρ) ・・
(4) Here, gt(ρ) is given by the following equation in the case of a tensile load.

P2.8(−)−2 ここでβtは溶接継手形状に応じて次の値をとる。十字
継手2.2、突合せ継手2.0.181手1.00 また、曲げ荷重の場合のgb(ρ)は継手形状とは無関
係に次式で与えられる。
P2.8(-)-2 Here, βt takes the following value depending on the shape of the welded joint. Cross joint 2.2, butt joint 2.0.181 hand 1.00 In addition, gb (ρ) in the case of bending load is given by the following equation regardless of the joint shape.

ここでβbは溶接継手形状に応じて次の値をどる。突合
せ継手−1,5、丁継手−1,9、その伯の継手=1.
0゜ 未溶着部: ここ′C−(31、(51式中のWは溶接継手形式によ
り次のように使い分ける。
Here, βb takes the following value depending on the shape of the welded joint. Butt joint - 1, 5, tooth joint - 1, 9, square joint = 1.
0° Unwelded area: Here 'C-(31, (51) W in formula is used as follows depending on the type of welded joint.

但し、(2)〜(8)式中θはフランク角、ρは止端半
径、[は負荷する部材の板厚、t、は負荷を受りない部
材の板厚、11はビード高さく脚長) 、tip は溶
接脚長、aは未溶6部の長さ、αtは止端部での引張応
力係数(引張荷重の場合−1、曲げ荷mの場合−〇)、
αbは止端部での曲げ応力係数(曲げ荷重の場合−1、
引張荷重の場合−〇)である。
However, in formulas (2) to (8), θ is the flank angle, ρ is the toe radius, [ is the plate thickness of the member that is loaded, t is the plate thickness of the member that is not loaded, and 11 is the bead height and leg length. ), tip is the weld leg length, a is the length of the 6 unmelted parts, αt is the tensile stress coefficient at the toe (-1 for tensile load, -0 for bending load m),
αb is the bending stress coefficient at the toe (-1 for bending load,
In case of tensile load -〇).

上記(2)〜(8)式からめられるKLとフランク角θ
、止端半径ρ及びビード高さ11をパラメータに各種継
手における応力集中係数Ktをみた結果、フランク角θ
及びビード高さ11による影響は比較的小さく、主に止
端半径ρの大きさにより応力集中係数Ktが変化するこ
とが判つ1%−にの結果をT字幕手の場合と、十字継手
の場合を例に第4図、第5図に示ザ。
KL and flank angle θ calculated from equations (2) to (8) above
As a result of looking at the stress concentration coefficient Kt in various joints using the toe radius ρ and bead height 11 as parameters, the flank angle θ
The influence of the bead height 11 is relatively small, and the stress concentration coefficient Kt changes mainly depending on the size of the toe radius ρ. The case is shown in FIGS. 4 and 5 as an example.

第4図は王?継手にJ3ける止端半径/板厚と応力集中
係数との関係を示している。
Is figure 4 a king? It shows the relationship between the toe radius/plate thickness and stress concentration coefficient at J3 in the joint.

この第4図のグラフより板厚[が一定とずれば止端半径
ρが小さくなるほど応力集中係数Ktが上Rすることが
判る。止端半径ρが小さい場合においてクランク角θ(
100〜170°)による応力集中係数の変化が大きく
なり、フランク角θが大きくなれば応力集中係数が増加
するか止端半径ρが大きくなればその変化は少なく ’
e’にることが判る。
From the graph of FIG. 4, it can be seen that if the plate thickness deviates from a constant value, the stress concentration coefficient Kt increases as the toe radius ρ becomes smaller. When the toe radius ρ is small, the crank angle θ(
100 to 170°), the stress concentration factor increases as the flank angle θ increases, or the change decreases as the toe radius ρ increases.
It turns out that it is at e'.

また、第5図のグラフも同様、板厚[を一定とずれば止
端半径ρが小さくプれば応ツノ集中係数が増加りること
か判る。
Similarly, in the graph of FIG. 5, it can be seen that if the plate thickness is set constant and the toe radius ρ is decreased, the corresponding horn concentration coefficient increases.

以上において、応力集中係数]<1をめることにより、
上記(1)式より止端部9における局部応力σ が判る
。ずなわち局部応力σ、は下式よりり まる。
In the above, by setting the stress concentration factor]<1,
The local stress σ at the toe 9 can be determined from the above equation (1). In other words, the local stress σ is determined by the following formula.

σL ”” KL ”σN 従って今、例えば第3図に示した十字継手部の横板7に
公称応力σ、を破壊するまで繰り返し作用さけた場合の
S−N曲線を作成する場合、公称応力σ でなく局部応
力九 にてS−N曲線を作図づ−れば、統一的なS−N
線図ができる。このS−N線図を第6図に示した。図に
おいて縦軸は応力範囲で止端部での局部応力九 を示し
、その各応力を繰り返しかけた場合に突合′I!継手、
十字継手、T字幕手が破壊した点をプロットしたもので
、グラフを示した直線は試験個数中の生存確立を示した
ものである。
σL ”” KL ”σN Therefore, for example, when creating an S-N curve for the case where the nominal stress σ is repeatedly applied to the horizontal plate 7 of the cross joint shown in Fig. 3 until it breaks, the nominal stress σ If we draw the S-N curve at local stress 9 instead of
A line diagram can be created. This S-N diagram is shown in FIG. In the figure, the vertical axis indicates the local stress 9 at the toe in the stress range, and when each stress is repeatedly applied, the butt 'I! fittings,
The points where the cross joint and T-subtitle hand were destroyed are plotted, and the straight line showing the graph shows the probability of survival among the number of test pieces.

このS−N曲線は局部応力σ1.をベースに作図しであ
るため各継手部の疲労強度は容易にめることが可能とな
る。
This S-N curve shows the local stress σ1. Since the drawings are based on , it is possible to easily determine the fatigue strength of each joint.

応ツノ集中係数+<1は通常無fl、1陣に溶接を行4
1えば広い範囲に分布する。このため例えばKt値7゜
0の場合、止端部にかかる局部応力σ1.は公称応カσ
 に対して7倍となり、大きくなって耐疲労N 強度が落ちる。従って耐疲労強度を高くするためには板
厚を大きく断面積を大きくして板にかかる全体の応力を
小さく設計する必要がある。すなわち継手部の溶接にお
いて、溶接を無制御に行なえば、その溶接コストは低く
なるが反面K を値が大きくなり易いため板厚の厚いも
のを使用しなければならずその材料値が増加する。従っ
て第9図に示すグラフのようにKt値の増加に応じて材
料費が増加し、反面K[の増加に応じて溶接コストが下
がる関係となる。この場合Klが3.0以下であればト
ータルコストが低く押えることが可能となり、継手部の
溶接が極めて経済的に行なうことができる。
If the concentration coefficient + < 1, there is usually no fl, welding is performed in one group 4
For example, it is distributed over a wide range. Therefore, for example, when the Kt value is 7°0, the local stress σ1. is the nominal force σ
It becomes 7 times larger than that of N, and the fatigue resistance N strength decreases. Therefore, in order to increase the fatigue strength, it is necessary to design the plate to have a large thickness and a large cross-sectional area to reduce the overall stress applied to the plate. That is, when welding a joint part, if welding is performed without control, the welding cost will be reduced, but on the other hand, the value of K tends to increase, so a thick plate must be used, and the material value will increase. Therefore, as shown in the graph shown in FIG. 9, the material cost increases as the Kt value increases, while the welding cost decreases as the K[ increases. In this case, if Kl is 3.0 or less, the total cost can be kept low, and the welding of the joint can be performed extremely economically.

本発明はこの止端部の応力集中係数を3.0以内に押え
ながら各継手部を溶接するものである。
The present invention is to weld each joint while keeping the stress concentration coefficient of the toe within 3.0.

しかしながら、溶接条件を制御してもKt値の分布は第
7図に示すような分布となる。第7図は同一条件のもと
て丁字継手を溶接した場合のKt値の分布を示したもの
で各Kt値における頻度数を表わしている。従って応力
集中係数に!を3゜0以内に押える場合第7図に示した
Kt値の分布中、+<1値の最大値(2,38>を3.
0以下となるよう制御する必要がある。
However, even if the welding conditions are controlled, the distribution of Kt values is as shown in FIG. 7. FIG. 7 shows the distribution of Kt values when T-shaped joints are welded under the same conditions, and shows the frequency at each Kt value. Therefore, the stress concentration factor! In the distribution of Kt values shown in Fig. 7, the maximum value of +<1 value (2,38>) is kept within 3°0.
It is necessary to control it so that it is 0 or less.

第8図は]<L値の分布曲線を1<[の最大値から最小
値までを各K[の値ごとに積分したグラフを示し、図中
文は無制御に溶接した場合のKt値の分布曲線を積分し
た線を示し、曲線…は本発明により溶接を制1111 
L、た場合の想定曲線を示し、またnは無制御に溶接を
行なった場合の平均1〈【値を、Oは制御した場合の平
均+<1値を示しており、$制御しない場合、線介のこ
と<Kt値が最大から最小値まで広い範囲に分布覆るが
制す11を行なうことにより曲線■のようにK を値の
…aXを3.0以内に押えることができる。
Figure 8 shows a graph obtained by integrating the distribution curve of ]<L value from the maximum value to the minimum value of 1<[ for each value of K[, and the text in the figure is the distribution of Kt value when welding without control. The curve shows the integrated line, and the curve... shows the control of welding according to the present invention1111
L shows the assumed curve when welding, n shows the average 1<[ value when welding is performed without control, O shows the average + < 1 value when welding is controlled, and $ shows the average + < 1 value when welding is not controlled, Although the Kt value is distributed over a wide range from the maximum to the minimum value, by carrying out step 11, it is possible to suppress the value of K to within 3.0 as shown by the curve (3).

次に応力集中係数K tを3.0以内に制υ11りる溶
接方法を説明ターる。第10図は1−字形継手部を溶接
づる例を示したもので図にJ3いて、11は上板、12
は立板で、その下板11と立板12との継目13をトー
チノズル14でMIG溶接リ−す場合を示している。こ
の場合、トーチノズル14の先端の電極15のネライ位
置を継目13に向1)、かつそのトーチ角度θtを一定
値(例えば45゜に保つ。この状態からトーチノズル1
4を左右にオシレートさける。このオシレート幅は立板
12と下板11の板厚に応じて十分な溶接強度が得られ
るような振幅(通常±4m+n!!i!度)とする。
Next, a welding method for controlling the stress concentration factor Kt to within 3.0 will be explained. Figure 10 shows an example of welding a 1-shaped joint, where J3 is shown in the figure, 11 is the upper plate, 12
1 is a vertical plate, and the joint 13 between the lower plate 11 and the vertical plate 12 is MIG welded using a torch nozzle 14. In this case, the position of the electrode 15 at the tip of the torch nozzle 14 is kept facing the seam 13 (1), and the torch angle θt is kept at a constant value (for example, 45 degrees. From this state, the torch nozzle 1
Avoid oscillating 4 to the left and right. This oscillation width is set to an amplitude (normally ±4 m+n!!i! degree) that can provide sufficient welding strength according to the thicknesses of the upright plate 12 and the lower plate 11.

通常MIG溶接におけるAシレー1〜数は70〜80回
/分であるが、このオシレート数では応力集中係数を制
御することができない。本発明はAシレー1−数を15
0〜250回/分で行なうことにより止端部の応力集中
係数+<1を3.0以下に制御することを可能にしたも
のである。この場合オシレート数が多くなることにより
止端部での止端半径ρを大きくすることが可能となり、
例えば止端半径ρをi、Qmm以上とすることが可能と
なる。
Normally, the number of A oscillations in MIG welding is 70 to 80 times/minute, but the stress concentration factor cannot be controlled with this number of oscillations. The present invention has A-sillage 1-number of 15
By performing the test at a rate of 0 to 250 times/min, it is possible to control the stress concentration coefficient +<1 at the toe to 3.0 or less. In this case, by increasing the number of oscillations, it is possible to increase the toe radius ρ at the toe,
For example, it is possible to set the radius ρ of the toe to be equal to or greater than i, Q mm.

また、Aシレ〜ト数を制御づ−る代りにトーチノズル1
4からのアルゴンのシールドガス中にヘリウムカスを5
0%以」−混合覆ることでも応力集中係数K[を3.0
以下にすることかできる。づなわら、ヘリウムガスはア
ルゴンガスより熱伝導率が高く、そのため溶加材の溶番
)込みがよくなり、K を値を低くづることが可能とな
る。
Also, instead of controlling the number of A shots, the torch nozzle 1
5 helium scum in the argon shielding gas from 4
0% or more” - Mixing also reduces the stress concentration factor K[to 3.0
You can do the following. Furthermore, helium gas has a higher thermal conductivity than argon gas, and therefore the filler metal is more easily incorporated into the melt, making it possible to set a lower value for K.

この溶接はづべて自動溶接材により行ない、第1図、第
2図に示した独立方形タンク2内のタンク部材5の相互
の継目をイの溶接止端部の応力集中係数3.0以下で溶
接づることか可能となる。
All of this welding is performed using automatic welding material, and the stress concentration coefficient of the weld toe shown in A is 3.0 or less at the mutual joint of the tank members 5 in the independent rectangular tank 2 shown in FIGS. 1 and 2. It becomes possible to weld it.

従って各タンク部材5は1〈電値が3.0以下に押える
ことができるため、その板厚応力に見合った経済的な板
Jワとし、かつその疲労強度も充分なものとすることが
できる。
Therefore, the electric value of each tank member 5 can be kept to 1<3.0 or less, so it can be made into an economical plate commensurate with the stress of the plate thickness, and its fatigue strength can also be made sufficient. .

以上、詳述してきたことから明らかなように本発明によ
れば次のごとき効果を発揮する。
As is clear from the above detailed description, the present invention provides the following effects.

(1) 応力集中率+<1はKl’ RにJ、ってめる
ことができS−N曲線は一本でよいので、各継手部の疲
労試験を大幅に簡略化できる。
(1) Since the stress concentration ratio +<1 can be expressed as J in Kl'R and only one S-N curve is required, the fatigue test of each joint can be greatly simplified.

(2) 応ツノ・集中係数K tは実際の構造部の溶接
形状を測定りることでその値を確認りることが(゛るの
で、実際に仕上った構造物の疲労強度に対づる信頼性が
高い。
(2) The response/concentration coefficient Kt can be confirmed by measuring the welded shape of the actual structure. Highly sexual.

(3) 応力集中係数Ktは測定によって統バ!的に把
握できるので真の意味での信頼性解析が可OLとなる。
(3) The stress concentration factor Kt can be determined by measurement! Since it can be grasped visually, reliability analysis in the true sense becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る液化ガスタンカーの独立方形タン
クを示す断面図、第2図は独立方形タンクを示す斜視図
、第3図は水元11Jに係る液化カスタンカーの独立方
形タンクにおける止端部の応力集中係数を説明りるため
の十字継手の断面図、第4図は本発明でのT字幕手部に
おける止端半径と応力集中係数の関係を示Jグラフ、第
5図は本発明での十字継手部にお(プる止端半径と応力
集中係数の関係を示すグラフ、第6図は本発明における
S−N曲線を示ずグラフ、第7図は本発明にお(プる応
力集中係数の分布を示づグラフ、第8図は本発明におり
る応力集中係数の分布を積分した場合のグラフ、第9図
は応力集中係数とコストの関係を示すグラフ、第10図
は本発明に係る液化ガスタンカーの独立方形タンクにJ
3いて各継手部を溶接づる例を示ず斜視図である。 図中、2は独立方形タンク、3.5はタンク部材である
。 特r[出願人 石川島播磨重工業株式会社代理人弁理士
 絹 谷 信 雄 第1図 第2図 第3図 第6図 第4図 第5図 第7丙 第8図
Fig. 1 is a sectional view showing an independent rectangular tank of a liquefied gas tanker according to the present invention, Fig. 2 is a perspective view showing an independent rectangular tank, and Fig. 3 is a stopper in an independent rectangular tank of a liquefied gas tanker related to water source 11J. A sectional view of a cruciform joint to explain the stress concentration coefficient at the end, FIG. 4 is a J graph showing the relationship between the toe radius and the stress concentration coefficient at the T subtitle hand part in the present invention, and FIG. A graph showing the relationship between the toe radius and the stress concentration factor in the cruciform joint part in the invention, Figure 6 is a graph that does not show the S-N curve in the invention, and Figure 7 FIG. 8 is a graph showing the distribution of the stress concentration factor according to the present invention when integrated. FIG. 9 is a graph showing the relationship between the stress concentration factor and cost. FIG. 10 J to the independent rectangular tank of the liquefied gas tanker according to the present invention.
3 is a perspective view showing an example of welding each joint portion. In the figure, 2 is an independent rectangular tank, and 3.5 is a tank member. [Applicant: Ishikawajima Harima Heavy Industries Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 1 Figure 2 Figure 3 Figure 6 Figure 4 Figure 5 Figure 7 C Figure 8

Claims (1)

【特許請求の範囲】[Claims] 多数のアルミ合金製のタンク部材から構成し、かつその
部材組Hの継目を溶接したLNGタンカー内の独立方形
タンクに85いて、上記部材相互の溶接継手部の溶接止
端部における応力集中係数Ktを3.0以下にしたこと
を特徴とする液化ガスタンカーの独立方形タンク。
Stress concentration coefficient Kt at the weld toe of the welded joint between the members is located in an independent rectangular tank in an LNG tanker that is constructed from a large number of aluminum alloy tank members and the joints of the member set H are welded. An independent rectangular tank for a liquefied gas tanker, characterized in that the ratio of
JP19103783A 1983-10-14 1983-10-14 Independent square tank for liquefied gas tanker Granted JPS6082495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19103783A JPS6082495A (en) 1983-10-14 1983-10-14 Independent square tank for liquefied gas tanker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19103783A JPS6082495A (en) 1983-10-14 1983-10-14 Independent square tank for liquefied gas tanker

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP17583184A Division JPS6084496A (en) 1984-08-25 1984-08-25 Independent square tank of liquefied-gas tanker
JP11463490A Division JPH069752B2 (en) 1990-04-27 1990-04-27 Fatigue strength assurance method for independent rectangular tank welds of liquefied gas tankers

Publications (2)

Publication Number Publication Date
JPS6082495A true JPS6082495A (en) 1985-05-10
JPH0333557B2 JPH0333557B2 (en) 1991-05-17

Family

ID=16267839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19103783A Granted JPS6082495A (en) 1983-10-14 1983-10-14 Independent square tank for liquefied gas tanker

Country Status (1)

Country Link
JP (1) JPS6082495A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148358A (en) * 2010-01-20 2011-08-04 Ihi Marine United Inc Ship
JP2011230550A (en) * 2010-04-23 2011-11-17 Mitsubishi Heavy Ind Ltd Lng-fpso system, and lng production storage offloading method
US9162849B2 (en) 2012-01-23 2015-10-20 Mitsubishi Electric Corporation Elevator rope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148358A (en) * 2010-01-20 2011-08-04 Ihi Marine United Inc Ship
JP2011230550A (en) * 2010-04-23 2011-11-17 Mitsubishi Heavy Ind Ltd Lng-fpso system, and lng production storage offloading method
US9162849B2 (en) 2012-01-23 2015-10-20 Mitsubishi Electric Corporation Elevator rope

Also Published As

Publication number Publication date
JPH0333557B2 (en) 1991-05-17

Similar Documents

Publication Publication Date Title
US6336583B1 (en) Welding process and welded joints
KR100358826B1 (en) Ultra-high strength cryogenic weldments
JPS6082495A (en) Independent square tank for liquefied gas tanker
US20020134452A1 (en) Methods of girth welding high strength steel pipes to achieve pipeling crack arrestability
US3218432A (en) Nickel steel filler wire
JPH03207595A (en) Method for securing fatigue strength at weld part in independent square type tank for liquefied gas tanker
JPS6083784A (en) Welding method of welded joint
ES2763348T3 (en) Fe-36Ni Alloy Welding Wire
RU2198771C2 (en) Superhigh strength cryogenic welded joints
JPS6084496A (en) Independent square tank of liquefied-gas tanker
US2055360A (en) Method of welding white metal
WO2023248977A1 (en) Welded joint manufacturing method, welded joint, low-temperature liquefied gas tank design method, and low-temperature liquefied gas tank
Perdomo et al. Failures Related to Welding
Veiga et al. Residual stress evolution in repair welds
JPH01127178A (en) Method for welding low alloy steel by flux-cored wire
US3484930A (en) Welding process for high tensile strength steel
JP6973159B2 (en) Welding repair method and container
JP3037530B2 (en) Prevention method of breakage of root toe end of Uranami bead in multi-groove groove welding
KR20180078098A (en) Welding method of pre-swirl stator for stern of ship
JPH0633256Y2 (en) Stays for jackets of hard-to-weld metal containers
Cioroaga THE INFLUENCE OF THE ELECTRIC ARC WELDING REGIME PARAMETERS ON THE FATIGUE RESISTANCE OF WELDED JOINTS
Rack et al. Post test evaluation of a fire tested rail spent fuel cask
Dickerson Quality control in aluminum arc welding
Bicknell et al. HEAVY SECTION WELIIMEN’I ‘S WITH A GMAW NARRGN GAP WELDING PROCESS
Kryukovsky et al. Technological Causes of Crack Formation in Circular Weld Seams in Shells of Alloy AMg 6