JPS6082125A - Apparatus for concentrating hydrogen isotope by electrolysis of water - Google Patents

Apparatus for concentrating hydrogen isotope by electrolysis of water

Info

Publication number
JPS6082125A
JPS6082125A JP58188921A JP18892183A JPS6082125A JP S6082125 A JPS6082125 A JP S6082125A JP 58188921 A JP58188921 A JP 58188921A JP 18892183 A JP18892183 A JP 18892183A JP S6082125 A JPS6082125 A JP S6082125A
Authority
JP
Japan
Prior art keywords
anode
cathode
water
electrolysis
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58188921A
Other languages
Japanese (ja)
Other versions
JPS6331254B2 (en
Inventor
Shiro Senrui
詩郎 泉類
Setsuo Iijima
飯島 世津男
Kenji Ueda
研二 植田
Shigeo Sasaki
茂雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Showa Denko KK
Priority to JP58188921A priority Critical patent/JPS6082125A/en
Publication of JPS6082125A publication Critical patent/JPS6082125A/en
Publication of JPS6331254B2 publication Critical patent/JPS6331254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To concentrate hydrogen isotope with high efficiency by the electrolysis of water using an electrolytic cell wherein a part of the material contacting with liquid other than the cathode and anode is made of chromium and the material for the part contacting with liquid is insulated electrically from other parts but connected electrically with the cathode. CONSTITUTION:A diaphragmless electrolytic cell 1 is used in a concentration apparatus for hydrogen isotope basing on electrolysis of water. A vessel 4 made of Cr alloy insulated from the anode 2 by an insulating material 3 and insulated also from pipings or other parts is attached to the top of the cylindrical anode 2 plated with Ni on its inside surface contacting with liquid. A cylindrical cathode 5 made of iron is inserted from the bottom of the anode 2 confronting the inside surface of the anode 2 and is fixed to the bottom edge of the anode 2 interposing an insulating material 3. The vessel 4 is connected with a cathode 5 by a conductor 6. Same negative potential as the cathode 5 is impressed to the vessel 4, thus, dissolution of the Cr alloy into electrolytic liquid is inhibited.

Description

【発明の詳細な説明】 本発明は、経時的に濃縮効率を低下させないで重水の濃
縮を可能とする本の電気分解による水素同位体濃縮装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen isotope concentrator using electrolysis, which enables concentration of heavy water without reducing concentration efficiency over time.

従来、水の電解による水素同位体の濃縮装置にはバッチ
操作による無隔膜電解槽が使用され、この無電膜電解槽
の陽極材料としてニッケル又はニッケルメッキ、陰極材
料として炭素鋼を用いると、濃縮効率が高いことが知ら
れている。、またその他の接液部には種々な材料が使用
されるが5機械的強度が必要な場合には1通常価格の安
い炭素鋼が用いられる。この場合、鉄の腐食による機器
の破損、或いは溶出金属による液の汚染が問題となる。
Conventionally, hydrogen isotope concentrators using water electrolysis have used membraneless electrolyzers that operate in batches.If nickel or nickel plating is used as the anode material and carbon steel is used as the cathode material in these membraneless electrolyzers, the concentration efficiency can be improved. is known to be high. Various materials are used for other parts that come into contact with liquid, but when mechanical strength is required, carbon steel, which is usually inexpensive, is used. In this case, problems arise such as damage to the equipment due to iron corrosion or contamination of the liquid due to eluted metals.

腐食を防止するためには%電極以外の接液部材料として
イオン化傾向が陽極よシ小さいものを用いれば腐食の発
生は防止されるが、装置の価格が高くなシ経済的でない
。そのため、腐食の面では実用上はぼ満足出来、かつそ
れほど高価でないクロム又はクロムを含有するステンレ
ス鋼が考えられる。
In order to prevent corrosion, it is possible to prevent corrosion by using materials in contact with liquid other than the electrodes that have a smaller ionization tendency than the anode, but this is not economical as the cost of the device is high. Therefore, chromium or chromium-containing stainless steel may be considered, which is practically satisfactory in terms of corrosion resistance and is not very expensive.

ところで、上記ステンレスfli’を使用することによ
って電解液の汚染は格段に少なくなるが、濃縮操作の回
数を重ねるに従って、濃縮効率が漸減し。
By the way, by using the stainless steel fli', contamination of the electrolyte is significantly reduced, but the concentration efficiency gradually decreases as the number of concentration operations increases.

結果として重水の濃縮装置の生産能力を著しく低下させ
る不・都合があった。
As a result, there was an inconvenience in that the production capacity of the heavy water concentrator was significantly reduced.

本発明者は、上記の事情に鑑み、鋭意研究した結果、重
水素の濃縮効率が次第に低下するのは電解液中に極微量
溶解する重金属、特にCr が原因であることを発見し
た。
In view of the above circumstances, the present inventor conducted extensive research and discovered that the gradual decline in deuterium concentration efficiency is caused by heavy metals, particularly Cr, dissolved in extremely small amounts in the electrolyte.

本発明は上記の発見に基づいて完成されたもので、その
要旨は、電解濃縮槽の陰極および陽極以外の接液部の材
料の一部又は全部がクロム又はクロム合金によってつく
られ、かつ上記接液部材料が他から電気的に絶縁される
とともに上記陰極と電気的に接続されていることを特徴
とする水の電気分解による水素同位体濃縮装置にある。
The present invention was completed based on the above discovery, and its gist is that part or all of the material of the liquid contact parts other than the cathode and anode of the electrolytic concentration tank is made of chromium or a chromium alloy, and A hydrogen isotope concentrator by electrolysis of water, characterized in that a liquid part material is electrically insulated from others and electrically connected to the cathode.

以下本発明を図面を参照して説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明に係る水の電気分解による水素同位体濃
縮装置において使用する無隔膜電解槽lの一実施例を示
すものである。図中符号2は、内面接液部がニッケルメ
ッキさまた円筒状の陽極である。この陽極2の上部には
絶縁材3によって陽極2と電気的に絶縁され、かつ配管
その他からも絶縁されているクロム合金製の容器4が覗
付けられている。また上記陽極2の下部から、陽極2の
内面に対向して鉄製の円筒状の陰極5が挿入され、陽極
2の下端に絶縁材3を介して固定されている。
FIG. 1 shows an embodiment of a non-diaphragm electrolytic cell I used in a hydrogen isotope concentrator by water electrolysis according to the present invention. Reference numeral 2 in the figure is a cylindrical anode whose inner surface liquid portion is nickel plated. A container 4 made of a chromium alloy, which is electrically insulated from the anode 2 by an insulating material 3 and also insulated from piping and the like, can be seen above the anode 2. Further, a cylindrical iron cathode 5 is inserted from the bottom of the anode 2 so as to face the inner surface of the anode 2, and is fixed to the lower end of the anode 2 via an insulating material 3.

上記容器4は導線6によって陰極5と接続されている。The container 4 is connected to the cathode 5 by a conductor 6.

また、第2図は上記無隔膜電解槽1を用い九九は、公知
の水素同位体電解濃縮装置を示す図である。図中11は
濃縮電解液の貯槽、12は蒸留塔。
Moreover, FIG. 2 is a diagram showing a known hydrogen isotope electrolytic concentrator using the membraneless electrolytic cell 1 described above. In the figure, 11 is a storage tank for concentrated electrolyte, and 12 is a distillation column.

12aは濃縮器、13は製品タンク、14は、蒸留塔1
2のボトムの分離された電解質15と原料重水(劣化重
水)16および復水系17より排出される回収重水1B
とを調整して電解液とする電解液調整槽、19は調整し
た電解液を貯留して電解濃縮槽1にバッチ充填する電解
液貯槽である、なお20の点線は、駆動装置20aによ
ってガス(例えばHe ) を循環して発生するH2.
D2 および02ヲ復水系に送るガス循環系である。
12a is a concentrator, 13 is a product tank, and 14 is a distillation column 1
Separated electrolyte 15 at the bottom of 2, raw material heavy water (degraded heavy water) 16 and recovered heavy water 1B discharged from the condensate system 17
19 is an electrolytic solution storage tank that stores the adjusted electrolytic solution and batch-fills it into the electrolytic concentration tank 1.The dotted line 20 indicates that the gas ( For example, H2. generated by circulating He.
This is a gas circulation system that sends D2 and 02 to the condensate system.

次に以上のように構成された本発明に係る装置の作用を
説明する。
Next, the operation of the apparatus according to the present invention configured as above will be explained.

上記無隔膜電解槽1は上記のように構成され。The membraneless electrolytic cell 1 is constructed as described above.

容器4は陰極5と同じ負電圧が印加されているので、ク
ロム合金が電解液中に溶出することはない。
Since the same negative voltage as the cathode 5 is applied to the container 4, the chromium alloy does not dissolve into the electrolyte.

上記構成の7に解槽1を使用することによって、最も重
金属が溶出し易い電解槽1内でのクロムの溶出は完全に
防止され、濃縮効率を低下させないで長期間水素同位体
の濃縮が出来る。
By using the decomposer 1 in the above configuration 7, the elution of chromium in the electrolytic cell 1, where heavy metals are most likely to be eluted, is completely prevented, and hydrogen isotopes can be concentrated for a long period of time without reducing the concentration efficiency. .

しかし、第2図のフa−よシ明らかなように電解質は1
反復使用されるため長期間にはこれら電解質の回収装置
から重金属が溶出し、I!!解液の汚染或いは濃縮効率
の低下の原因となる。このため、電解濃縮終了後の1!
解液から「解質を回収する設備を他部分より電気的に絶
縁するとともに陰極と接続すれば、重金属の溶出をさら
に確実に防止することが出来る。上記説明においては、
負電圧に印加する方法として陰極と接続したが1通常の
電気防食で行なうように、陰極以外の外部よシ負電圧を
加えててもよい。
However, as is clear from the graph in Figure 2, the electrolyte is 1
Due to repeated use, heavy metals are eluted from these electrolyte recovery devices over a long period of time, causing I! ! This may cause contamination of the solution or a decrease in concentration efficiency. For this reason, 1! after electrolytic concentration is completed!
If the equipment for recovering the solute from the solution is electrically insulated from other parts and connected to the cathode, the elution of heavy metals can be more reliably prevented.In the above explanation,
As a method of applying a negative voltage, a negative voltage is connected to the cathode, but a negative voltage may be applied from an external source other than the cathode, as is done in normal cathodic protection.

また、第3図は本発明に使用する無隔膜電解槽1の他の
例を示すもので、鉄製円筒状の陰極5の上部に電気的に
接続してクロム又はクロム合金製の容器4を取付け、上
記陰極5の下方よシ、接液面にニッケルメッキを施した
円筒状の陽極2を挿入し、絶縁材3を介して陰極5の下
端に叡付けたものである。
FIG. 3 shows another example of the membraneless electrolytic cell 1 used in the present invention, in which a chromium or chromium alloy container 4 is electrically connected to the top of a cylindrical iron cathode 5. A cylindrical anode 2 whose wetted surface is nickel-plated is inserted below the cathode 5 and attached to the lower end of the cathode 5 through an insulating material 3.

すなわち、本発明に使用する無隔膜電解槽1は。That is, the membraneless electrolytic cell 1 used in the present invention is as follows.

電気的には第4図に原理図を示すように、WL極2゜5
以外の接液部(容器)4がクロム又はクロム合金製で、
他部には、!I電気的絶縁部21t−介して連結され、
かつ負の電圧が印加され、*造的には、密閉構造で発生
したガス力ζ循環ガスによって稀釈されるものであれば
よい。
Electrically, as shown in the principle diagram in Figure 4, the WL pole is 2°5.
The other wetted parts (container) 4 are made of chromium or chromium alloy,
In other parts! I electrically insulating part 21t - connected via
Any material that can be diluted by the gas force ζ circulating gas generated in a sealed structure may be used as long as a negative voltage is applied thereto.

次に実施例、比較側を示し、本発明の作用効果を示す。Next, examples and comparative side will be shown to illustrate the effects of the present invention.

第1図に示した無隔膜電解濃縮槽1をセットした第2図
の装置を用い、!を解液約100刃を供給充填して、8
00〜1500Aの胃、流で軽水素と重水素の同位体の
分離を行なった。
Using the apparatus shown in Fig. 2, which is equipped with the membraneless electrolytic concentration tank 1 shown in Fig. 1,! Supply and fill about 100 blades of liquid, and 8
Separation of light hydrogen and deuterium isotopes was performed using a gastric flow of 00 to 1500 A.

但し、即 :原料のモル量 Hp:製品のモル量 χF:原料中の重水モル濃II’(俤)χ、;製品中の
重水モル濃度(憾) 上記電解濃縮槽1の陰極51陽極2を接続して濃縮を行
なった場合には、多数回のバッチ運転を行なっても長期
間にわたりαは8.0〜10.0と高い濃縮効惠を示し
た。
However, immediately: molar amount of raw material Hp: molar amount of product χF: molar concentration of heavy water in raw material II' (俤) When condensation was performed by connecting the two, even if batch operations were performed many times, α showed a high concentration efficiency of 8.0 to 10.0 over a long period of time.

次いで、導線6を外して、上記と同様に濃縮を行なった
ところ、運転バッチ回数と共にαは低下し、最終的に4
.0〜4.5となった。
Next, when the conducting wire 6 was removed and concentration was carried out in the same manner as above, α decreased with the number of batch runs, and finally reached 4.
.. It was 0 to 4.5.

以上述べたように1本発明に係る水の酊1気分解による
水素同位体の濃縮装置は、長期にわたって高い濃縮幼木
を保持するので、極めて高能率で重水の濃縮を可能とす
るものである。
As described above, the hydrogen isotope concentrator by one-gas decomposition of water according to the present invention maintains highly concentrated young trees for a long period of time, making it possible to concentrate heavy water with extremely high efficiency. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の電解濃縮装置に使用する電解濃縮槽
の一例を示す縦断面図、第2図は、装置のフローを示す
略図、第3図は電解濃縮槽の他の例を示す縦断面図、第
4図は、!気的接続を示す原理図である。 1・・・・・・無隔膜電解槽(it#濃縮槽)、2・・
・・・・陽極。 3・・・・・・絶縁材、4・・・・・・容器、5・・・
・・・陰極、6・・・・・・導線、11・・・・・・濃
縮電解液貯槽、12・・・・・・蒸留塔、12a・・・
・・・凝縮器、13・・・・・・製品タンク、14・・
・・・・電解液調整槽、15・・・・・・分離された電
、解質。 16・・・・・・原料重水、17・・・・・・復水系、
18・・・・・・回収重水、19・・・・・・電解液貯
槽、20・・・・・・ガス循環系、20a・・・・・・
駆動装置、21・・・・・・絶縁部。 出願人 動力炉・核燃料開発事業団 昭和電工株式会社 第3図 第4図
FIG. 1 is a vertical cross-sectional view showing an example of an electrolytic concentrator used in the electrolytic concentrator of the present invention, FIG. 2 is a schematic diagram showing the flow of the device, and FIG. 3 is a diagram showing another example of an electrolytic concentrator. The vertical cross-sectional view, Figure 4, is! FIG. 2 is a principle diagram showing electrical connections. 1...Diaphragmless electrolytic cell (IT# concentration tank), 2...
····anode. 3... Insulating material, 4... Container, 5...
... cathode, 6 ... conductor, 11 ... concentrated electrolyte storage tank, 12 ... distillation column, 12a ...
...Condenser, 13...Product tank, 14...
... Electrolyte adjustment tank, 15 ... Separated electrolyte, electrolyte. 16... Raw material heavy water, 17... Condensate system,
18...Recovered heavy water, 19...Electrolyte storage tank, 20...Gas circulation system, 20a...
Drive device, 21... Insulation section. Applicant Power Reactor and Nuclear Fuel Development Corporation Showa Denko Co., Ltd. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 ill m解濃縮槽の陰極および陽極以外の接液部の材
料の一部又は全部がクロム又はクロム合金によってつく
られ、かつ上記接液部の材料が他から電気的に絶縁され
るとともに負電圧が印加されていることを特徴とする水
の電気分解による水素同位体濃縮装置。 (2)負電圧の印加が陰極と電気的に接続することによ
って行なわれている特許請求の範囲第1項記載の水bl
電気分解よる水素同位体濃縮装置。
[Claims] A part or all of the material of the wetted parts other than the cathode and anode of the ill m decomposition concentration tank is made of chromium or a chromium alloy, and the material of the wetted parts is electrically insulated from other parts. A hydrogen isotope concentrator by electrolysis of water, characterized in that a negative voltage is applied at the same time as the electrolysis of water. (2) The water bl according to claim 1, wherein the negative voltage is applied by electrically connecting with the cathode.
Hydrogen isotope concentrator using electrolysis.
JP58188921A 1983-10-08 1983-10-08 Apparatus for concentrating hydrogen isotope by electrolysis of water Granted JPS6082125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58188921A JPS6082125A (en) 1983-10-08 1983-10-08 Apparatus for concentrating hydrogen isotope by electrolysis of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58188921A JPS6082125A (en) 1983-10-08 1983-10-08 Apparatus for concentrating hydrogen isotope by electrolysis of water

Publications (2)

Publication Number Publication Date
JPS6082125A true JPS6082125A (en) 1985-05-10
JPS6331254B2 JPS6331254B2 (en) 1988-06-23

Family

ID=16232210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58188921A Granted JPS6082125A (en) 1983-10-08 1983-10-08 Apparatus for concentrating hydrogen isotope by electrolysis of water

Country Status (1)

Country Link
JP (1) JPS6082125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686755B1 (en) * 2005-03-09 2007-02-26 엘지전자 주식회사 Heat exchanger of air conditioner
WO2024095800A1 (en) * 2022-11-01 2024-05-10 株式会社Ihi Determination method, quality assurance method, electrolysis system and electrolysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686755B1 (en) * 2005-03-09 2007-02-26 엘지전자 주식회사 Heat exchanger of air conditioner
WO2024095800A1 (en) * 2022-11-01 2024-05-10 株式会社Ihi Determination method, quality assurance method, electrolysis system and electrolysis method

Also Published As

Publication number Publication date
JPS6331254B2 (en) 1988-06-23

Similar Documents

Publication Publication Date Title
JP5897512B2 (en) Method for electrolytic concentration of heavy water
EP0636051B1 (en) Apparatus comprising a water ionizing electrode and process of use of said apparatus
CA1258443A (en) Electrolysis apparatus with horizontally disposed electrodes
EP0212240A1 (en) Apparatus for the electrolysis of solutions
US4048047A (en) Electrochemical cell with bipolar electrodes
CA2002707A1 (en) Electrochemical reduction-oxidation reaction and apparatus
US3421994A (en) Electrochemical apparatus
US3793165A (en) Method of electrodeposition using catalyzed hydrogen
JPS6082125A (en) Apparatus for concentrating hydrogen isotope by electrolysis of water
WO2020105369A1 (en) Hydrogen production method
US4409084A (en) Electrolytic cell for ion exchange membrane method
JPH05238736A (en) Method for electrochemically regenerating chromosulfuric acid
EP0063420A1 (en) Electrolyzers for the production of hydrogen
US3316126A (en) Fuel cell
US3441488A (en) Electrolytic desalination of saline water by a differential redox method
JP3406390B2 (en) Deuterium enrichment method and apparatus
JP3977446B2 (en) Deuterium concentrator
JPH0210875B2 (en)
US3492217A (en) Electrolytic dissolver
US3325382A (en) Process for electrolysis of alkaline earth metal compounds in a mercury cell
US3616444A (en) Electrolytic cell
ES8302121A1 (en) Method of generating halogen, an electrode-membrane assembly, an electrolytic cell and a semipermeable ion-exchange membrane for said method.
JPS59224598A (en) Electrolytic regenerating method of used ion-exchange resin
JP2002194580A (en) Metal recovery method by electrolysis, and metal recovery apparatus by electrolysis
US512266A (en) Emile andreoli