JPS608203B2 - Pressure molding method for graphite compacts - Google Patents

Pressure molding method for graphite compacts

Info

Publication number
JPS608203B2
JPS608203B2 JP56125585A JP12558581A JPS608203B2 JP S608203 B2 JPS608203 B2 JP S608203B2 JP 56125585 A JP56125585 A JP 56125585A JP 12558581 A JP12558581 A JP 12558581A JP S608203 B2 JPS608203 B2 JP S608203B2
Authority
JP
Japan
Prior art keywords
graphite
mold
sheet
molded body
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56125585A
Other languages
Japanese (ja)
Other versions
JPS5825915A (en
Inventor
明男 川口
一夫 丸矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukubi Kagaku Kogyo KK
Original Assignee
Fukubi Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukubi Kagaku Kogyo KK filed Critical Fukubi Kagaku Kogyo KK
Priority to JP56125585A priority Critical patent/JPS608203B2/en
Publication of JPS5825915A publication Critical patent/JPS5825915A/en
Publication of JPS608203B2 publication Critical patent/JPS608203B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Moulds, Cores, Or Mandrels (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、黒鉛成形体の成形方法に関するものである。[Detailed description of the invention] The present invention relates to a method for forming a graphite compact.

更に詳細には、本発明は、可孫性黒鉛シートを複数枚重
ね合わせた黒鉛シート重畳体を均一に加圧して圧着一体
化し、残留空気によるふくれや残留応力のほとんどない
黒鉛成形体を得る方法に関する。黒鉛は耐熱性、耐薬品
性、潤滑性に秀れ、シート状の製品は、各種機械装置、
自動車などにおけるガスケツト、パッキングなどとして
広く実用に供されている。
More specifically, the present invention provides a method for uniformly pressurizing and crimp-bonding a graphite sheet stack made up of a plurality of graphite sheets stacked together to obtain a graphite molded body with almost no blisters or residual stress due to residual air. Regarding. Graphite has excellent heat resistance, chemical resistance, and lubricity, and sheet-like products are used in various mechanical devices,
It is widely used as gaskets and packing in automobiles.

しかし、その物性面での優秀性から樋状あるいはその他
の異形品に対する要望が大きく、それを可能にするため
の成形法の開発が各界から望まれていた。従来、シート
状の黒鉛から円筒を縦に割ったような樋状の形を得よう
とする場合、1枚のシートを加圧変形すると、黒鉛の結
晶構造上塑性が極めて小さいため割れ・亀裂・しわ等が
発生することが知られている。
However, due to its excellent physical properties, there is a strong demand for trough-shaped or other irregularly shaped products, and various fields have desired the development of a molding method to make this possible. Conventionally, when trying to obtain a gutter-like shape like a cylinder split vertically from a sheet of graphite, deforming a single sheet under pressure would result in cracks, cracks, etc. because graphite's crystal structure has extremely low plasticity. It is known that wrinkles etc. occur.

例えば密度1.02/地で肉眼0.5柳のシートは、半
径1仇■以下の曲面に曲げた時しわを発生し、肉厚1.
5肋のシートは曲率半径50脚以下の曲面に曲げた場合
しわを発生し、曲率半径3仇肋以下とした場合折れる。
又同様にその結晶構造から容易に類推されるように黒鉛
シートは応力緩和の程度が小さく外力を取り去った時目
的とする形状を維持させるのは不可能である。そこで、
比較的厚い1枚の黒鉛シートを加圧して成形するのでは
なく、比較的薄い黒鉛シートを複数枚重ねて加圧成形す
る方法が考えられる。
For example, a willow sheet with a density of 1.02/ground and 0.5 to the naked eye will wrinkle when bent into a curved surface with a radius of less than 1.
A sheet with 5 ribs will wrinkle if bent into a curved surface with a radius of curvature of 50 ribs or less, and will break if the radius of curvature is less than 3 ribs.
Similarly, as can be easily inferred from its crystal structure, a graphite sheet has a small degree of stress relaxation, and it is impossible to maintain the desired shape when an external force is removed. Therefore,
Instead of pressing and molding a relatively thick graphite sheet, a method of stacking and pressing a plurality of relatively thin graphite sheets may be considered.

つまり複数枚の黒鉛シートを圧着一体化し成形すること
により、しわや割れ等を発生させず、又各シート同志の
凝着力によって、外力を取り去っても目的とする形状を
維持せしめる方法である。しかし、複数枚の黒鉛シート
の加圧成形を従来知られている金型プレス法で行なった
場合、黒鉛シートの気体透過率が極めて小さいことから
黒鉛シート間に空気が残留して、ふくれとなってあらわ
れる。又その場合黒鉛の構造がL六炭素嬢が連なった層
からできている層状格子であることから推察されるよう
に、各シートの圧着が真に対応する点同志でおこるとは
限らず、成形体に応力が残留する。そのため金型から取
り出した後、金型と同じ形を保つことができない。又、
はなはだしい場合にはシート同志が剥がれるという欠点
を有する。従来、ゴムパッドと型との間に素材を介在さ
せ、ゴムパッド側から加圧して素材を成形するゴム押成
形法において、素材側の硬度を高く加圧側の硬度を低く
したゴムパッドを用いる“マーホ−ム法”と呼ばれる方
法が樽公昭53−13471に開示されている。しかし
、黒鉛シートを数枚重ねた黒鉛シート重畳体を加圧して
成形する場合、成形体の密度を黒鉛シートの密度よりも
0.2タ′地以上上げながら圧着成形しなければならず
、極めて大きな成形荷重が必要となり、従来の方法で用
いられている肉厚の厚いゴムの場合、圧力が弱まるので
著しく不利である。そこで本発明者らは、耐熱性の良い
そして残留空気によるふくれや残留応力のほとんどない
樋状あるいはその他の異形の黒鉛成形体を簡単に得るた
めの研究を重ねた結果、単なる加圧成形の目的で用いら
れているような従釆の肉厚の厚いゴムを用いて加圧する
のではなく、圧力を可榛性黒鉛シートを複数枚重ね合わ
せた黒鉛シート重畳体に均等に伝え且つ該黒鉛シート重
畳体を圧着一体化するのに充分な圧力を効率よく伝える
ことのできる厚さのゴム板を用いて加圧することにより
、密度が均一で残留空気や残留応力のほとんどない黒鉛
成形体が得られることを知見し、本発明に到達したもの
である。
In other words, this method prevents wrinkles, cracks, etc. from occurring by crimping and molding multiple graphite sheets into one, and maintains the desired shape due to the adhesion between the sheets even when external forces are removed. However, when pressure forming multiple graphite sheets using the conventionally known mold press method, the gas permeability of the graphite sheets is extremely low, so air remains between the graphite sheets, causing blisters. It appears. In addition, in this case, as can be inferred from the fact that the graphite structure is a layered lattice made up of successive layers of L6 carbon atoms, the crimping of each sheet does not necessarily occur at truly corresponding points; Stress remains in the body. Therefore, after being removed from the mold, it cannot maintain the same shape as the mold. or,
In severe cases, the sheets have the disadvantage of peeling off from each other. Conventionally, in the rubber extrusion molding method in which a material is interposed between a rubber pad and a mold and pressure is applied from the rubber pad side to form the material, "mahome" uses a rubber pad with a high hardness on the material side and a low hardness on the pressure side. A method called ``Method'' is disclosed in Taru Kosho 53-13471. However, when pressurizing and molding a graphite sheet stack consisting of several stacked graphite sheets, the density of the molded body must be increased by 0.2 degrees or more than the density of the graphite sheets, which is extremely difficult. A large molding load is required, and the thick rubber used in the conventional method is significantly disadvantageous because the pressure is weakened. As a result of repeated research into easily obtaining gutter-shaped or other irregularly shaped graphite molded bodies with good heat resistance and almost no swelling or residual stress due to residual air, the present inventors found that the purpose of simple pressure molding was to Instead of applying pressure using a thick rubber sub-chamber as is used in A graphite molded body with uniform density and almost no residual air or residual stress can be obtained by applying pressure using a rubber plate that is thick enough to efficiently transmit enough pressure to crimp and integrate the bodies. The present invention was developed based on this knowledge.

従って、本発明の目的は、耐熱性の良い、そして残留空
気によるふくれや残留応力のほとんどない樋状あるいは
その他異形状の黒鉛成形体を簡単に得る方法を提供する
ことにある。
Accordingly, an object of the present invention is to provide a method for easily obtaining a gutter-shaped or other irregularly shaped graphite molded body that has good heat resistance and has almost no swelling or residual stress due to residual air.

本発明によれば、所定の形状の凹面を有する雌金型の上
部に固定手段を介して固定構架したゴム板上に非粘着性
で且つ低い摩擦係数及び高い機械的強度を有するシート
を敷直してなる雌金型組立体を用い、該シート上に可裸
性黒鉛シートを複数枚重ね合わせた黒鉛シート重畳体を
置き、該黒鉛シート重畳体を上記凹面に対応する形状の
凸面を有する雌金型で加圧し、該黒鉛シート重畳体全体
を圧着一体化することを特徴とする黒鉛成形体の圧着成
形方法が提供される。
According to the present invention, a sheet that is non-adhesive and has a low coefficient of friction and high mechanical strength is re-laid on a rubber plate that is fixed via a fixing means to the upper part of a female mold having a concave surface of a predetermined shape. Using a female mold assembly made of A method for press-molding a graphite molded body is provided, which is characterized in that the entire graphite sheet stack is press-fitted and integrated by applying pressure with a mold.

次に、添付図面を参照しながら本発明を説明する。Next, the present invention will be described with reference to the accompanying drawings.

第1図は本発明の方法によって得られる黒鉛成形体の形
状の一例を示す。第2図は従来の雄・雌金型の概略図で
ある。第3図及び第4図は、本発明の方法を実施するた
めの装置の断面略図を示す。第3図は加圧前の状態を示
しており、ゴム板6は一般にはゴム板固定枠6により雌
金型4に張着されるが雌金型が深い場合はゆるみをもた
せてもよい。本発明において用いられるゴム板は硬度8
0〜90のウレタンゴムが好ましく、ゴムの厚みは5〜
15側が適当である。第4図には加圧状態が示されてい
るが、雄金型と雌金型の間隔はゴム板の厚みを考慮して
、成形荷重が黒鉛シート重畳体に十分伝わるように設計
しなくてはいけない。又ゴム坂上の敦層されているシー
ト7は非粘着性且つ低い摩擦係数及び高い機械的強度を
有するものを用い、強化されたテフロンシート例えばチ
ュコーフロー■Gタイプ(中興化成)等が好ましい。本
発明の方法に用いられる黒鉛シ−ト8の密度は、目的と
する成形体の密度より0.2タ′地以上、好ましくは0
,25タ′地以上小さい方が良い。但し密度が0.7#
′地以下の黒鉛シートは切れやすくとり扱いにくいし、
密度1.3好′の以上の黒鉛シートでは表面のスキン層
が硬いため圧着一体化した後の黒鉛成形体のは〈離強度
が弱くなるので、一般には0.7タ′洲〜1.3タ′地
、好ましくは0.9夕/地〜1.1タ′洲の黒鉛シート
を用いるのがよい。一方、黒鉛シート8の厚みは一般に
は0.2〜0.4側のものが好ましい。しかし、目的と
する成形体の密度、形状、肉厚によっては当該範囲以外
の密度、厚みをもつ黒鉛シートが好ましい場合もある。
本発明において、黒鉛シートの好ましい条件を満足する
密度0.9夕/塊、厚み0.35肋のものを本発明の方
法を実施するための装置で加圧した時の成形荷重(k9
′の)と成形体の密度(夕/地)の関係を第1表に示す
FIG. 1 shows an example of the shape of a graphite molded body obtained by the method of the present invention. FIG. 2 is a schematic diagram of conventional male and female molds. 3 and 4 show schematic cross-sectional views of an apparatus for carrying out the method of the invention. FIG. 3 shows the state before pressurization, and the rubber plate 6 is generally attached to the female mold 4 by the rubber plate fixing frame 6, but if the female mold is deep, it may be made loose. The rubber plate used in the present invention has a hardness of 8
Urethane rubber with a rating of 0 to 90 is preferable, and the thickness of the rubber is 5 to 90.
15 side is appropriate. Figure 4 shows the pressurized state, but the spacing between the male and female molds must be designed in consideration of the thickness of the rubber plate so that the molding load is sufficiently transmitted to the graphite sheet stack. Do not. Further, the sheet 7 on which the rubber slope is layered is made of a material having non-adhesive properties, a low coefficient of friction, and high mechanical strength, such as a reinforced Teflon sheet such as Chukoflo G type (manufactured by Chuko Kasei). The density of the graphite sheet 8 used in the method of the present invention is 0.2 or more times higher than the density of the intended molded product, preferably 0.
The smaller the size, the better. However, the density is 0.7#
Graphite sheets below the surface are easily cut and difficult to handle.
For graphite sheets with a density of 1.3 mm or higher, the skin layer on the surface is hard, so the peeling strength of the graphite molded product after being crimped and integrated becomes weak, so generally it is 0.7 to 1.3 mm. It is preferable to use a graphite sheet having a thickness of 0.9 to 1.1 ta. On the other hand, the thickness of the graphite sheet 8 is generally preferably on the 0.2 to 0.4 side. However, depending on the density, shape, and thickness of the intended molded object, a graphite sheet having a density and thickness outside the above range may be preferable.
In the present invention, a forming load (k9
Table 1 shows the relationship between the density of the molded body and the density of the molded body.

ゴム板5にはウレタンゴム(硬度90、厚み1仇舷)を
使用した。第1表 本発明の方法を用いれば第5図の如き長手方向に曲率を
有する成形体も成形可能である。
For the rubber plate 5, urethane rubber (hardness: 90, thickness: 1 mm) was used. Table 1 Using the method of the present invention, it is also possible to mold a molded article having a curvature in the longitudinal direction as shown in FIG.

この場合には目的とする形状の雄金型を作成し、それに
平行に雌金型を作成する。ゴムも金型の長手方向の曲率
に合わせて張りつける為ゴム板固定枠も曲率をつける。
又第6図に示すような長手方向に断面形状が変化する成
形体も製作可能である。本発明によれば、雌金型の精度
が、従来の金型に比べてそれ程厳しく要求されないので
、上記のような金型も容易に製作できる。第6図に示し
たような形状の成形体を得るための金型の一部を第7図
a,bに示す。第7図aはその平面図、第7図bはその
側面図であり、9はゴム板固定枠、10はゴム板、11
は雌金型である。本発明の方法を用いて得られた黒鉛成
形体を、更に第2図に示すような従来の金型でプレスす
ることもできるのは勿論である。第8図には静水圧プレ
ス法の概略図が示してある。12は圧力媒体である液体
、13はゴム板、14は黒鉛シート、15は雄金型であ
る。
In this case, a male mold of the desired shape is created, and a female mold is created parallel to it. The rubber plate fixing frame also has a curvature in order to attach the rubber according to the longitudinal curvature of the mold.
It is also possible to produce a molded body whose cross-sectional shape changes in the longitudinal direction as shown in FIG. According to the present invention, the precision of the female mold is not so strictly required as compared to conventional molds, so the mold as described above can be manufactured easily. FIGS. 7a and 7b show a part of a mold for obtaining a molded article having the shape shown in FIG. 6. FIG. 7a is a plan view thereof, and FIG. 7b is a side view thereof, in which 9 is a rubber plate fixing frame, 10 is a rubber plate, 11
is a female mold. Of course, the graphite molded body obtained using the method of the present invention can also be further pressed using a conventional mold as shown in FIG. FIG. 8 shows a schematic diagram of the hydrostatic pressing method. 12 is a liquid as a pressure medium, 13 is a rubber plate, 14 is a graphite sheet, and 15 is a male mold.

この静水圧プレス法によっても第1図、第5図及び第6
図に示すような成形体を得ることは可能であるが、装置
が高価であるためこの方法は経済的でない。以下、実施
例により本発明を更に詳細に説明するが、本発明の範囲
は実施例に限定されるものではない。
By this hydrostatic pressing method, the figures 1, 5 and 6
Although it is possible to obtain a molded body as shown in the figure, this method is not economical because the equipment is expensive. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not limited to the Examples.

実施例 1 密度0.9夕/榊、厚さ0.35脚の材料黒鉛シートを
幅11仇奴、長さ7動物の長方形に切断し、これを4枚
重ねて金型に設定した。
Example 1 A graphite sheet with a density of 0.9 mm/sakaki and a thickness of 0.35 mm was cut into a rectangle with a width of 11 mm and a length of 7 mm, and 4 sheets were stacked and set in a mold.

又、ゴム板の上に戦層するシートとしては、チユコーフ
ロー■Gタイプ(中興化成社製テフロンシート)を用い
た。ゴム板として硬度80のウレタンゴムで厚さ5柵の
ものを2枚と厚さ3肌のものを1枚重ねて使用した。1
200kg′地〜1800k9′めで加圧し平均密度約
1.5夕/地とした。
Further, as a sheet to be layered on the rubber plate, Chuko Flow G type (Teflon sheet manufactured by Chukoh Kasei Co., Ltd.) was used. The rubber plates were made of urethane rubber with a hardness of 80 and used by stacking two pieces with a thickness of 5 and one with a thickness of 3 skin. 1
It was pressurized with 200 kg' ground to 1800 kg9' ground to give an average density of about 1.5 kg/ground.

その結果得られた底部の曲率半径が23.8肋の樋状の
成形体(第9図a)の2枚目と3枚目の間の剥離強度を
島津オートグラフIS−2000で測定した結果、第9
図bに示すような剥離強度チャートが得られた。A,A
′は樋状成形体の両端部、B,B′は曲面から平面に移
行する部分、Cは成形体の最低部の位置を示している。
この図から剥離強度が成形体の全面(A→B→C→B′
→A′)にわたって約30タ′肌であり、ほぼ一定であ
ることがわかる。又、空気が残留しておらずふくれはで
なかった。実施例 2 硬度90厚さ1物帆のウレタンゴム1枚をゴム板として
用いた以外はすべて実施例1と同様にして加圧成形を行
なった。
Results of measuring the peel strength between the second and third sheets of the resulting gutter-shaped molded body with a bottom radius of curvature of 23.8 ribs (Figure 9a) using Shimadzu Autograph IS-2000. , No. 9
A peel strength chart as shown in Figure b was obtained. A, A
' indicates both ends of the trough-like molded body, B and B' indicate the transition from a curved surface to a flat surface, and C indicates the position of the lowest part of the molded body.
From this figure, the peel strength is determined over the entire surface of the molded product (A→B→C→B'
→ A'), it is approximately 30 ta' skin, and it can be seen that it is almost constant. Also, no air remained and no blistering occurred. Example 2 Pressure molding was carried out in the same manner as in Example 1, except that one sheet of urethane rubber having a hardness of 90 and a thickness of one piece was used as the rubber plate.

黒鉛シートも実施例1と同様なものを用いた。得られた
成形体(第10図a)の剥離強度の測定も実施例1と同
様に島津オートグラフIS−2000を用いて行なった
結果、第10図bに示すような剥離強度チャートが得ら
れた。この図から、剥離強度が成形体の全面(A→B→
C→B→A)にわたって約35タ′伽であり、ほぼ一定
であることがわかる。又空気の残留もなくふくれではな
かった。実施例 3 硬度6リ厚さ1仇舷のネオプレンゴム1枚をゴム板とし
て用いる以外はすべて実施例1と同様にして加圧成形を
行なった。
The same graphite sheet as in Example 1 was also used. The peel strength of the obtained molded product (Figure 10a) was measured using Shimadzu Autograph IS-2000 in the same manner as in Example 1, and as a result, a peel strength chart as shown in Figure 10b was obtained. Ta. From this figure, it can be seen that the peel strength varies over the entire surface of the molded product (A→B→
It can be seen that it is approximately 35 ta' over C→B→A) and is almost constant. Also, there was no residual air and no swelling. Example 3 Pressure molding was carried out in the same manner as in Example 1 except that one sheet of neoprene rubber having a hardness of 6 and a thickness of 1 mm was used as the rubber plate.

黒鉛シートも実施例1と同様なものを用いた。得られた
成形体(第11図a)の剥離強度の測定も実施例1と同
様にして行なった結果、第11図bに示すような剥離強
度チャートが得られた。この図から剥離強度が成形体の
全面(A→B→C→B→A′)にわたって約25多/肌
でありほぼ一定であることがわかる。比較例 1 、
実施例1と同機の黒鉛シートを4枚重ねて第2図に示す
ような従来の雄金型1と雌金型2からなる金型によって
加圧成形した。
The same graphite sheet as in Example 1 was also used. The peel strength of the obtained molded article (FIG. 11a) was measured in the same manner as in Example 1, and as a result, a peel strength chart as shown in FIG. 11B was obtained. From this figure, it can be seen that the peel strength is approximately constant over the entire surface of the molded article (A→B→C→B→A') at approximately 25/skin. Comparative example 1,
Four graphite sheets of the same machine as in Example 1 were stacked and pressure-molded using a conventional mold consisting of a male mold 1 and a female mold 2 as shown in FIG.

その結果得られた成形体(第12図a)の剥離強度を実
施例1と同様にして測定した結果、第12図b‘こ示す
ような剥離強度チャートが得られた。この図からわかる
ようにA,A’で剥離強度が極大となりCで極小となる
ような極端に不均一な成形体が得られた。剥離強度の不
均一は成形体の密度の不均一を示している。この比較例
では応力が残留し、金型から取り出した後完全にはその
形状を維持しなかった。又、空気も残留していた。空気
の残留している箇所では剥離強度は当然極小値を示すが
、定量的な面での再現性がないのでこれは図示しなかっ
た。比較例 2 実施例1で用いたものと同様の黒鉛シートを4枚重ねて
、静水圧プレス法(第8図)により800k9′地の圧
力で加圧成形した。
The peel strength of the resulting molded article (FIG. 12a) was measured in the same manner as in Example 1, and as a result, a peel strength chart as shown in FIG. 12B' was obtained. As can be seen from this figure, an extremely non-uniform molded article was obtained in which the peel strength was maximum at A and A' and minimum at C. Non-uniform peel strength indicates non-uniform density of the compact. In this comparative example, stress remained and the shape was not completely maintained after being removed from the mold. Also, air remained. Naturally, the peel strength shows a minimum value in areas where air remains, but this is not shown because it is not quantitatively reproducible. Comparative Example 2 Four graphite sheets similar to those used in Example 1 were stacked and pressure-molded at a pressure of 800k9' using a hydrostatic press method (FIG. 8).

その結果得られた成形体(第13図a)の剥離強度を実
施例1と同様にして測定した結果、第13図bに示すよ
うな剥離強度チャートが得られた。その結果本発明と同
様な傾向を示すことがわかった。
The peel strength of the resulting molded article (FIG. 13a) was measured in the same manner as in Example 1, and as a result, a peel strength chart as shown in FIG. 13B was obtained. As a result, it was found that the same tendency as the present invention was exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって得られる黒鉛成形体の一例図、
第2図は従来の雄金型と雌金型から成る金型の全体図、
第3図は本発明の方法を実施するための金型で、加圧前
の状態を示す断面図、第4図は本発明の方法を実施する
ための金型で加圧された状態を示す断面図、第5図及び
第6図は本発明の方法によって得られる長手方向に曲率
をもつ黒鉛成形体の例図、第7図aは第6図に示す形状
の成形体を得るために用いる本発明を実施するための金
型の平面図、第7図bはその金型の側面図、第8図は静
水圧プレス法の装置の概略断面図、第9図a、第10図
a及び第11図aはゴム板の種類を変えて本発明の方法
で得られた黒鉛成形体の断面図、第9図b、第10図b
及び第11図bはゴム板の種類を変えて本発明の方法で
得られた黒鉛成形体の剥離強度チャート、第12図aは
従来の金型を使って得られた黒鉛成形体の断面図「第1
2図bは従来の金型を使って得られた黒鉛成形体の剥離
強度チャート、第13図aは静水圧プレス法で得られた
黒鉛成形体の断面図、第13図bは静水圧プレス法で得
られた黒鉛成形体の剥離強度チャートである。 3・…川雄金型、4……雌金型、5・…・・ゴム板、0
6・・・…ゴム板固定枠、7…・・・非粘着性且つ低い
摩擦係数及び高い機械的強度を有するシート、8・・・
…成形素材である黒鉛シートを層状に重ねた黒鉛シート
重畳体、9・…・・ゴム板固定枠、10・・…・コム板
、11・…・・雌金型。 第1図 第2図 第4図 第3図 第5図 第6図 第7図 第8図 第9図 第10図 第11図 第12図 第13図
FIG. 1 is an example of a graphite molded body obtained by the present invention,
Figure 2 is an overall view of a conventional mold consisting of a male mold and a female mold.
Figure 3 is a cross-sectional view of a mold for carrying out the method of the present invention, showing the state before pressurization, and Figure 4 shows the state of the mold being pressurized for carrying out the method of the present invention. 5 and 6 are cross-sectional views, and FIGS. 5 and 6 are examples of a graphite molded body having longitudinal curvature obtained by the method of the present invention, and FIG. 7a is a graphite molded body used to obtain a molded body having the shape shown in FIG. FIG. 7b is a plan view of a mold for carrying out the present invention, FIG. 7b is a side view of the mold, FIG. 8 is a schematic sectional view of an apparatus for hydrostatic pressing, FIGS. Fig. 11a is a cross-sectional view of a graphite molded body obtained by the method of the present invention with different types of rubber plates, Fig. 9b, Fig. 10b
and Fig. 11b is a peel strength chart of graphite molded bodies obtained by the method of the present invention with different types of rubber plates, and Fig. 12a is a cross-sectional view of graphite molded bodies obtained using a conventional mold. "First
Figure 2b is a peel strength chart of a graphite molded body obtained using a conventional mold, Figure 13a is a cross-sectional view of a graphite molded body obtained by isostatic pressing, and Figure 13b is a graphite molded body obtained by isostatic pressing. 1 is a peel strength chart of a graphite molded body obtained by the method. 3...Kawao mold, 4...Female mold, 5...Rubber plate, 0
6...Rubber plate fixing frame, 7...Sheet having non-adhesion, low coefficient of friction, and high mechanical strength, 8...
...Graphite sheet stacked body in which graphite sheets, which are molding materials, are stacked in layers, 9...Rubber plate fixing frame, 10...Com board, 11...Female mold. Figure 1 Figure 2 Figure 4 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13

Claims (1)

【特許請求の範囲】[Claims] 1 所定の形状の凹面を有する雌金型の上部に固定手段
を介して固定横架したゴム板上に非粘着性で且つ低い摩
擦係数及び高い機械的強度を有するシートを載置してな
る雌金型組立体を用い、該シート上に可撓性黒鉛シート
を複数枚重ね合わせた黒鉛シート重畳体を置き、該黒鉛
シート重畳体を上記凹面に対応する形状の凸面を有する
雄金型で加圧し、該黒鉛シート重畳体全体を圧着一体化
することを特徴とする黒鉛成形体の圧着成形方法。
1 A female mold made by placing a non-adhesive sheet having a low coefficient of friction and high mechanical strength on a rubber plate fixed horizontally on the upper part of a female mold having a concave surface of a predetermined shape via a fixing means. Using a mold assembly, place a stacked graphite sheet body in which a plurality of flexible graphite sheets are stacked on top of the sheet, and process the stacked graphite sheet body with a male mold having a convex surface having a shape corresponding to the concave surface. 1. A method for pressure-molding a graphite molded body, which comprises pressing the graphite sheet stack to integrate the entire graphite sheet stack.
JP56125585A 1981-08-11 1981-08-11 Pressure molding method for graphite compacts Expired JPS608203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56125585A JPS608203B2 (en) 1981-08-11 1981-08-11 Pressure molding method for graphite compacts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56125585A JPS608203B2 (en) 1981-08-11 1981-08-11 Pressure molding method for graphite compacts

Publications (2)

Publication Number Publication Date
JPS5825915A JPS5825915A (en) 1983-02-16
JPS608203B2 true JPS608203B2 (en) 1985-03-01

Family

ID=14913813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56125585A Expired JPS608203B2 (en) 1981-08-11 1981-08-11 Pressure molding method for graphite compacts

Country Status (1)

Country Link
JP (1) JPS608203B2 (en)

Also Published As

Publication number Publication date
JPS5825915A (en) 1983-02-16

Similar Documents

Publication Publication Date Title
JPS6038809B2 (en) Method for manufacturing elastic structure with anisotropic conductivity
EP2602093A3 (en) Method of forming composite products by pressure and related products
KR20010021934A (en) Selectively-activatible three-dimensional sheet material having multi-stage progressive activation to deliver a substance to a target surface
EP0216184A1 (en) Intercalated graphite sealing members
CN1077073C (en) Improved storage wrap material
CN1649710A (en) Use of changeable material in reformable shape, templates or tooling
JPS608203B2 (en) Pressure molding method for graphite compacts
US5154882A (en) Method for uniaxial hip compaction
JPS5825916A (en) Continuous molding method for graphite shape
EP0426359A2 (en) Reclosable mechanical fastener based on a composite article
KR20200015887A (en) Heat Press Cushion Material and Manufacturing Method Thereof
JPS5815210A (en) Pressure sensitive resistance element
US5063022A (en) Method for uniaxial hip compaction
JPS5834102A (en) Powder molding device
JP4399893B2 (en) Press molding die and press molding method
JP3057259U (en) Flexible dies
US20050022682A1 (en) System and method for embossing media
JPH1177819A (en) Method and apparatus for bending processing of thermoplastic synthetic resin panel
JPS60159033A (en) Vacuum forming device
JPS58128807A (en) Method of compressing and molding expansible graphite sheet
JPS6439533A (en) Pressure sensitive foil
JPS60179222A (en) Molding method of fiber reinforced plastics
RU2033875C1 (en) Unit for forming parts with elastic medium
JP2559748B2 (en) Method for cold stretch forming of resin laminated aluminum foil
JPH0234293B2 (en) SOSEIZAIRYONORENZOKUROORUPURESUHO