JPS6081902A - High frequency branching filter device - Google Patents

High frequency branching filter device

Info

Publication number
JPS6081902A
JPS6081902A JP19024383A JP19024383A JPS6081902A JP S6081902 A JPS6081902 A JP S6081902A JP 19024383 A JP19024383 A JP 19024383A JP 19024383 A JP19024383 A JP 19024383A JP S6081902 A JPS6081902 A JP S6081902A
Authority
JP
Japan
Prior art keywords
frequency
surface plates
surface plate
plate
selective surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19024383A
Other languages
Japanese (ja)
Inventor
Ryuichi Iwata
岩田 龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19024383A priority Critical patent/JPS6081902A/en
Publication of JPS6081902A publication Critical patent/JPS6081902A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To prevent deterioration in branching filter characteristics and an increase in polarized wave dependency by varying the pattern size of a frequency selective surface plate continuously in two directions on the surface plate. CONSTITUTION:Three high-pass type frequency selective surface plates 10 are used, rectangular windows are formed in a metallic thin plate, and formed gratings differ in mutual distance. Further, the surface plates 10 are so slanted that distances between the surface plates 10 are different at points 31-33 where the surface plates 10 are viewed laterally. Namely, the interplate distances at the points 31-33 are made different so that interplate distance Xcostheta= constant, making the electric length between surface plates equal at the points 31-33. Therefore, the detrioration in branching filter characteristics and increase in polarized wave dependency are prevented.

Description

【発明の詳細な説明】 本発明は、アンテナに適用される周波数選択性表面板を
備えた球面波入射用の高周波分波装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high frequency demultiplexing device for spherical wave incidence, which is applied to an antenna and is equipped with a frequency selective surface plate.

最近、衛星通信等を含む用途の多様化に伴って、多周波
帯域を共用するアンテナが要求されてきつつある。この
要求を満たすため(:1周波数の違いによって選択的に
電磁波の透過、ある 、いは反射を行う周波数選択性表
面板が好適なものとして実用化されている。従来のこの
種周波数選択性表面板の1つとして、第1図(a)の上
面図および(b)の側面図に示すように、金属薄板に複
数の窓2をあけた長方形格子1を用いたものがある。こ
の長方形格子は、第2図の特性に見られるように1周波
数f、において格子の共振による完全透過点21を有す
る。このような長方形格子の用い方として1次に述べる
ごとき2つの方を去がある。
Recently, with the diversification of applications including satellite communications and the like, there has been a growing demand for antennas that can share multiple frequency bands. To meet this requirement, a frequency-selective surface plate that selectively transmits, reflects, or reflects electromagnetic waves depending on the difference in frequency has been put into practical use. One type of face plate uses a rectangular lattice 1 in which a plurality of windows 2 are formed in a thin metal plate, as shown in the top view of FIG. 1(a) and the side view of FIG. 1(b). has a complete transmission point 21 due to the resonance of the grating at one frequency f, as seen in the characteristics of Fig. 2.There are two ways to use such a rectangular grating, as described below.

第1の方法は、米国雑誌” IKEE Transac
tionon Antenna、s and Prop
agation ” 、 VOl、 AP−24。
The first method is the American magazine “IKEE Transac
tionon Antenna, s and Prop
”, VOl, AP-24.

No、 6 (1976ンの第7801’、tから第7
85i’jに記載されている方法である。これは、第6
図(a、)に示すように、2枚の格子1が等価回路的に
同図(b)のようにインダクタンス素子6としてみなさ
れる比較的低い周波数において、2枚の格子の相互作用
による共振による完全透過点22を設定し、同図(c)
の特性に見られるように、この共振点附近に通過帯域を
とる方法である。第2の方法は1本願の発明者らにより
、特願昭55−40848および特願昭5/>−178
31において提案されたものである。これは、第4図(
a)の側面図。
No. 6 (7801' of 1976, t to 7th
85i'j. This is the 6th
As shown in Figure (a), at a relatively low frequency where the two gratings 1 are regarded as an inductance element 6 in terms of an equivalent circuit as shown in Figure (b), resonance due to the interaction of the two gratings occurs. Set the completely transparent point 22, and the same figure (c)
As seen in the characteristics of this method, the passband is set near this resonance point. The second method is disclosed by the inventors of the present application in Japanese Patent Application No. 55-40848 and Japanese Patent Application No. 5/>-178.
This was proposed in 31. This is shown in Figure 4 (
a) Side view.

(b)の等価回路に示すように、長方形格子1をL−C
共振回路として用い、これを複数枚用いて分波器を構成
する方法である。この方法によれは、同図(c)のよう
に、格子の共振点21附近から共振点以下までが用いら
れ、前者の方法によるものよりも通過帯域が広くとれる
という利点を有する。また、長方形の寸法を入射角に対
して適切に設定することにより、入射波の偏波面の相違
に、する特性の違いの少ない分波装置が得られる。
As shown in the equivalent circuit of (b), the rectangular lattice 1 is
This is a method of using multiple pieces of this as a resonant circuit to construct a duplexer. This method uses the area from near the resonance point 21 of the grating to below the resonance point, as shown in FIG. 2(c), and has the advantage that the passband can be wider than the former method. Further, by appropriately setting the dimensions of the rectangle with respect to the incident angle, a demultiplexing device with less difference in characteristics due to differences in the plane of polarization of the incident wave can be obtained.

さて、」二記の分波装置を実際のアンテナ装置に適用す
る場合、第5図に示すように、平面波が入射する場合と
、第6図のように球面波が入射する場合とが考えられる
。前者の場合は2分波装置における周波数選択性表面板
7の板面上のすべての点で入射波乙の入射角は一定であ
るが、後者の場合では、ホーン8a、8bからの入射角
が板面上の位置によって異なる。このため。
Now, when applying the demultiplexing device described in Section 2 to an actual antenna device, two cases are considered: a plane wave is incident as shown in Figure 5, and a spherical wave is incident as shown in Figure 6. . In the former case, the angle of incidence of the incident wave B is constant at all points on the surface of the frequency-selective surface plate 7 in the splitter, but in the latter case, the angle of incidence from the horns 8a and 8b is It varies depending on the position on the board. For this reason.

後者の場合、ビームの中心点62において、最適設計に
より、偏波依存性のない格子寸法および板間距離を定め
ても、ビームの端の点31および33では分波損失が増
大すること、および反射波および透過波の偏波依存性が
増加して。
In the latter case, even if the polarization-independent grating size and plate distance are determined by optimal design at the beam center point 62, the demultiplexing loss will increase at the beam end points 31 and 33; The polarization dependence of reflected and transmitted waves increases.

交さ偏波特性に劣化の生ずるという問題がある。There is a problem in that the cross-polarized wave characteristics deteriorate.

これは、入射角が変化することにより1周波数選択性表
面板単体の特性が変化することと、板間の等側型気長が
変化することに原因がある。
This is due to the fact that the characteristics of the single frequency selective surface plate change as the incident angle changes, and the isolateral length between the plates changes.

この問題に対する解決方法として、前述の第1の方法に
にる分波装置に対しては、すでに米国のlTi8EEア
ンテナ伝搬部門会議録+’AP−8]’、nterna
l;j、onal、 sympos]、um Djge
st、 (1977)の第560頁から第566頁まで
に述べられている。すなわち、第7図(a)の上面図お
よび(b)の側面図に示すように、入射角の違いによる
4枚の周波数選択性表面板9の単体の特性の違いを補償
するために、横方向の格子の寸法t3.xおよびaを入
射角の小さい部分から大きい部分へ連続的に変化させる
とともに、板間の電気長の変化を補償するために、板間
側141[に傾斜をもたせる方法である。このような従
来の方法においては。
As a solution to this problem, for the demultiplexing device according to the first method mentioned above, the US lTi8EE Antenna Propagation Department Conference Proceedings+'AP-8', nterna
l;j, onal, sympos], um Djge
st, (1977), pages 560 to 566. That is, as shown in the top view of FIG. 7(a) and the side view of FIG. 7(b), the horizontal The dimension of the grid in the direction t3. In this method, x and a are continuously changed from a portion where the incident angle is small to a portion where the incident angle is large, and the inter-plate side 141 is sloped in order to compensate for the change in the electrical length between the plates. In such conventional methods.

d、xおよびaの選定に当って、まず、入射偏波面が入
射平面に垂直な場合(TE入射)を考える。
When selecting d, x, and a, first consider the case where the incident polarization plane is perpendicular to the incident plane (TE incidence).

このとき、第1の方法では周波数が低い領域のみを用い
るので、横方向ストリップの影響は無視できる。そして
、縦方向スI・リップによる等価リアクタンスXTEは
よく知られているように。
At this time, since the first method uses only the low frequency region, the influence of the horizontal strip can be ignored. And, as is well known, the equivalent reactance XTE due to longitudinal slip I/slip.

λ))dx、dxりaとすれば。λ)) dx, dxria.

と表わせる。−4二式のXTEが入射角θの変化に」;
るも一定であるためには、 a、/d−x=一定、dx
cosθ−一定であること、すなわち。
It can be expressed as -4 The XTE of the two equations changes in the incident angle θ”;
In order for the value to be constant, a, /d−x=constant, dx
cos θ - being constant, ie.

dx= d、x6/cosθ ・−−(2+a = a
o/cosθ =−−+3+であればよい。ここで、 
dxおよびa。はθ=o。
dx= d, x6/cosθ ・−−(2+a = a
It is sufficient if o/cos θ =−−+3+. here,
dx and a. is θ=o.

において最適に設計されたd、xおよびaの値である。These are the optimally designed values of d, x, and a.

すなわち、θが増加するにしたがって、dxおよびaを
1/cosθに従って増加させればよい。
That is, as θ increases, dx and a may be increased according to 1/cos θ.

上記の方法を、前述の第2の方法に適用しようとすると
5次のような問題を生じる。まず。
If the above method is applied to the second method described above, the following problem will arise. first.

前記第1の方法が通過帯域を格子のインダクタンス領域
(λ))d、x)に選ぶのに対し、第2の方法では9通
過帯域を格子の共振点に近い領域(λG< d x 、
λ) dx )は選ばれる。したがって、第1の方法で
は周波数の低い領域での等価サセプタンスの補償のみを
考えればよかったのに対し。
While the first method selects the passband in the inductance region (λ)) d, x) of the grating, the second method selects the passband in the region close to the resonance point of the grating (λG<d
λ) dx ) is chosen. Therefore, in the first method, it was only necessary to consider compensation for the equivalent susceptance in the low frequency region.

第2の方法では、これにあわせて入射角の変化による格
子の共振点の移動の補正も考えねばならない。このこと
を、さらに明確に説明するために、−ト記従来の方法に
より設訓した周波数選択性表面板9の単体の連部特性の
一例をモード・マツチング法により計算して、第8図の
グラフにより示した。グラフの(a、)は、第7図の6
1の部分に対応する特性であり、格子の寸法はd、x=
dy= 16.44mm、 a==b= 1315m?
7+となっている。グラフの(b)は、第7図の32の
部分に対応しく入射角θ−20°)、 dx=16.4
4/cos20°=17.49mrn、、 a、= 1
3.15/cos20°= 14;00?71m、d、
y=16A4m、m、b=13,15m?7+である。
In the second method, it is also necessary to consider correction for the movement of the resonance point of the grating due to a change in the angle of incidence. In order to explain this more clearly, an example of the continuous characteristics of a single frequency-selective surface plate 9, which was trained by the conventional method, was calculated by the mode matching method, and the results are shown in FIG. Shown in a graph. (a,) in the graph is 6 in Figure 7.
1, and the dimensions of the lattice are d, x=
dy=16.44mm, a==b=1315m?
It is 7+. Graph (b) corresponds to part 32 in Fig. 7, where the incident angle is θ-20°), dx=16.4
4/cos20°=17.49mrn,, a,=1
3.15/cos20°=14;00?71m,d,
y=16A4m, m, b=13,15m? It is 7+.

グラフの(c)は。Graph (c) is.

第7図の36の部分に対応しく入射角θ−40°)。(incident angle θ-40°) corresponding to part 36 in FIG.

dx−16,44/cos 40°= 21.457n
、m、、 a = 13.15/co840°=iZi
7mm、、 d、y=L6.4’4?71.7+I1.
、 b=13.15m?l+である。
dx-16,44/cos 40° = 21.457n
, m,, a = 13.15/co840°=iZi
7mm, d, y=L6.4'4?71.7+I1.
, b=13.15m? It is l+.

以」二の説明から判るにうに1周波数が低い領域(約7
GH2以ト−)では入射角の変化による透過率の変化は
少なく、また入射偏波の違いによる透過率の違いも少な
い。したがって、第1の方θモに適応させるためには、
上記従来の解決策は有効である。しかし乍ら、共振点2
1は入射角により大きく変化しており、共振の鋭さQも
大きく異なっているし、TE入射波とTM入射波に対す
る特性の違いも太きい。したがって。
As can be seen from the explanation in section 2 below, the region where the first frequency is low (approximately 7
For GH2 and higher), there is little change in transmittance due to a change in the incident angle, and there is also little difference in transmittance due to a difference in incident polarization. Therefore, in order to adapt to the first method θmo,
The above conventional solutions are effective. However, resonance point 2
1 varies greatly depending on the incident angle, the resonance sharpness Q also differs greatly, and the characteristics for TE incident waves and TM incident waves also differ greatly. therefore.

この従来の方法を第2の方tlミに適用すると、入射角
の増大に伴って著しい特性の劣化が起こるという不都合
があった。
When this conventional method is applied to the second method, there is a disadvantage that the characteristics deteriorate significantly as the incident angle increases.

本発明の目的は9球面波入射時に1周波数選択性表面板
の板面上における入射角の違いによるも1分波性能の劣
化および偏波依存性の増大を少なくすることのできる高
周波分波装置を提出することにある。
An object of the present invention is to provide a high frequency demultiplexing device that can reduce the deterioration of the demultiplexing performance and the increase in polarization dependence due to the difference in the angle of incidence on the plate surface of the single frequency selective surface plate when a spherical wave is incident. The purpose is to submit the following.

本発明によれば、金属、あるいは金属と誘電体との組合
せにより周期的パターンを形成した周波数選択性表面板
を備えた高周波分波装置において、前記周波数選択性表
面板のパターンの寸法を、該表面板−Fの2方向に沿っ
て連続的に変化させたことを特徴とする高周波分波装置
が得られる。
According to the present invention, in a high frequency demultiplexing device equipped with a frequency selective face plate in which a periodic pattern is formed by metal or a combination of metal and a dielectric, the dimensions of the pattern of the frequency selective face plate are adjusted according to the frequency selective face plate. A high frequency demultiplexing device is obtained, which is characterized in that the surface plate -F is continuously varied along two directions.

ここで、従来技術に関連し9本発明への適用条件につい
て説明する。前述の第2の方法は。
Here, nine application conditions to the present invention will be explained in relation to the prior art. The second method mentioned above is.

格子の共振点板−ド、かつ共振点附近が通過41;域に
選はれるために、この共振点が入射角により不変としな
ければならない。一般に、長方形格子のTE入射の共振
周波数f、は、ストリップ幅dx−aおよびay−bが
、それぞれd、xおよびdyに対してF分小さい場合に
は、おおよそfl−−!−一づm− dx H−s:1nlJ °(4) で与えられる。ここにCは光速を示す。したがって、θ
の変化に対してf、を一定に保つためには、 ax (
1+sinθ)=一定、すなわち。
In order for the resonance point plate of the grating and the vicinity of the resonance point to be selected as the passing region 41, this resonance point must remain unchanged depending on the incident angle. In general, the resonant frequency f of the TE incidence on a rectangular grating is approximately fl--! if the strip widths dx-a and ay-b are F smaller than d, x, and dy, respectively. -1zum- dx H-s: 1nlJ °(4) It is given by. Here, C indicates the speed of light. Therefore, θ
In order to keep f constant against changes in , ax (
1+sinθ)=constant, ie.

(]、x。(], x.

++sinθ ・ ・ ・・・(5) とせねはならない。このことは、θの増加に従って、1
/(1+sinθ)の割合でdxを減少してゆかねばな
らないことになる。一方9周波数が低い領域では、(1
)式で与えられるサセプタンスがθの変化に対して不変
でなければならないから。
++sinθ ・ ・ ...(5) There should be no difference. This means that as θ increases, 1
This means that dx must be decreased at a rate of /(1+sinθ). On the other hand, in the region where 9 frequencies are low, (1
) must be invariant to changes in θ.

となる。上記(5)式と(6)式により、 (IX−a
は。
becomes. According to the above equations (5) and (6), (IX-a
teeth.

となる。すなわち、θの増加により、ストリップ幅dx
−aも減少させねばならない。同様な考察により、TM
入射の場合には、θの増加に伴ってbおよびストリップ
幅dy−bも減少さぜねばならない。以上のことから、
第2の方法における分波装置を球面波入射のもとで用い
るには。
becomes. That is, by increasing θ, the strip width dx
-a must also be reduced. By similar considerations, TM
In the case of incidence, b and strip width dy-b must also decrease as θ increases. From the above,
To use the demultiplexing device in the second method under spherical wave incidence.

入射角の変化に伴って横方向のみならず縦方向の寸法も
変化させねばならないことが判る。
It can be seen that as the angle of incidence changes, not only the lateral dimension but also the vertical dimension must be varied.

次に1本発明による高周波分波装置について実施例を挙
げ、第9図を参照して説明する。この例は、高域通過型
の周波数選択性表面板10を6枚用いており、それぞれ
は図(a、)の上面図に示すように金属性薄板に長方形
の窓をあけ、形成された格子間の距離を異ならせている
。そして、これ等6枚の周波数選択性表面板10を側面
から見ると1図(b)に示すように1点31.32およ
び33において、順次6枚の周波数選択性表面板間の距
離が異なるように町に傾斜をもたせである。ここで3周
波数選択性表面板10単体の点31.32および66に
おける透過特性は。
Next, an embodiment of a high frequency demultiplexing device according to the present invention will be described with reference to FIG. This example uses six high-pass frequency-selective surface plates 10, each of which has a rectangular window formed in a thin metal plate, as shown in the top view of Figure (a). The distance between them is different. When these six frequency-selective face plates 10 are viewed from the side, the distances between the six frequency-selective face plates are sequentially different at points 31, 32 and 33, as shown in Figure 1(b). The town has a slope. Here, the transmission characteristics at points 31, 32 and 66 of the three frequency selective surface plate 10 alone are as follows.

第10図(a)、 (b)および(C1のそれぞれのグ
ラフに見られるように、第8図の従来の透過特性と比較
して、入射角θの0,20および40度における特性の
変化は少なくなっているし、またTE入射波およびTM
入射波の場合の特性の相違も少なくなっている。
As can be seen in the graphs in Figures 10 (a), (b) and (C1), changes in the characteristics at incident angles θ of 0, 20 and 40 degrees compared to the conventional transmission characteristics in Figure 8. is decreasing, and the TE incident wave and TM
Differences in characteristics in the case of incident waves are also reduced.

上記のように6枚の周波数選択性表面板により構成され
た高周波分波装置において、いま。
In the high-frequency demultiplexing device configured with six frequency-selective surface plates as described above, now.

仮に、それぞれの周波数選択性表面板間の距離を一定値
]とすれば、各板間の電気長は。
If the distance between each frequency-selective surface plate is a constant value, then the electrical length between each plate is:

27c ”7 cosθ によって決まるから、入射角θの異なる点31゜32お
よび63dおける電気長はそれぞれ相違し。
Since it is determined by 27c ``7 cos θ, the electrical lengths at points 31, 32, and 63d with different incident angles θ are different.

その結果分波特性は劣化する。ところが、この実施例に
おいては、3枚の周波数選択性表面板10の点31.3
2および33における板間距離1を]、cosθ−一定
になるように、それぞれ異ならせである。すなわち、入
射角θが大きくなるにしたがって、]の値が大きく選定
されている。
As a result, the demultiplexing characteristics deteriorate. However, in this embodiment, the points 31.3 of the three frequency-selective surface plates 10
The inter-plate distances 1 at 2 and 33 are set to be different so that cos θ is constant. That is, as the incident angle θ becomes larger, the value of ] is selected to be larger.

なお、上記の実施例においては9周波数選択性表面板を
3枚用いた場合を示したが、これに限定されることなく
、複数板、または−板のみ使用することにより、それぞ
れの機器の性能にあった分波特性を選ぶことができる。
Although the above example shows the case where three 9-frequency selective surface plates are used, the performance of each device can be improved by using multiple plates or only one plate. You can choose the demultiplexing characteristics that suit your needs.

また、」二記の実施例においては、高域通過型の周波数
選択性表面板を用いたが、低域通過型として金属部分と
空間部分とを反転した構造の周波数選択性表面板を使用
することができる。
In addition, in the embodiment described in Section 2, a high-pass type frequency-selective surface plate was used, but as a low-pass type, a frequency-selective surface plate with a structure in which the metal portion and the space portion are reversed is used. be able to.

さらに9本発明においては1周波数選択性表面板として
、金属薄膜を誘電体薄板ではさんだ構造で形成したり、
あるいは複数の周波数選択性表面板の間に誘電体を挿入
して形成することができる。また1曲面形状の周波数選
択性表面板を用いることができる。
Furthermore, in the present invention, the frequency selective surface plate is formed with a structure in which a metal thin film is sandwiched between dielectric thin plates,
Alternatively, a dielectric material can be inserted between a plurality of frequency selective faceplates. Also, a frequency selective surface plate having a single curved surface shape can be used.

以−トの説明により明らかなように1本発明゛によhば
9周波数選択性表面板のパターン寸法を。
As is clear from the following description, according to the present invention, the pattern dimensions of the frequency-selective surface plate are as follows.

該表面板−」二の2方向に沿って連続的に変化させるこ
とによって9球面波の入射に対して板面上での入射角が
異なるも9分波特性の劣化および偏波依存性の増大を防
ぐことが可能となり、特にアンテナに適用してその性能
を向−トすべく得られる効果は大である。
By continuously changing the surface plate along the two directions, the angle of incidence on the plate surface is different for the incidence of the spherical wave, and the deterioration of the split wave characteristics and the polarization dependence can be reduced. It becomes possible to prevent the increase in the number of antennas, and the effect obtained when applied to antennas in particular to improve their performance is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a、lおよび(1))は、従来の長方形格子に
よる周波数選択性表面板のそれぞれ−り面図および側面
図、第2図は、第1図の周波数選択性表面板の透過特性
を示すグラフ、第6図(a)、 (b)および(C)は
、第1の方法により長方形格子を用いた周波数選択性表
面板のそれぞれ側面図1等価回路および特性、第4図(
a)、 (b)および(c)は、第2の方法により長方
形格子を用いた周波数選択性表面板のそれぞれ側面図5
等価回路および特性。 第5図は、従来の周波数選択性表面板を平面波入射のも
とで用いた場合を説明する側面図、第6図は従来の周波
数選択性表面板を球面波入射のもとで用いた場合を説明
する側面図、第7図(1,)および(1〕)は、従来の
方法による周波数選択性表面板を説明するためのそれぞ
れ上面図および側面図、第8図は、第7図における周波
数選択性表面板の透過特性を示すグラフ、第9図fa)
および(1)lは1本発明による実施例の構成を示すそ
れぞれ上面図および側面図、第10図は、第9図の実施
例により得られる透過特性を示すグラフである。 図において、10は周波数選択性表面板。 11は球面波発生源である。 −周坂数((7H2) 一周返数(GHz) 一周ら皮数(GHz’) 躬8図
Figures 1 (a, 1 and (1)) are respectively a top view and a side view of a frequency selective face plate using a conventional rectangular grating, and Figure 2 is a transmission diagram of the frequency selective face plate of Figure 1. Graphs showing the characteristics, FIGS. 6(a), (b) and (C), respectively side view 1 equivalent circuit and characteristics of a frequency selective surface plate using a rectangular lattice according to the first method, FIG.
a), (b) and (c) are side views, respectively, of a frequency selective face plate using a rectangular grating according to the second method.
Equivalent circuit and characteristics. Figure 5 is a side view illustrating the case where a conventional frequency-selective surface plate is used under plane wave incidence, and Figure 6 is a side view illustrating the case where a conventional frequency-selective surface plate is used under spherical wave incidence. 7 (1,) and (1]) are a top view and a side view, respectively, for explaining the frequency selective surface plate according to the conventional method. FIG. Graph showing the transmission characteristics of the frequency selective surface plate, Figure 9 fa)
and (1) 1 is a top view and a side view showing the structure of an embodiment according to the present invention, respectively, and FIG. 10 is a graph showing the transmission characteristics obtained by the embodiment of FIG. 9. In the figure, 10 is a frequency selective surface plate. 11 is a spherical wave generation source. - Number of laps ((7H2) Number of turns per lap (GHz) Number of laps per lap (GHz') Figure 8

Claims (1)

【特許請求の範囲】 1、金属、あるいは金属と誘電体との組合せにより周期
的パターンを形成した周波数選択性表面板を備えた高周
波分波装置において、前記周波数選択性表面板のパター
ンの寸法を、該表面板−トの2方向に沿って連続的に変
化させたことを特徴とする高周波分波装置。 2、特許請求の範囲第1項に記載の高周波分波装置にお
いて、前記周波数選択性表面板を複数枚備え、これ等複
数枚の表面板の板間の距離をこれ等表面板の板面」二の
各点において入射する電磁波の入射角に応じて異ならせ
たことを特徴とする高周波分波装置。 以下余已
[Claims] 1. In a high frequency demultiplexing device equipped with a frequency selective surface plate in which a periodic pattern is formed by metal or a combination of metal and a dielectric, the dimensions of the pattern of the frequency selective surface plate are A high frequency demultiplexing device characterized in that the surface plate is continuously varied along two directions. 2. The high frequency demultiplexing device according to claim 1, wherein a plurality of the frequency selective surface plates are provided, and the distance between the plurality of surface plates is defined as the surface of the surface plates. 2. A high frequency demultiplexing device characterized in that the angle of incidence of electromagnetic waves is varied at each point. Below is the rest
JP19024383A 1983-10-12 1983-10-12 High frequency branching filter device Pending JPS6081902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19024383A JPS6081902A (en) 1983-10-12 1983-10-12 High frequency branching filter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19024383A JPS6081902A (en) 1983-10-12 1983-10-12 High frequency branching filter device

Publications (1)

Publication Number Publication Date
JPS6081902A true JPS6081902A (en) 1985-05-10

Family

ID=16254886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19024383A Pending JPS6081902A (en) 1983-10-12 1983-10-12 High frequency branching filter device

Country Status (1)

Country Link
JP (1) JPS6081902A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606335A (en) * 1991-04-16 1997-02-25 Mission Research Corporation Periodic surfaces for selectively modifying the properties of reflected electromagnetic waves
JP2011254482A (en) * 2004-07-23 2011-12-15 Regents Of The Univ Of California Metamaterial
WO2023029431A1 (en) * 2021-08-31 2023-03-09 Commscope Technologies Llc Base station antennas having at least one grid reflector and related devices
US11749881B2 (en) 2020-03-24 2023-09-05 Commscope Technologies Llc Base station antennas having an active antenna module and related devices and methods
US11909121B2 (en) 2020-03-24 2024-02-20 Commscope Technologies Llc Radiating elements having angled feed stalks and base station antennas including same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606335A (en) * 1991-04-16 1997-02-25 Mission Research Corporation Periodic surfaces for selectively modifying the properties of reflected electromagnetic waves
JP2011254482A (en) * 2004-07-23 2011-12-15 Regents Of The Univ Of California Metamaterial
US11749881B2 (en) 2020-03-24 2023-09-05 Commscope Technologies Llc Base station antennas having an active antenna module and related devices and methods
US11909121B2 (en) 2020-03-24 2024-02-20 Commscope Technologies Llc Radiating elements having angled feed stalks and base station antennas including same
WO2023029431A1 (en) * 2021-08-31 2023-03-09 Commscope Technologies Llc Base station antennas having at least one grid reflector and related devices

Similar Documents

Publication Publication Date Title
US7102469B2 (en) Open loop resonator filter using aperture
CN101006611B (en) Dielectric leakage wave antenna
US11637369B2 (en) Signal conditioner, antenna device and manufacturing method
EP0059343B1 (en) Antenna apparatus including frequency separator having wide band transmission or reflection characteristics
US20090274433A1 (en) Photonic crystal device
Mailloux An overlapped subarray for limited scan application
US5648747A (en) Planar filter having an overcoupling stripline an integral multiple of a half wavelength in length
JPS6081902A (en) High frequency branching filter device
CN113067148B (en) Wave beam scanning antenna based on ferroelectric film
US6710683B2 (en) Surface acoustic wave filter and communications apparatus using the same
US4160254A (en) Microwave dichroic plate
EP0880037A2 (en) Waveguide element, waveguide branch or coupler element and waveguide integrated circuit
JPH09321508A (en) Waveguide coupler
JP2004048233A (en) Antenna system and method for forming antenna element
JPS6038881B2 (en) polarization device
US10270179B2 (en) Beam-steering system of high-gain antenna using paraelectric material
CN114498061A (en) Frequency selection surface unit, frequency selection surface and frequency selection method
US4303900A (en) Wide band waveguide with double polarization and ultra-high frequency circuit incorporating such a waveguide
JP2008028966A (en) Strip line type right-hand/left-hand system composite line, and antenna using the same
US4403202A (en) Surface acoustic wave device and method for producing the same
RU2259619C2 (en) Bandpass filter
US20230335899A1 (en) Device for controlling rf electromagnetic beams according to their frequency band, and manufacturing method
JPS6025303A (en) Waveguide form polarized filter
CN219040733U (en) Millimeter wave frequency band circularly polarized Fresnel lens antenna
JPH01146407A (en) Uhf and vhf shared antenna