JPS608161Y2 - flow control valve - Google Patents
flow control valveInfo
- Publication number
- JPS608161Y2 JPS608161Y2 JP16914479U JP16914479U JPS608161Y2 JP S608161 Y2 JPS608161 Y2 JP S608161Y2 JP 16914479 U JP16914479 U JP 16914479U JP 16914479 U JP16914479 U JP 16914479U JP S608161 Y2 JPS608161 Y2 JP S608161Y2
- Authority
- JP
- Japan
- Prior art keywords
- control valve
- port
- flow path
- speed control
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Fluid-Pressure Circuits (AREA)
Description
【考案の詳細な説明】
本考案は、主として空気圧シリンダの駆動速度を制御す
るために使用する流量制御弁に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow control valve mainly used to control the driving speed of a pneumatic cylinder.
従来、空気圧シリンダの駆動速度をストローク途中で減
速するには、その空気圧回路に速度制御弁2個と方向制
御弁1個を組合わせて用いることが多い。Conventionally, in order to reduce the driving speed of a pneumatic cylinder midway through its stroke, a combination of two speed control valves and one direction control valve is often used in the pneumatic circuit.
第1図はその一例を示すもので、空気圧シリンダ1は主
方向制御弁2により高圧空気源3との接続を切換えられ
てロッド1aが往復駆動される。FIG. 1 shows an example of this, in which the connection of the pneumatic cylinder 1 to the high-pressure air source 3 is switched by the main directional control valve 2, and the rod 1a is reciprocated.
そして、この空気圧回路においては、主方向制御弁2を
第1図の位置より切換えて空気圧シリンダ1を駆動動作
させるとき、ロッド側流路4の流量は速度制御弁5の絞
り5aによって設定され、それに応じた初期速度でロッ
ド1aが駆動される。In this pneumatic circuit, when the main directional control valve 2 is switched from the position shown in FIG. 1 to drive the pneumatic cylinder 1, the flow rate of the rod side passage 4 is set by the throttle 5a of the speed control valve 5, The rod 1a is driven at an initial speed corresponding to this.
このストロークの途中で方向制御弁6を切換えると、速
度制御弁7がロッド側流路4中に接続され、この速度制
御弁7の絞り7aの有効断面積を上記速度制御弁5の絞
り5aのそれよりも小さく設定しているので、この絞り
7aによりロッド側流路4の流量がさらに減少し、空気
圧シリンダ1は減速動作を行う。When the directional control valve 6 is switched in the middle of this stroke, the speed control valve 7 is connected to the rod side flow path 4, and the effective cross-sectional area of the throttle 7a of the speed control valve 7 is changed from that of the throttle 5a of the speed control valve 5. Since it is set smaller than that, the flow rate of the rod-side flow path 4 is further reduced by this throttle 7a, and the pneumatic cylinder 1 performs a deceleration operation.
また、主方向制御弁2を第1図の状態に切換えて空気圧
シリンダ1を復帰動作させるときには、ヘッド側流路8
の流量が速度制御弁9の絞り9aによって設定され、そ
の絞りに応じた速度でロッド1aが復帰する。In addition, when switching the main directional control valve 2 to the state shown in FIG. 1 and returning the pneumatic cylinder 1, the head side flow path 8
The flow rate is set by the throttle 9a of the speed control valve 9, and the rod 1a returns at a speed corresponding to the throttle.
このような空気圧回路によって空気圧シリンダの駆動速
度を減速する場合において、比較的速度変化の大きい速
度切換えを行うと、過渡的な動きにスムーズさが失われ
、特に垂直に位置した空気圧シリンダを駆動している際
等にはそれがバウンドする如(振動することもある。When reducing the driving speed of a pneumatic cylinder using such a pneumatic circuit, if a speed change with a relatively large speed change is performed, the transitional movement will lose smoothness, especially when driving a pneumatic cylinder located vertically. It bounces (or sometimes vibrates) when it is being used.
本考案は、かかる点に鑑みてなされたもので、空気圧シ
リンダを初期速度から減速速度に切換える際の過渡的な
動きを緩やかにして、空気圧シリンダの振動を防止でき
るように構威し、且つ小型で取扱いを容易ならしめた流
量制御弁を提供しようとするものである。The present invention has been developed in view of these points, and is designed to slow down the transient movement of the pneumatic cylinder when switching from the initial speed to the deceleration speed, thereby preventing vibration of the pneumatic cylinder, and is compact. The present invention aims to provide a flow control valve that is easy to handle.
上記課題を解決するため、本考案においては、流体が流
入または流出する第1のポート及び第2のポートを備え
た弁本体の内部に、第1のポートに通じる流路と第2の
ポートに通じる二つの流路とを互いに合流状態に形威し
、これらの流路の合流部に、第1のポートに通じる流路
を第2のポートに通じる二つの流路の一方に選択的に連
通させる方向制御弁を設け、上記第1のポートに通じる
流路に第1のポートから方向制御弁に向う流体の流量は
制限するがその逆方向には流体を自由に流通させる第1
の速度制御弁を設け、第2のポートに通じる二つの流路
のうちの一方に、方向制御弁から第2のポートに向う流
体の流量は制限するがその逆方向には流体を自由に流通
させる第2の速度制御弁を設けると共に該第2の速度制
御弁を迂回するバイパス流路を設け、上記第2の速度制
御弁と方向制御弁との間におけるバイパス流路の分岐点
に、該バイパス流路が分岐する流路から弁体の背後の圧
力室へ絞りを介して流入する高圧空気によって該バイパ
ス流路を閉塞する緩衝弁を設け、上記第2の速度制御弁
の開口量を第1の速度制御弁の開口量より小さく設定す
るという技術的手段を講じている。In order to solve the above problems, in the present invention, a flow path leading to the first port and a second port are provided inside a valve body having a first port and a second port through which fluid flows in or out. Two channels that communicate with each other are formed into a confluent state, and at the confluence of these channels, the channel that communicates with the first port is selectively communicated with one of the two channels that communicate with the second port. a directional control valve that restricts the flow rate of fluid from the first port toward the directional control valve, but allows fluid to freely flow in the opposite direction;
A velocity control valve is provided in one of the two flow paths leading to the second port to restrict the flow rate of fluid from the directional control valve toward the second port, but to allow fluid to freely flow in the opposite direction. A second speed control valve is provided, and a bypass flow path is provided that bypasses the second speed control valve, and a branch point of the bypass flow path between the second speed control valve and the direction control valve is provided with a bypass flow path that bypasses the second speed control valve. A buffer valve is provided to block the bypass flow path by high pressure air flowing into the pressure chamber behind the valve body from the flow path where the bypass flow path branches through a restriction, and the opening amount of the second speed control valve is adjusted to a second speed control valve. A technical measure has been taken to set the opening amount to be smaller than the opening amount of the speed control valve No. 1.
上記技術的手段は次のように作用する。The above technical means works as follows.
即ち、第1のポートから第2のポートに向けて流体が流
れる場合において、方向制御弁により第1のポートに通
じる流路と、第2のポートに通じる二つの流路のうち第
2の速度制御弁を設けていない方の流路とが互いに連通
せしめられている場合には、流体は第1のポートに通じ
る流路中の第1の速度制御弁により制限された流量とな
る。That is, when fluid flows from the first port to the second port, the directional control valve controls the speed of the second of the two flow paths leading to the first port and the second port. If the flow path without a control valve is in communication with each other, the flow rate of the fluid is limited by the first speed control valve in the flow path leading to the first port.
この状態から方向制御弁により流路が切換えられ、第1
のポートに通じる流路と第2の速度制御弁を設けた流路
とが連通ずると、その連通直後においては、緩衝弁によ
りバイパス流路が開放せしめられているため、流体は上
記第1の速度制御弁による制限流量を維持するが、時間
の経過と共に上記緩衝弁によりバイパス流路が次第に閉
鎖されるため、流体の流量は第2の速度制御弁による制
限流量に徐々に近づき、バイパス流路の閉鎖後はその制
限流量を維持する。From this state, the flow path is switched by the directional control valve, and the first
Immediately after the communication between the flow path leading to the port and the flow path provided with the second speed control valve, the bypass flow path is opened by the buffer valve, so that the fluid flows through the first speed control valve. The flow rate limited by the speed control valve is maintained, but as time passes, the bypass flow path is gradually closed by the buffer valve, so the flow rate of the fluid gradually approaches the flow rate limit by the second speed control valve, and the bypass flow path is closed. maintains its restricted flow rate after closure.
即ち、流体流量が、方向制御弁による流路の切換えと同
時に第1の速度制御弁による制限流量から第2の速度制
御弁による制限流量まで急激に低下することがなく、緩
衝弁によって徐々に低下せしめられることになる。That is, the fluid flow rate does not suddenly decrease from the restricted flow rate by the first speed control valve to the restricted flow rate by the second speed control valve at the same time as the flow path is switched by the directional control valve, but gradually decreases by the buffer valve. You will be forced to do so.
流体が第2のポートから第1のポートへと流通する場合
には、方向制御弁がいずれの切換位置にあっても、流体
は自由流れの状態となる。When fluid flows from the second port to the first port, the fluid is free-flowing in either switching position of the directional control valve.
以下、本考案の実施例を図面に基づいて詳細に説明する
に、第2図において、弁本体10は流体が流入または流
出する第1のポート11及び第2のポート12を備え、
第1のポート11は第1図におけるロンド側流路4の空
気圧シリンダ1側に、第2のポート12は主方向制御弁
2側にそれぞれ接続される。Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In FIG. 2, the valve body 10 includes a first port 11 and a second port 12 through which fluid flows in or out;
The first port 11 is connected to the pneumatic cylinder 1 side of the Rondo side flow path 4 in FIG. 1, and the second port 12 is connected to the main directional control valve 2 side.
この弁本体10の内部には、第1のポート11に通じる
流路13に第1の速度制御弁14を介して方向制御弁1
5が配設され、この方向制御弁25によって切換えられ
る一方の流路16を直接上記第2のポート12に連通さ
せると共に、他方の流路17を緩衝弁18及び第2の速
度制御弁19を介して第2のポート12に連通させてい
る。Inside the valve body 10, a direction control valve 1 is connected to a flow path 13 leading to the first port 11 via a first speed control valve 14.
5 is disposed, one flow path 16 switched by this directional control valve 25 is directly connected to the second port 12, and the other flow path 17 is connected to a buffer valve 18 and a second speed control valve 19. It communicates with the second port 12 through the port.
流路13の途中に設けた第1の速度制御弁14は、第1
のポート11から方向制御弁15に向う流体の流量を制
限し、その逆方向には流体を自由に流通させるもので、
流路13の途中に絞り弁座20を形設し、該絞り弁座2
0に接離してその開口量を調節する弁体21を、絞り弁
座20の第1のポート11側に設けた弁支持穴22に摺
動可能に配設し、該弁支持穴22を弁体21との間の隙
間23を介して流路13に連通させ、弁体21と弁支持
穴22との間に縮設したばね24により該弁体21を付
勢し、弁本体10に対して外部から進退可能に螺挿した
調節子25の先端に圧接させている。The first speed control valve 14 provided in the middle of the flow path 13 is
The flow rate of fluid from the port 11 to the directional control valve 15 is restricted, and the fluid is allowed to freely flow in the opposite direction.
A throttle valve seat 20 is formed in the middle of the flow path 13, and the throttle valve seat 2
A valve body 21 that adjusts its opening amount by moving toward and away from the throttle valve seat 20 is slidably disposed in a valve support hole 22 provided on the first port 11 side of the throttle valve seat 20. The valve body 21 is communicated with the flow path 13 through the gap 23 between the valve body 21 and the valve body 10 , and the valve body 21 is biased by a spring 24 compressed between the valve body 21 and the valve support hole 22 . The adjustment element 25 is pressed against the tip of an adjuster 25 which is screwed in so that it can be moved forward and backward from the outside.
なお、図中25 at 25 bは調節子25のねじ部
及びつまみ部、26はロックナツト、27はOリングを
示す。In the figure, 25 at 25 b indicates a screw portion and a knob portion of the adjuster 25, 26 indicates a lock nut, and 27 indicates an O-ring.
上記流路13と一対の流路16,17の一方を選択的に
切換連通させる方向制御弁15は、上記各流路13,1
6.17の合流部においてこれらの流路に通じる弁室2
8内に弁体29を軸方向に摺動可能に内挿し、弁体29
の一端に縮設したばね30により弁体29を一方へ付勢
したもので、第3図に示すように弁体29をばね30の
付勢力に抗して押込めば、弁部29aの下面が流路13
.16間の弁座31に当接してそれを閉塞し、流路13
と流路17を連通させ、第2図に示すように弁体29を
ばね30の付勢力によって復帰させれば、弁部29aの
上面が流路13,17間の弁座32に当接してそれを閉
塞し、流路13と流路16を連通させるように構威して
いる。The direction control valve 15 selectively connects the flow path 13 with one of the pair of flow paths 16 and 17.
6. Valve chamber 2 that communicates with these flow channels at the junction of 17
8, the valve body 29 is slidably inserted in the axial direction.
The valve body 29 is urged in one direction by a spring 30 contracted at one end, and when the valve body 29 is pushed in against the urging force of the spring 30 as shown in FIG. is the flow path 13
.. 16 and closes the valve seat 31 between the passages 13 and 16.
When the flow path 17 is brought into communication with the flow path 17 and the valve body 29 is returned to its original position by the biasing force of the spring 30 as shown in FIG. It is configured to close the flow path and allow the flow path 13 and flow path 16 to communicate with each other.
なお、図中33はOリングを示す。Note that 33 in the figure indicates an O-ring.
上記方向制御弁15の弁体29をばね30の付勢力に抗
して駆動する操作機構34の操作方式としては、電磁操
作式、空気圧操作式、機械的レバー操作式等の各種のも
のを採用することができ、これらの操作手段を任意に選
択して装着できる構造とするのが望ましい。The operating mechanism 34 that drives the valve body 29 of the directional control valve 15 against the biasing force of the spring 30 employs various operating methods such as an electromagnetic operating type, a pneumatic operating type, and a mechanical lever operating type. It is desirable to have a structure in which these operating means can be arbitrarily selected and installed.
方向制御弁15と前記第2のポート12との間の一方の
流路17に設けた上記緩衝弁18は、第2の速度制御弁
19による流体の流量制限を緩やかに行うためのもので
、その弁体35を、方向制御弁15と第2の速度制御弁
19との間において、該第2の速度制御弁19を通る流
路17aと該第2の速度制御弁19を迂回するバイパス
流路17bとの分岐点に設け、該弁体35によってバイ
パス流路17bを開閉するように構威し、バイパス流路
17bの分岐点における連通口36に設けた弁座37に
接離してそれを開閉する上記弁体35を、摺動穴38に
摺動自在に嵌挿して、それと弁本体10との間に縮設し
たばね40により弁座37から離反する方向に付勢する
と共に、その背後の圧力室39を連通路41の絞り41
aを介して方向制御弁15側の流路17に連通させ、該
流路17の圧力が上昇すればこれに遅延して圧力室39
の圧力が緩やかに上昇し、この圧力により弁体35がば
ね40の付勢力に抗して徐々に弁座37を閉塞するよう
に構成している。The buffer valve 18 provided in one of the flow paths 17 between the direction control valve 15 and the second port 12 is for gently restricting the fluid flow rate by the second speed control valve 19. The valve body 35 is connected between the direction control valve 15 and the second speed control valve 19 to form a flow path 17a passing through the second speed control valve 19 and a bypass flow that bypasses the second speed control valve 19. The valve body 35 is provided at a branch point with the passage 17b, and is configured to open and close the bypass passage 17b, and is brought into contact with and separated from a valve seat 37 provided at a communication port 36 at the branch point of the bypass passage 17b. The valve body 35, which opens and closes, is slidably inserted into the sliding hole 38, and is biased in a direction away from the valve seat 37 by a spring 40 compressed between it and the valve body 10. The pressure chamber 39 is connected to the throttle 41 of the communication passage 41.
a to the flow path 17 on the directional control valve 15 side, and when the pressure in the flow path 17 increases, the pressure chamber 39
The pressure gradually increases, and this pressure causes the valve body 35 to gradually close the valve seat 37 against the biasing force of the spring 40.
なお、上記絞り41aは可変絞りとすることもできる。Note that the aperture 41a can also be a variable aperture.
また、図中42は圧力室39をシールするOリングを示
す。Further, numeral 42 in the figure indicates an O-ring that seals the pressure chamber 39.
上記第2の速度制御弁19は、流路17を第2のポート
12側へ向う流体の流量を制限し、その逆方向には流体
を自由に流通させるもので、上記第1の速度制御弁14
と略同様の構成を有し、流路17a、17bの合流点に
おいて連通口43に設けた絞り弁座44に接離してその
開口量を調節する弁体45を、絞り弁座44の流路17
a側に設けた弁支持穴46に摺動可能に配設し、該弁支
持穴46を弁体45との間の隙間47を介して流路17
aに連通させ、弁体45と弁支持穴46との間に縮設し
たばね48により該弁体45を付勢して弁本体10に対
して外部から進退可能に螺挿した調節子49の先端に圧
接させている。The second speed control valve 19 limits the flow rate of fluid flowing through the flow path 17 toward the second port 12, and allows fluid to freely flow in the opposite direction. 14
The valve element 45, which has substantially the same configuration as the flow path of the throttle valve seat 44 and which adjusts the opening amount by moving toward and away from the throttle valve seat 44 provided in the communication port 43 at the confluence of the flow paths 17a and 17b, is connected to the flow path of the throttle valve seat 44. 17
It is slidably arranged in a valve support hole 46 provided on the a side, and the valve support hole 46 is connected to the flow path 17 through a gap 47 between the valve body 45 and the valve support hole 46.
a, and biases the valve body 45 with a spring 48 contracted between the valve body 45 and the valve support hole 46. It is pressed against the tip.
この第2の速度制御弁19は、上記第1の速度制御弁1
4よりも、さらに流体の流量を制限するように調節子4
9が設定されたものであるが、流体17bは弁体45の
作動の如何にかかわらず第2のポート12に連通せしめ
られている。This second speed control valve 19 is connected to the first speed control valve 1.
regulator 4 to further restrict the fluid flow rate than regulator 4.
9 is set, but the fluid 17b is communicated with the second port 12 regardless of whether the valve body 45 is operated.
なお、図中49a、49bは調節子49のねじ部及びつ
まみ部、50はロックナツト、51はOリングを示す。In addition, in the figure, 49a and 49b indicate the screw portion and the knob portion of the adjuster 49, 50 indicates a lock nut, and 51 indicates an O-ring.
第4図は、上記構成を有する流量制御弁について、JI
S記号を主体としながら一部に作用を考慮して修正を加
えて記号化した回路図で、上記実施例と同一または等細
部分に同一の符号を付している。FIG. 4 shows the JI flow rate control valve having the above configuration.
This is a circuit diagram mainly coded with the S symbol, with some modifications taken into consideration of effects, and the same reference numerals are given to the same or equal detailed parts as in the above embodiment.
次に、上記構成を有する流量制御弁の作用について説明
する。Next, the operation of the flow control valve having the above configuration will be explained.
第2図の初期速度状態においては、第1のポート11に
流入した高圧空気が隙間23から弁支持穴22に流入し
、弁支持穴22内の圧力を高めてばね24の付勢力との
協働により弁体21を調節子25に押付け、従って上記
高圧空気は速度制御弁14により流量を制限され、方向
゛制御弁15、流路16を介して第2のポート12から
流出する。In the initial speed state shown in FIG. 2, the high pressure air that has flowed into the first port 11 flows into the valve support hole 22 through the gap 23, increases the pressure inside the valve support hole 22, and cooperates with the biasing force of the spring 24. The valve body 21 is pressed against the regulator 25 by the action, so that the flow rate of the high-pressure air is restricted by the speed control valve 14 and flows out from the second port 12 via the direction control valve 15 and the flow path 16.
ここで方向制御弁15を第3図の如く切換えれば、第1
の速度制御弁14により制限された高圧空気は流路17
に流入し、当初においては連通口36が大きく開口して
いることからその高圧空気が流路17bに流入し、第2
のポート12からそのまま流出するが、時間の経過に伴
って圧力室39の圧力上昇により弁体35が弁座37を
閉塞するため、高圧空気が流路17aを経て第2の速度
制御弁19で絞られて連通口43から流路17bに流入
し、第2のポート12から流出する。Here, if the direction control valve 15 is switched as shown in FIG.
The high-pressure air restricted by the speed control valve 14 flows through the flow path 17.
Since the communication port 36 is initially wide open, the high-pressure air flows into the flow path 17b and the second
However, as time passes, the pressure in the pressure chamber 39 increases and the valve body 35 closes the valve seat 37, so the high-pressure air passes through the flow path 17a and flows out from the second speed control valve 19. The fluid is constricted and flows into the flow path 17b through the communication port 43, and flows out through the second port 12.
これを第5図の流量特性線図に基づいてさらに詳細に説
明するに、同図における実線aは第2のポート12から
の空気流出量を示し、そのうち直線部分Aは方向制御弁
15の切換え前の第2図の状態における流出量を示す。To explain this in more detail based on the flow rate characteristic diagram in FIG. The outflow amount in the previous state of FIG. 2 is shown.
今、時離□において方向制御弁15を切換えれば、圧力
室39の内圧の緩やかな上昇に伴って弁体35が緩やか
に弁座37を閉塞するため、流路17から連通口36を
介して流路17bに流入してそのまま第2のポート12
から流出する流量は、同図に鎖線すで示す如く次第に減
少し、これに伴って、流路17aから第2の速度制御弁
19の弁体45で絞られた連通口43を介して流路17
bに流入し、かつ第2のポート12から流出する流量は
、同図に破線Cで示す如く次第に増加し、この過程にお
ける第2のポート12からの総流出量は同図の実線aの
曲線部分Bのようになり、やがて時n、2において弁座
37が弁体35により閉塞されると、流路17の高圧空
気の全てが第2の速度制御弁19により制限された連通
口43を通って第2のポート12から流出し、その流量
が第5図の実線の直線部分Cのようになる。If the directional control valve 15 is now switched at the time separation □, the valve element 35 will gradually close the valve seat 37 as the internal pressure of the pressure chamber 39 gradually increases. flows into the flow path 17b and directly flows into the second port 12.
The flow rate flowing out from the flow path gradually decreases as shown by the chain line in the figure, and as a result, the flow rate flows from the flow path 17a through the communication port 43 throttled by the valve body 45 of the second speed control valve 19. 17
The flow rate flowing into port b and flowing out from the second port 12 gradually increases as shown by the broken line C in the same figure, and the total flow rate from the second port 12 during this process corresponds to the curve indicated by the solid line a in the figure. As shown in part B, when the valve seat 37 is eventually closed by the valve body 35 at time n, 2, all of the high pressure air in the flow path 17 passes through the communication port 43 restricted by the second speed control valve 19. The liquid flows through the second port 12 and flows out from the second port 12, and the flow rate becomes as shown by the solid straight line portion C in FIG.
第2のポート12に高圧空気が供給されたときには、弁
体35が完全に復帰していないときは、流路17bの高
圧空気が両方の連通口36.43から同時に流路17a
に流入して方向制御弁15に至るが、連通口43を通る
高圧空気が第2の速度制御弁19の弁体45をばね48
の付勢力に抗して押圧して該連通口43を大きく開口さ
せ、また弁体35が完全に復帰した後にあっては高圧空
気が連通口36,43から流路17aに流入して方向制
御弁15に至る。When high pressure air is supplied to the second port 12, if the valve body 35 has not completely returned, the high pressure air in the flow path 17b is simultaneously supplied to the flow path 17a from both communication ports 36.43.
The high pressure air passing through the communication port 43 causes the valve body 45 of the second speed control valve 19 to be moved by the spring 48.
The communication port 43 is opened wide by pressing against the urging force of the valve body 35, and after the valve body 35 is completely restored, high-pressure air flows into the flow path 17a from the communication ports 36 and 43 to control the direction. The valve 15 is reached.
さらに、方向制御弁15を第2図の状態に切換えたとき
には、高圧空気は流路16を介して方向制御弁15に至
る。Further, when the directional control valve 15 is switched to the state shown in FIG. 2, the high pressure air reaches the directional control valve 15 via the flow path 16.
これらの場合に、方向制御弁15を通過した高圧空気は
、その後第1のポート11に通じる流路13に流入し、
第1の速度制御弁14の弁体21をばね24の付勢力に
抗して押下げ、大きく開口された絞り弁座20を介して
第1のポート11から自由に流出する。In these cases, the high pressure air that has passed through the directional control valve 15 then flows into the flow path 13 leading to the first port 11,
The valve body 21 of the first speed control valve 14 is pushed down against the biasing force of the spring 24, and the flow freely flows out from the first port 11 through the wide open throttle valve seat 20.
このように本考案の流量制御弁によれば、第1のポート
から第2のポートへの流体の流量を2段に制御し得るだ
けでなく、減速を緩やかに行うことができ、空気圧シリ
ンダの駆動速度を切期速度から減速速度に低下させると
きに振動を生じさせることがなく、シかも従来の複数の
弁を配管、接続したものに比して小型で取扱いが極めて
容易である等の勝れた効果がある。As described above, according to the flow control valve of the present invention, not only can the flow rate of fluid from the first port to the second port be controlled in two stages, but also the deceleration can be performed gently, and the flow rate of the fluid can be controlled in two stages. It has the advantages of not causing vibration when reducing the drive speed from the cut-off speed to the deceleration speed, and being smaller and extremely easy to handle compared to conventional valves that connect multiple valves with piping. It has a strong effect.
第1図は従来の空気圧シリンダの駆動回路図、第2図及
び第3図は本考案の流量制御弁の断面図、第4図はその
構成を記号化して示す回路図、第5図はその流量特性図
である。
10・・・・・・弁本体、11・・・・・・第1のポー
ト、12・・・・・・第2のポート、13. 16.
17・・・・・・流路、17a、17b・・・・・・流
路、14・・・・・・第1の速度制御弁、15・・・・
・・方向制御弁、18・・・・・・緩衝弁、19・・・
・・・第2の速度制御弁、35・・・・・・弁体、39
・・・・・・圧力室、41a・・・・・・絞り。Fig. 1 is a drive circuit diagram of a conventional pneumatic cylinder, Figs. 2 and 3 are cross-sectional views of the flow control valve of the present invention, Fig. 4 is a circuit diagram symbolizing its configuration, and Fig. 5 is its circuit diagram. It is a flow characteristic diagram. 10... Valve body, 11... First port, 12... Second port, 13. 16.
17...Flow path, 17a, 17b...Flow path, 14...First speed control valve, 15...
... Direction control valve, 18 ... Buffer valve, 19 ...
... Second speed control valve, 35 ... Valve body, 39
...Pressure chamber, 41a...Aperture.
Claims (1)
トを備えた弁本体の内部に、第1のポートに通じる流路
と第2のポートに通じる二つの流路とを互いに合流状態
に形威し、これらの流路の合流部に、第2のポートに通
じる流路を第1のポートに通じる二つの流路の一方に選
択的に連通させる方向制御弁を設け、上記第1のポート
に通じる流路に第1のポートから方向制御弁に向う流体
の流量は制限するがその逆方向には流体を自由に流通さ
せる第1の速度制御弁を設け、第2のポートに通じる二
つの流路のうちの一方に、方向制御弁から第2のポート
に向う流体の流量は制限するがその逆方向には流体を自
由に流通させる第2の速度制御弁を設けると共に該第2
の速度制御弁を迂回するバイパス流路を設け、上記第2
の速度制御弁と方向制御弁との間におけるバイパス流路
の分岐点に、該バイパス流路が分岐する流路から弁体の
背後の圧力室へ絞りを介して流入する高圧空気によって
該バイパス流路を閉塞する緩衝弁を設け、上記第2の速
度制御弁の開口量を第1の速度制御弁の開口量より小さ
く設定したことを特徴とする流量制御弁。A flow path leading to the first port and two flow paths leading to the second port are formed in a valve body having a first port and a second port through which fluid flows in or out so as to merge with each other. A directional control valve is provided at the confluence of these flow paths to selectively communicate the flow path leading to the second port with one of the two flow paths leading to the first port. A first speed control valve that restricts the flow rate of fluid from the first port toward the directional control valve but allows fluid to freely flow in the opposite direction is provided in the flow path leading to the second port, and a first speed control valve is provided in the flow path leading to the second port. A second speed control valve is provided in one of the flow paths for restricting the flow rate of fluid from the directional control valve toward the second port, but allowing fluid to flow freely in the opposite direction;
A bypass flow path is provided to bypass the speed control valve of the second speed control valve.
At the branch point of the bypass flow path between the speed control valve and the direction control valve, the bypass flow is controlled by high pressure air flowing from the flow path where the bypass flow path branches into the pressure chamber behind the valve body via the restriction. A flow rate control valve characterized in that a buffer valve for blocking a passage is provided, and the opening amount of the second speed control valve is set smaller than the opening amount of the first speed control valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16914479U JPS608161Y2 (en) | 1979-12-06 | 1979-12-06 | flow control valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16914479U JPS608161Y2 (en) | 1979-12-06 | 1979-12-06 | flow control valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5685701U JPS5685701U (en) | 1981-07-09 |
JPS608161Y2 true JPS608161Y2 (en) | 1985-03-22 |
Family
ID=29679983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16914479U Expired JPS608161Y2 (en) | 1979-12-06 | 1979-12-06 | flow control valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS608161Y2 (en) |
-
1979
- 1979-12-06 JP JP16914479U patent/JPS608161Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5685701U (en) | 1981-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4342256A (en) | Control device for a hydraulic motor | |
CS212750B2 (en) | Throughflow regulating valve | |
JPH01250687A (en) | Hydraulic pilot valve device | |
JPH0285506A (en) | Air operating type cylinder | |
JPS608161Y2 (en) | flow control valve | |
US5097747A (en) | Pilot adjuster-connector for adjusting the speed of pneumatic pressure cylinders | |
GB1171840A (en) | Control Valve with Lock Out Element. | |
JPH0374608A (en) | Flow control circuit | |
US4287911A (en) | Three speed fluid flow control valve | |
GB905345A (en) | Control valve | |
GB1045541A (en) | Fluid control valve | |
JP2514948Y2 (en) | Combined actuator | |
JPS594200Y2 (en) | Safety speed adjustment valve | |
JPH078605U (en) | Control valve | |
JPS5815684Y2 (en) | Cylinder with speed control mechanism | |
JPS6139111A (en) | Position follow-up proportional solenoid type spool valve | |
GB997109A (en) | Improvements in and relating to a four-way valve for an air or gaseous fluid motor | |
JPH0224961Y2 (en) | ||
GB1300677A (en) | Improvements in or relating to a fluid flow control valve | |
JP3322289B2 (en) | Ball plunger type valve | |
SU1044831A1 (en) | Throttling device of compressor pressure line | |
JPS6025013Y2 (en) | Flow control valve used in meter-in type | |
JPH0512540Y2 (en) | ||
US3949776A (en) | Disk valve | |
JPS589285Y2 (en) | pressure flow control valve |