JPS6081502A - Driving device of closed circuit of hydraulic actuator - Google Patents

Driving device of closed circuit of hydraulic actuator

Info

Publication number
JPS6081502A
JPS6081502A JP18830683A JP18830683A JPS6081502A JP S6081502 A JPS6081502 A JP S6081502A JP 18830683 A JP18830683 A JP 18830683A JP 18830683 A JP18830683 A JP 18830683A JP S6081502 A JPS6081502 A JP S6081502A
Authority
JP
Japan
Prior art keywords
circuit
pressure
main
valve
main circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18830683A
Other languages
Japanese (ja)
Other versions
JPH0154561B2 (en
Inventor
Koichi Aoyanagi
幸一 青柳
Shuichi Ichiyama
一山 修一
Masaki Kanehara
金原 正起
Keiichiro Uno
宇野 桂一郎
Tomohiko Yasuda
知彦 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP18830683A priority Critical patent/JPS6081502A/en
Publication of JPS6081502A publication Critical patent/JPS6081502A/en
Publication of JPH0154561B2 publication Critical patent/JPH0154561B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

PURPOSE:To improve operatability, by controlling a control valve based on both a pressure difference between two main circuits and operation instructions of a hydraulic actuator. CONSTITUTION:Pressure detectors 15, 16 are provided on main circuits A, B, outputs from the pressure detectors 15, 16 are applied to a control circuit 17 and control valves 11, 12 are controlled based on both a pressure difference between the main circuit A, B and operation instructions of hydraulic actuator 2. With this construction, as it becomes that the size of an operation instruction signal X and the direction of discharge other than the pressure difference between the main circuits A, B are obtained, a sudden change of a rate of the hydraulic cylinder 2 can be prevented and operatability can be improved.

Description

【発明の詳細な説明】 本発明は、片ロンド油圧シリンダや油圧モータなどの油
圧アクチュエータを閉回路により駆動する油圧アクチュ
エータの閉回路駆動装置の改良に関し、油圧ショベルな
どに好適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a closed-circuit drive device for a hydraulic actuator that drives a hydraulic actuator such as a single-rod hydraulic cylinder or a hydraulic motor in a closed circuit, and is suitable for hydraulic excavators and the like.

第1図は従来の片ロンド油圧シリンダの閉回路駆動装置
を示す。可変容量油圧ポンプ1が、油圧シリンダ2に対
して二つの主回路A、Bにより閉回路に接続される。主
回路A、Bと低圧回路Cとの間にはフラッシング弁3が
接続され、フラッシング弁3は主回路A、Hの圧力差に
応じて動作する。即ち、圧力差がない場合には、フラッ
シング弁3は中立位置にあって、主回路A、Bの両方を
低圧回路ス))ら遮断する。主回路A又はBが高圧側に
なると、フラッシング弁3は低圧側の主回路B又はAを
低圧回路Cに連通させ、低圧回路Cに設けられたリリー
フ51’4を通して主回路B又はAの余剰圧油をタンク
5に排出させる。低圧側の主回路B又はAで油が不足す
ると、タンク5からチェック弁6又は7を経て油が補給
されろ。
FIG. 1 shows a conventional closed-circuit drive device for a single-rod hydraulic cylinder. A variable displacement hydraulic pump 1 is connected to a hydraulic cylinder 2 in a closed circuit by two main circuits A, B. A flushing valve 3 is connected between the main circuits A, B and the low pressure circuit C, and the flushing valve 3 operates according to the pressure difference between the main circuits A, H. That is, if there is no pressure difference, the flushing valve 3 is in the neutral position, cutting off both the main circuits A and B from the low pressure circuit. When the main circuit A or B becomes the high pressure side, the flushing valve 3 connects the main circuit B or A on the low pressure side to the low pressure circuit C, and the surplus of the main circuit B or A is passed through the relief 51'4 provided in the low pressure circuit C. Pressure oil is discharged into tank 5. If oil is insufficient in the main circuit B or A on the low pressure side, oil is replenished from the tank 5 via the check valve 6 or 7.

?J1図に才dいて、油圧シリンダ2に矢印に示す右方
の外力が加わっている場合に、この外力の作用する方向
に急、激に油圧シリンダ2を駆動しようとすると、油圧
シリンダ2のピストンの動作遅れのために主回路Bの圧
力が主回路人の圧力より低くなって、フラッシング弁3
が切り換わり、主回路Bが低圧回路Cに連通される。こ
のため、油圧シリンダ2は急激に加速される。そして、
可変容量油圧ポンプ2からの供給油量に見合った速度に
達した時に、二つの主回路A、Bの圧力が平衡するので
、フラッシング弁3は中立位置罠復帰し、主回路A、B
は共に低圧回路Cから遮断される。
? Referring to Figure J1, when an external force is applied to the hydraulic cylinder 2 in the right direction as indicated by the arrow, if you try to suddenly and violently drive the hydraulic cylinder 2 in the direction in which this external force acts, the piston of the hydraulic cylinder 2 will Due to the delay in the operation of the main circuit B, the pressure in the main circuit B becomes lower than the pressure in the main circuit, and the flushing valve 3
is switched, and the main circuit B is connected to the low voltage circuit C. Therefore, the hydraulic cylinder 2 is rapidly accelerated. and,
When a speed corresponding to the amount of oil supplied from the variable displacement hydraulic pump 2 is reached, the pressures in the two main circuits A and B are balanced, so the flushing valve 3 returns to its neutral position and the main circuits A and B
are both cut off from the low voltage circuit C.

これによって、主回路Bに圧油が閉じ込みられ、油圧シ
リンダ2の速度が急変し、衝撃が発生する。
As a result, pressure oil is trapped in the main circuit B, the speed of the hydraulic cylinder 2 suddenly changes, and an impact is generated.

本願出願人は、特願昭56−1614号(%開開57−
116913号)によって、フラッシング弁を中立位置
で主回路A、Bのいずれが一方と低圧回路Cとを連通さ
せる構造にし、それによって異常な閉じ込み圧力を防止
する発明を提案しているが、7ラツシング弁の切り換わ
り及び油圧シリングの急激な加速は、解決されていない
。これは、フラッシング弁3が主回路A、Hの圧力差に
よってのみ切り換えられるところに起因する。
The applicant of this application is Japanese Patent Application No. 56-1614 (% Kaikai 57-
No. 116913) proposed an invention in which one of the main circuits A and B communicates with the low pressure circuit C when the flushing valve is in the neutral position, thereby preventing abnormal confinement pressure. The switching of the lashing valve and the sudden acceleration of the hydraulic cylinder are not resolved. This is due to the fact that the flushing valve 3 is switched only by the pressure difference between the main circuits A and H.

また、7ラツシング弁が主回路A、Bの圧力差によって
のみ切り換えられることは、油圧モータの閉回路駆動装
置においても別の問題をひき起こしている。第2図は従
来の油圧モータの閉回路駆動装置を示す。8は油圧モー
タ、9はチャージポンプ、lOはチャージ用のリリーフ
弁である。
Further, the fact that the seven latching valves are switched only by the pressure difference between the main circuits A and B causes another problem in a closed circuit drive system for a hydraulic motor. FIG. 2 shows a conventional closed circuit drive system for a hydraulic motor. 8 is a hydraulic motor, 9 is a charge pump, and IO is a relief valve for charging.

第2図において、油圧モータ8が、例えに外力によって
駆動され、この時、可変容量油圧ポンプ1の吐出し方向
が主回路B側であるとすると、主回路Aが高圧側となる
ので、フラッシング弁3は主回路Bを低圧回路Cに連通
させる。ここで、可変容量油圧デンプ1の吐出しポート
及び吸込みポートと7ラツシング弁3との間の圧力損失
が、配管が長いとか、間に別の弁が挿入されているとか
の理由によって大きい場合には、フラッシング弁3の付
近では主回路Aの圧力が主回路Bより高いのに対して、
可変容量油圧ポンプlの付近では逆に主回路Bの圧力が
主回路Aより高くなる状況が生ずる。この場合、可変容
量油圧ポンプ1がら主回路Bへ吐き出された圧油は、フ
ラッシング弁3及びリリーフ弁4を通ってタンク5へ流
出し、油圧モータ8の速度が可変容量油圧ポンプlの吐
出し流量に見合った速度より小さくなるという不具合が
生ずる。これにょっ℃生ずるに可変容量油圧ポンプlの
吸込みポートへ戻る流量の不足分は、チャージポンプ9
からの圧油によって補われる。
In FIG. 2, if the hydraulic motor 8 is driven by an external force and the discharge direction of the variable displacement hydraulic pump 1 is on the main circuit B side, the main circuit A will be on the high pressure side, so the flushing Valve 3 connects main circuit B to low pressure circuit C. Here, if the pressure loss between the discharge port and suction port of the variable capacity hydraulic pump 1 and the 7 latching valve 3 is large because the piping is long or another valve is inserted between them, The pressure in main circuit A is higher than that in main circuit B near flushing valve 3;
Conversely, a situation occurs in which the pressure in the main circuit B becomes higher than that in the main circuit A near the variable displacement hydraulic pump l. In this case, the pressure oil discharged from the variable displacement hydraulic pump 1 into the main circuit B passes through the flushing valve 3 and the relief valve 4 and flows into the tank 5, and the speed of the hydraulic motor 8 increases to the discharge of the variable displacement hydraulic pump l. A problem occurs in that the speed becomes smaller than the flow rate. The shortage of flow rate returned to the suction port of the variable displacement hydraulic pump 1 due to this is caused by the charge pump 9
supplemented by pressure oil from

更にこの状態から、外力が小さくなるか、蚊いは油圧モ
ータ8の速度低下によりフラッシング弁3の近傍の主回
路A、B間圧力差が、フラッシング弁3の切換設定圧力
より小さくなった時、フラッシング弁3が中立位置に復
帰し、それまでタンク5へ流出していた可変容量油圧ポ
ンプ1からの圧油−の流れが急激に閉止される。したが
って、主回路Bに高圧が発生し、油圧モータ8が急加速
される。この現象は、上記の場合典型的に発生するが、
主回路A、Bの圧力損失が非常に大きい場合には、油圧
モータ8により外部負荷、特に慣性負荷を駆動する通常
時にも発生する。このような不具合は操作性を著しく損
なう。
Furthermore, from this state, when the pressure difference between the main circuits A and B near the flushing valve 3 becomes smaller than the switching setting pressure of the flushing valve 3 due to a decrease in external force or a decrease in the speed of the hydraulic motor 8, The flushing valve 3 returns to the neutral position, and the flow of pressure oil from the variable displacement hydraulic pump 1, which had been flowing into the tank 5, is suddenly stopped. Therefore, high pressure is generated in the main circuit B, and the hydraulic motor 8 is rapidly accelerated. This phenomenon typically occurs in the above cases, but
If the pressure loss in the main circuits A and B is very large, this will occur even when the hydraulic motor 8 drives an external load, especially an inertial load. Such defects significantly impair operability.

この問題を解決するには、フラッシング弁3を可変容量
油圧ポンプ1の付近に配置すればよいが、た流量が、圧
力損失を生じている主回路の部分にも流れるため、この
部分を大流量が流れることになり、動力損失が大きくな
るうえに、可変容量油圧ポンプ1を駆動する原動後の最
大出力を越える場合には、油圧モータ8の速度を低下さ
せざるを得ない欠点が生ずる。
To solve this problem, the flushing valve 3 should be placed near the variable displacement hydraulic pump 1, but since the flow also flows to the part of the main circuit that is causing pressure loss, this part should be placed near the variable displacement hydraulic pump 1. will flow, resulting in a large power loss, and if the maximum output after driving the variable displacement hydraulic pump 1 is exceeded, the speed of the hydraulic motor 8 will have to be reduced.

また、レバー操作量すなわちアクチュエータ駆動流量が
小さく、且つ外力も小さい場合、主回路A、Hの圧力差
がフラッシング弁3の切換設定圧 ′力の上下を変動し
、これに伴って、フラッシング弁3がひんばんに切換わ
るハンチング現象を発生する不具合がある。
In addition, when the amount of lever operation, that is, the actuator drive flow rate is small, and the external force is also small, the pressure difference between the main circuits A and H will fluctuate the switching setting pressure of the flushing valve 3. There is a problem that causes a hunting phenomenon in which the power switches frequently.

以上のように、主回路A、B凹の圧力差でのみ主回路A
、Bと低圧回路Cとの接続を切り換えると種々の不具合
が発生する。
As mentioned above, only the pressure difference between main circuit A and B concave causes main circuit A to
, B and the low voltage circuit C, various problems occur.

本発明の目的は、上述した不具合を除去し、操作性を向
上させることができる油圧アクチュエータの閉回路駆動
装置を提供することである。
An object of the present invention is to provide a closed-circuit drive device for a hydraulic actuator that can eliminate the above-mentioned problems and improve operability.

この目的を達成するために、本発明は、二つのる開閉弁
を制御する制御手段を設け、以て制御入力条件として油
圧アクチュエータの操作指令を加えたことを特徴とする
In order to achieve this object, the present invention is characterized in that a control means for controlling two on-off valves is provided, and a hydraulic actuator operation command is added as a control input condition.

以下、本発明を図示の実施例に基づいて詳細に説明する
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第3図は本発明の一実施例である片ロンドの油圧シリン
ダの閉回路駆動装置を示す。第1図及び第2図と同様の
部分は同一符号にて示す。開閉弁11.12はポペット
弁タイプのもので、ポペツ)11a、12a、はね11
b、12b及びパイロット受圧室11C+12eをそれ
ぞれ有し、主回路A、Bと低圧回路Cとの間の接続を開
閉する。
FIG. 3 shows a closed-circuit drive device for a single-rod hydraulic cylinder, which is an embodiment of the present invention. Components similar to those in FIGS. 1 and 2 are designated by the same reference numerals. The on-off valves 11 and 12 are of the poppet valve type.
b, 12b and pilot pressure receiving chambers 11C+12e, respectively, and open/close the connection between the main circuits A, B and the low pressure circuit C.

切換弁13.14は開閉弁11.12のパイロット受圧
室11c、12cを主回路A、Bとドレンとに切り換え
るものである。主回路A、Hの圧力を検出する圧力検出
器15.16は、検出信号PAr P mを制御回路1
7へ出力する。制御回路17は、検出信号PA、PBと
操作レバー18からの操作指令信号Xとに基づいて演算
し、切換弁13゜14及びレギュレータ19へ指令信号
を出力する。
The switching valves 13.14 switch the pilot pressure receiving chambers 11c, 12c of the on-off valves 11.12 to the main circuits A, B and the drain. Pressure detectors 15 and 16 that detect the pressure in the main circuits A and H send the detection signal PAr P m to the control circuit 1.
Output to 7. The control circuit 17 performs calculations based on the detection signals PA, PB and the operation command signal X from the operation lever 18, and outputs command signals to the switching valves 13 and 14 and the regulator 19.

低圧回路Cのリリーフ弁4は、チャージ用のリリーフ弁
を兼用する。
The relief valve 4 of the low pressure circuit C also serves as a charging relief valve.

次に動作を第4図の制御回路17のフローチャートを参
照して説明する。
Next, the operation will be explained with reference to the flowchart of the control circuit 17 shown in FIG.

ステップ20で信号PA#pHlXを読み込み、油圧シ
リンダ2が停止状態で、且つ主回路A、Bの圧力差が所
定値以下の場合には、ステップ21では、操作指令信号
Xが零であるから、NOの判定をする。ステップ22で
は、圧力差IPム−PB1は所定値より小さいので、N
Oの判定をする。これによつ℃、ステップ26により制
御回路17は切換弁13.14の両方をオフにする。し
たがって、切換弁13114は開閉弁11,12のパイ
ロット受圧室11 e e 12 eを主回路A、Bに
接続し、開閉弁13.14は共に閉止される。そして、
ステップ28では吐出量零の指令信号をレギュレータ1
9へ出力する。
In step 20, the signal PA#pHlX is read, and if the hydraulic cylinder 2 is in a stopped state and the pressure difference between the main circuits A and B is less than a predetermined value, in step 21, the operation command signal X is zero. Make a NO decision. In step 22, since the pressure difference IPmu-PB1 is smaller than the predetermined value, N
Make a judgment of O. As a result, in step 26, the control circuit 17 turns off both switching valves 13, 14. Therefore, the switching valve 13114 connects the pilot pressure receiving chambers 11 e e 12 e of the on-off valves 11 and 12 to the main circuits A and B, and the on-off valves 13 and 14 are both closed. and,
In step 28, the command signal for the discharge amount of zero is sent to the regulator 1.
Output to 9.

操作レバー18が操作され、油圧シリンダ2の作動方向
及び速度を設定する操作指令信号Xが、制御回路17に
入力すると、操作指令信号Xの変化速度が所定値より小
さい場合と、それが所定値より大きくても、ステップ2
7で、可変容量油圧デンゾlの吐出し方向を高圧側であ
ると判定した場合のいずれであっても、ステップ22に
より圧力差I PA−FB Iを判定する。油圧シリン
ダ20通常の起動時、或いは作動中に、主回路A、B間
に圧力差が発生すれば、ステップ23圧よりPA〉PR
を判定し、主回路人が高圧側の場合には、スフ−ツブ2
4で、切換弁13をオフに、切換弁14をオンにし、開
閉弁11を閉止させ、開閉弁12される。ステップ23
で主回路Bの圧力が高いと判定した場合には、ステップ
25で、切換弁13をオンに、切換弁14をオフに、そ
れぞれ制御し、開閉弁11’!・開通させ、開閉弁12
を閉止させる。
When the operation lever 18 is operated and the operation command signal X that sets the operating direction and speed of the hydraulic cylinder 2 is input to the control circuit 17, if the rate of change of the operation command signal Even if it is larger, step 2
Regardless of whether it is determined in step 7 that the discharge direction of the variable capacity hydraulic pressure sensor I is on the high pressure side, the pressure difference IPA-FBI is determined in step 22. If a pressure difference occurs between the main circuits A and B during normal startup or operation of the hydraulic cylinder 20, then from step 23 pressure PA>PR
is determined, and if the main circuit is on the high voltage side, the
4, the switching valve 13 is turned off, the switching valve 14 is turned on, the on-off valve 11 is closed, and the on-off valve 12 is closed. Step 23
If it is determined that the pressure in the main circuit B is high, in step 25, the switching valve 13 is turned on and the switching valve 14 is turned off, respectively, and the on-off valve 11'!・Open the on-off valve 12
to close.

その後、ステップ28で、操作指令信号Xに応じた指令
信号をレギュレータ19へ出力し、可変容。
Thereafter, in step 28, a command signal corresponding to the operation command signal X is output to the regulator 19, and the variable capacitor is controlled.

量油圧Iンプlの吐出し方向及び吐出し流量が制御され
る。
The discharge direction and discharge flow rate of the hydraulic pressure I are controlled.

油圧シリンダ2に外力が加えられて、主回路Bが高圧側
になっている状態で、外力が作用する方向と同じ方向に
油圧シリンダ2を駆動しようとして、操作レバー18を
急激に操作した場合には、ステップ21で、操作指令信
号Xの変化速度が所定値より大となることによりYES
と判定し、ステップ27で、可変容量油圧ポンプ1の吐
出し方向が主回路A側であるので、Noと判定し、切換
弁13.14を切り換えずに、そのままの状態を保持さ
せる。即ち、レバー操作前は、主回路Bがh圧側となっ
ていたので、切換弁13がオン、切換弁14がオフ、と
なっており、その状態が保持される。したがって、主回
路Aが急激に高圧側になっても、主回路Aが開閉弁11
の開通によって低圧回路Cに連通された状態が保持され
るので油圧シリンダ2の急加速が防止される。
When an external force is applied to the hydraulic cylinder 2 and the main circuit B is on the high pressure side, when the operating lever 18 is suddenly operated in an attempt to drive the hydraulic cylinder 2 in the same direction as the external force is applied. is YES in step 21 because the rate of change of the operation command signal X is greater than a predetermined value.
In step 27, since the discharge direction of the variable displacement hydraulic pump 1 is on the main circuit A side, the determination is No, and the switching valves 13 and 14 are not switched and are kept in the same state. That is, before the lever operation, the main circuit B was on the h pressure side, so the switching valve 13 was on and the switching valve 14 was off, and this state is maintained. Therefore, even if the main circuit A suddenly becomes high pressure side, the main circuit A
By opening the circuit, the state of communication with the low pressure circuit C is maintained, and sudden acceleration of the hydraulic cylinder 2 is prevented.

操作レバー18の操作量を略一定にしていて、油圧シリ
ンダ2にかかる負荷の変動により主回路A、Bの圧力の
大小関係が変わった場合には、ステップ22〜26の動
作を行うので、従来のフラツシング弁と同等の機能を果
たす。
When the amount of operation of the operating lever 18 is kept approximately constant and the magnitude relationship between the pressures in the main circuits A and B changes due to a change in the load applied to the hydraulic cylinder 2, steps 22 to 26 are performed. It performs the same function as a flushing valve.

本実施例によれは、主回路A、Hの圧力差の他に、操作
指令信号Xの変化速度及び吐出し方向を見ているので、
油圧シリンダ2の速度の急変を防ぎ、操作性を向上させ
ることができる。
According to this embodiment, in addition to the pressure difference between the main circuits A and H, the change rate and discharge direction of the operation command signal X are looked at.
Sudden changes in the speed of the hydraulic cylinder 2 can be prevented and operability can be improved.

エンジントラブルなどの非常時に、制御回路17への非
常入力によって切換弁13.14のいずれか一方゛、或
いは両方をオンにするような制御回路17’の構成にす
れは、非常時に油圧シリンダ2を自由降下させることが
でき、安全性を高めることができるという効果をも奏す
る。
If the control circuit 17' is configured so that one or both of the switching valves 13 and 14 are turned on by an emergency input to the control circuit 17 in the event of an emergency such as engine trouble, it is possible to turn on the hydraulic cylinder 2 in an emergency. It also has the effect of being able to freely descend, increasing safety.

第3図では、切換弁13.14を制御回路17が制御し
ているが、第5図に示されるように、制御回路17が電
磁弁タイプの開閉弁29.30を直接制御するようにし
てもよい。通常、この場合にはチャージ用のチェック弁
6,7が必要となる。
In FIG. 3, the control circuit 17 controls the switching valves 13, 14, but as shown in FIG. 5, the control circuit 17 directly controls the solenoid valve type on-off valves 29, 30. Good too. Usually, in this case, check valves 6 and 7 for charging are required.

第6図は本発明の他の実施例である油圧モータの閉回路
駆動装置を示す。第2図及び第5図と同様な部分は同一
符号にて示す。
FIG. 6 shows a closed circuit drive device for a hydraulic motor, which is another embodiment of the present invention. Components similar to those in FIGS. 2 and 5 are designated by the same reference numerals.

本実施例では、開閉弁29.30の開弁設定圧力を従来
の切換設定圧力のように常に一定にするのではなく、レ
バー操作量及び主回路A、Hの圧力損失を考慮して変え
る。その動作について、第7図の開弁設定圧力及び第8
図の制御回路17のフローチャートを参照にして説明す
る。31〜42はステップを示す。
In this embodiment, the opening setting pressure of the on-off valves 29 and 30 is not always kept constant like the conventional switching setting pressure, but is changed in consideration of the lever operation amount and the pressure loss of the main circuits A and H. Regarding its operation, the valve opening setting pressure shown in Fig. 7 and the valve opening setting pressure shown in Fig. 8
This will be explained with reference to the flowchart of the control circuit 17 shown in the figure. 31 to 42 indicate steps.

制御回路17は、ステップ31にて操作指令信号X及び
検出信号P A I P nを読み込む。操作指令信号
Xの絶対値の大きさが所定値IXo1より小さい時には
、ステップ32からステップ41に移行し、開閉弁29
.30をいずれも閉止させ、その後、レギュレータ19
に操作指令信号Xに応じた指令信号を出力する。この状
態は、主回路A、Bの圧力差ΔPの値の如何にかかわら
ず、制御されるので、レバー操作量が小さく、且つ外力
も小さい場合に生ずるハンチング現象を防ぐことができ
る。
The control circuit 17 reads the operation command signal X and the detection signal P A I P n in step 31 . When the magnitude of the absolute value of the operation command signal
.. 30, and then close the regulator 19.
A command signal corresponding to the operation command signal X is output. Since this state is controlled regardless of the value of the pressure difference ΔP between the main circuits A and B, the hunting phenomenon that occurs when the lever operation amount is small and the external force is also small can be prevented.

油圧モータ8に外力が作用しておらず、油圧モータ8の
付近の高圧側主回路と、可変容量油圧ポンプlの付近の
高圧側主回路とが一致している場合には、例えは、主回
路Aが高圧側であるとすると、制御回路17は、ステッ
プ34でYESの判定をし、ステップ35で開弁設定圧
力ΔPI(X)をメモリから読み出す。主回路Aが高圧
側である時の開閉弁30の開閉設定圧力ΔPr (X)
と、主回路Bが高圧側である時の開閉弁29の開閉設定
圧力ΔP1(X)とが、第7図に示されるように、吐出
し方向及び吐出量に応じて予め定められ、メモリに記憶
されている。
If no external force is acting on the hydraulic motor 8 and the high-pressure main circuit near the hydraulic motor 8 and the high-pressure main circuit near the variable displacement hydraulic pump l match, for example, the main Assuming that circuit A is on the high pressure side, the control circuit 17 makes a YES determination in step 34, and reads out the valve opening set pressure ΔPI(X) from the memory in step 35. Opening/closing setting pressure ΔPr (X) of the opening/closing valve 30 when the main circuit A is on the high pressure side
and the opening/closing set pressure ΔP1(X) of the opening/closing valve 29 when the main circuit B is on the high pressure side are determined in advance according to the discharge direction and discharge amount, as shown in FIG. 7, and are stored in the memory. remembered.

主回路Aが高圧側で、且つ吐出し側である場合には、開
弁設定圧力ΔPI(X)は常に一定であり、ステップ3
6で、圧力差ΔPfJ″−開弁設定圧力ΔP1(X) 
より大きいと判定すると、ステップ37で、開閉弁30
を開通させる。これによって低圧側の主回路Bが低圧回
路Cに連通され、従来の7ラツシング弁と同様の機能を
果たす。
When the main circuit A is on the high pressure side and on the discharge side, the valve opening set pressure ΔPI(X) is always constant, and step 3
6, pressure difference ΔPfJ'' - valve opening setting pressure ΔP1 (X)
If it is determined that the on-off valve 30 is larger than the
to be opened. This connects the low-pressure side main circuit B to the low-pressure circuit C, and performs the same function as a conventional seven-lashing valve.

油圧モータ8に外力が作用していて、主回路Bが吐出側
であるのに、油圧モータ8伺近の主回路Aが高圧側であ
るとした場合には、ステップ35で、開弁設定圧力ΔP
I (X)を読み出すと、その値は第7図の第二象限に
示されるように操作指令信号Xの値が負方向に大きくな
るに従って大きくなる。即ち、主回路Bを流れる流量が
大きくなり、主回路Bの圧力損失もそれに伴って大きく
なるので、この圧力損失の増加分を加算して、ΔP1(
X)としている。したがって、ステップ36で、圧力差
ΔPと開弁設定圧力ΔP1(X)とを比較イることは、
主回路Bに圧力損失がない場合に主回路A、Bの圧力を
比較しているのと同じことになる。
If an external force is acting on the hydraulic motor 8 and the main circuit B is on the discharge side, but the main circuit A near the hydraulic motor 8 is on the high pressure side, in step 35, the valve opening setting pressure is ΔP
When I (X) is read out, its value increases as the value of the operation command signal X increases in the negative direction, as shown in the second quadrant of FIG. That is, the flow rate flowing through the main circuit B increases, and the pressure loss in the main circuit B also increases accordingly, so by adding up this increase in pressure loss, ΔP1 (
X). Therefore, in step 36, comparing the pressure difference ΔP and the valve opening set pressure ΔP1(X) is as follows.
This is the same as comparing the pressures in main circuits A and B when there is no pressure loss in main circuit B.

これにより、圧力損失の存在による吐出し側の主回路と
低圧回路との連通な防ぐことができ、油圧モータ8の速
度が吐出し流量に見合った速度より小さくなる不具合や
、更にその後、急加速される不具合を解決することがで
きる。
This prevents communication between the main circuit on the discharge side and the low pressure circuit due to the presence of pressure loss, and prevents problems in which the speed of the hydraulic motor 8 becomes lower than the speed commensurate with the discharge flow rate, and furthermore, sudden acceleration. problems that may occur can be resolved.

本実施例によれは、主回路A、Hの圧力差の他に、操作
指令信号Xの大きさ及び吐出し方向、その大きさに伴い
変化する主回路A、Bの圧力損失を見ているので、主回
路A、Bの圧力差のハンチング現象や、油圧モータ8の
速度低下及びその後の急加速を防ぎ、操作性を向上させ
ることができる。
In this embodiment, in addition to the pressure difference between the main circuits A and H, we are looking at the magnitude and discharge direction of the operation command signal X, and the pressure loss in the main circuits A and B that changes depending on the magnitude. Therefore, it is possible to prevent the hunting phenomenon due to the pressure difference between the main circuits A and B, the speed reduction of the hydraulic motor 8 and the subsequent sudden acceleration, and improve the operability.

第6図におい又、圧力検出器1’5.16を可変容量油
圧ポンプ1の付近に設けれは、主回路A。
In FIG. 6, a pressure detector 1'5.16 is also provided in the vicinity of the variable displacement hydraulic pump 1 in the main circuit A.

Bの圧力損失分の補正が僅かで済むか、或いは場合によ
り又は全く無しにすることも可能でちる。
The correction for the pressure loss of B may be small, or in some cases, it may be possible to eliminate it altogether.

図示実施例において、制御回路17が本発明の制御手段
に相当する。
In the illustrated embodiment, the control circuit 17 corresponds to the control means of the present invention.

なお、圧力検出器15.16の代わりに差圧検出器を用
いることができる。
Note that a differential pressure detector can be used instead of the pressure detectors 15 and 16.

以上説明したように、本発明によれは、二つの主回路の
圧力差と油圧アクチュエータの操作指令の両方に基づい
て、主回路と低圧回路との間の接続を開閉1−る開閉弁
を制御1−る制御手段を設け、以て、制御入力条件とし
て油圧アクチュエータの指作指令を加えるようにしたか
ら、運転者の意図に関係ない油圧アクチュエータの異常
動作を防ぐことができ、操作性を向上させることができ
る。
As explained above, the present invention controls the on-off valve that opens and closes the connection between the main circuit and the low-pressure circuit based on both the pressure difference between the two main circuits and the operation command of the hydraulic actuator. 1- Since a control means is provided and a hydraulic actuator finger command is added as a control input condition, abnormal operation of the hydraulic actuator that is unrelated to the driver's intention can be prevented, improving operability. can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の片ロンド油圧シリンダの閉回路駆動装置
の回路図、第2囚は従来の油圧モータの閉回路駆動装置
の回路図、第3図は本発明の一実施例を示す回路図、第
4図は本発明の一実施例における制御回路の動作ケ示す
フローチャート、第5図は第3図の実施例の変形を示す
回路図、第6図は本発明の他の実施例を示す回路図、第
7図は本発明の他の実施例における開弁設定圧力を示す
図、第8図は本発明の他の実施例における制御回路の動
作を示すフローチャートである。 1・・・可変容量油圧ポンプ、2・・・油圧シリンダ、
4・・・リリーフ弁、5・・・タンク、8・・・油圧モ
ータ、11、t2・・・開閉弁、13.14・・・切換
弁、15゜16・・・圧力検出器、17・・・制御回路
、18・・・操作レバー、19・・・レギュレータ、2
9.30・・・開閉弁、A、B・・・主回路、C・・・
低圧回路。 第1図 第2図 コ コ 第3図 2 第4図 第5図 第6図 第7図 第8図
Fig. 1 is a circuit diagram of a conventional closed circuit drive device for a single-rod hydraulic cylinder, Fig. 2 is a circuit diagram of a conventional closed circuit drive device for a hydraulic motor, and Fig. 3 is a circuit diagram showing an embodiment of the present invention. , FIG. 4 is a flowchart showing the operation of the control circuit in one embodiment of the present invention, FIG. 5 is a circuit diagram showing a modification of the embodiment of FIG. 3, and FIG. 6 shows another embodiment of the invention. The circuit diagram, FIG. 7 is a diagram showing the valve opening setting pressure in another embodiment of the present invention, and FIG. 8 is a flowchart showing the operation of the control circuit in another embodiment of the present invention. 1... Variable displacement hydraulic pump, 2... Hydraulic cylinder,
4... Relief valve, 5... Tank, 8... Hydraulic motor, 11, t2... Open/close valve, 13.14... Switching valve, 15° 16... Pressure detector, 17. ...Control circuit, 18...Operation lever, 19...Regulator, 2
9.30... Open/close valve, A, B... Main circuit, C...
Low voltage circuit. Figure 1 Figure 2 Here Figure 3 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1、 可変容量油圧ポンプを油圧アクチュエータに対し
て二つの主回路によって閉回路に接続し、主回路の余剰
圧油を排出する低圧回路と主回路との間に、該回路間の
接続を開閉する開閉弁を設けた油圧アクチュエータの閉
回路駆動装置において、二つの主回路の圧力差と油圧ア
クチュエータの操作拓令の両方に基づいて、前記D11
閉弁を制御する制御手段を設けたことをlIV徴とする
油圧アクチュエータの閉回路駆動装置。
1. A variable displacement hydraulic pump is connected to a hydraulic actuator in a closed circuit through two main circuits, and a connection between the circuits is opened and closed between the low pressure circuit that discharges excess pressure oil in the main circuit and the main circuit. In a closed-circuit drive device for a hydraulic actuator provided with an on-off valve, the above-mentioned D11 is
A closed circuit drive device for a hydraulic actuator, characterized in that it is provided with a control means for controlling valve closing.
JP18830683A 1983-10-11 1983-10-11 Driving device of closed circuit of hydraulic actuator Granted JPS6081502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18830683A JPS6081502A (en) 1983-10-11 1983-10-11 Driving device of closed circuit of hydraulic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18830683A JPS6081502A (en) 1983-10-11 1983-10-11 Driving device of closed circuit of hydraulic actuator

Publications (2)

Publication Number Publication Date
JPS6081502A true JPS6081502A (en) 1985-05-09
JPH0154561B2 JPH0154561B2 (en) 1989-11-20

Family

ID=16221300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18830683A Granted JPS6081502A (en) 1983-10-11 1983-10-11 Driving device of closed circuit of hydraulic actuator

Country Status (1)

Country Link
JP (1) JPS6081502A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004820A1 (en) * 2000-07-10 2002-01-17 Kobelco Construction Machinery Co., Ltd. Hydraulic cylinder circuit
WO2004067969A1 (en) * 2003-01-29 2004-08-12 Cnh Baumaschinen Gmbh Hydraulic system for linear drives controlled by a displacer element
JP2005042916A (en) * 2003-07-11 2005-02-17 Sauer Danfoss Inc Electric loop flushing device
JP2005249198A (en) * 2004-03-05 2005-09-15 Deere & Co Closed circuit energy recovering system for working apparatus
JP2005282644A (en) * 2004-03-29 2005-10-13 Toko Seisakusho:Kk Hydraulic cylinder device
JP4852039B2 (en) * 2004-07-16 2012-01-11 ポクライン・ヒドロリック・アンデュストリ Hydraulic circuit with multi-function selector
WO2013115140A1 (en) * 2012-01-31 2013-08-08 日立建機株式会社 Hydraulic closed circuit system
JP2021134906A (en) * 2020-02-28 2021-09-13 Kyb株式会社 Fluid pressure drive unit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004820A1 (en) * 2000-07-10 2002-01-17 Kobelco Construction Machinery Co., Ltd. Hydraulic cylinder circuit
US7543449B2 (en) 2003-01-29 2009-06-09 Cnh America Llc Hydraulic system for linear drives controlled by a displacer element
WO2004067969A1 (en) * 2003-01-29 2004-08-12 Cnh Baumaschinen Gmbh Hydraulic system for linear drives controlled by a displacer element
JP2005042916A (en) * 2003-07-11 2005-02-17 Sauer Danfoss Inc Electric loop flushing device
JP2005249198A (en) * 2004-03-05 2005-09-15 Deere & Co Closed circuit energy recovering system for working apparatus
JP4565871B2 (en) * 2004-03-29 2010-10-20 株式会社東晃製作所 Hydraulic cylinder device
JP2005282644A (en) * 2004-03-29 2005-10-13 Toko Seisakusho:Kk Hydraulic cylinder device
JP4852039B2 (en) * 2004-07-16 2012-01-11 ポクライン・ヒドロリック・アンデュストリ Hydraulic circuit with multi-function selector
WO2013115140A1 (en) * 2012-01-31 2013-08-08 日立建機株式会社 Hydraulic closed circuit system
CN104093995A (en) * 2012-01-31 2014-10-08 日立建机株式会社 Hydraulic closed circuit system
JPWO2013115140A1 (en) * 2012-01-31 2015-05-11 日立建機株式会社 Hydraulic closed circuit system
CN104093995B (en) * 2012-01-31 2016-01-27 日立建机株式会社 Hydraulic pressure closed-loop system
JP2021134906A (en) * 2020-02-28 2021-09-13 Kyb株式会社 Fluid pressure drive unit

Also Published As

Publication number Publication date
JPH0154561B2 (en) 1989-11-20

Similar Documents

Publication Publication Date Title
JP4096900B2 (en) Hydraulic control circuit for work machines
US6648303B1 (en) Control device for hydraulic drive winch
US4464898A (en) Hydraulic power system
US5201803A (en) Hydraulic system for a vehicle
JPS6081502A (en) Driving device of closed circuit of hydraulic actuator
US5285643A (en) Hydraulic drive system for civil-engineering and construction machine
US4205591A (en) Multiple speed hoisting system with pressure protection and load control
JP4685542B2 (en) Hydraulic drive
KR102246421B1 (en) Construction machinery control system and construction machinery control method
JPS63106404A (en) Hydraulic device for driving inertial body
EP1172325A2 (en) Control device for hydraulic drive winch
JP2690353B2 (en) Make-up device for hydraulic circuit using load sensing system
JPH08100805A (en) Pressure control valve
JPH0210321Y2 (en)
JP2000257712A (en) Traveling driving device
JPS63106405A (en) Controlling method for hydraulic device for driving inertial body
JPH03213703A (en) Discharge flow control circuit for load pressure compensating pump
KR100813782B1 (en) Apparatus for preventing shock by quick operation
JP2927308B2 (en) Hydraulic control circuit
JPH0337642B2 (en)
JP2900839B2 (en) Hydraulic circuits for injection molding machines, etc.
JP3689554B2 (en) Hydraulic control circuit
JP2555499B2 (en) Hydraulic drive for civil engineering and construction machinery
JP2000227101A (en) Control device of hydraulic valve
JPH02240402A (en) Hydraulic circuit of work machine