JPS6080801A - Pattern generator of fresnel zone plate - Google Patents

Pattern generator of fresnel zone plate

Info

Publication number
JPS6080801A
JPS6080801A JP19005383A JP19005383A JPS6080801A JP S6080801 A JPS6080801 A JP S6080801A JP 19005383 A JP19005383 A JP 19005383A JP 19005383 A JP19005383 A JP 19005383A JP S6080801 A JPS6080801 A JP S6080801A
Authority
JP
Japan
Prior art keywords
point
reflected
zone plate
concave spherical
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19005383A
Other languages
Japanese (ja)
Other versions
JPH0475481B2 (en
Inventor
Kenji Iwahashi
岩橋 賢治
Masaru Koeda
小枝 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP19005383A priority Critical patent/JPS6080801A/en
Publication of JPS6080801A publication Critical patent/JPS6080801A/en
Publication of JPH0475481B2 publication Critical patent/JPH0475481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0486Improving or monitoring the quality of the record, e.g. by compensating distortions, aberrations
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0476Holographic printer
    • G03H2001/0482Interference based printer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To form an interference pattern of a Fresnel zone plate for X-ray imaging by bisecting the luminous flux from one spot light source with a beam splitter, reflecting respectively the split beams with spherical mirrors and condensing the beams to different two points on the common optical axis of both spherical mirrors which are optically superposed. CONSTITUTION:The laser beam from a laser light source 1 is condensed to a point P to form a divergent luminous flux which is then bisected by a beam splitter 3. The luminous flux reflected by the splitter 3 is made incident to a concave spherical mirror M by which the luminous flux is reflected to condense at the point O. The luminous flux transmitted through the splitter 3 is reflected by a concave spherical mirror M' and is corrected in spherical aberration by an aberration correcting lens L. The corrected flux is reflected by the splitter 3 and is condensed at the point I. The point I is on the optical axis of the mirror M together with the point O and the recording carrier F for the interference pattern is set at the intermediate of the point O and the point I and said pattern is recorded thereto.

Description

【発明の詳細な説明】 ビ)産業上の利用分野 本発明は結像素子として用いられるフレネルゾーンプレ
ートの製造装置に関し、特にX線領域の結像素子として
適したフレネルゾーンプレートの □製造装置に関する
Detailed Description of the Invention B) Industrial Application Field The present invention relates to an apparatus for manufacturing a Fresnel zone plate used as an imaging element, and particularly relates to an apparatus for manufacturing a Fresnel zone plate suitable as an imaging element in the X-ray region. .

(ロ)従来技術 X線は屈折を利用した収束手段は適用できないが、回折
を利用することによって収束或は結像をさせることは可
能である。このため、X線用の結的に工作することは困
難である。電子線露光による輪帯描画法も考えられてい
るが、実用的な大きさのものを作ることは困難である。
(b) Prior Art Although convergence means using refraction cannot be applied to X-rays, it is possible to converge or image them using diffraction. For this reason, it is difficult to fabricate a tube for X-rays. An annular drawing method using electron beam exposure has also been considered, but it is difficult to make one of a practical size.

そこでホログラフィを用いて干渉縞を記録する方法が考
えられた。ホログラフィに用いる光の波長は数千久であ
シ、目標とするX、lI波長を100A程度にした場合
ホログラフィに用いた波長の光に対して焦点距離が数m
mとなるようなゾーンプレートを作っても、目的のX線
に対しては200mm程度の焦点距離となる。そこで目
的のX線に対して200mm位の焦点距離を有し、しか
も実用的な直径2〜3mm程度のフレネルゾーンプレー
トを可視光によるホログラフィによって記録作成する場
合、干渉を起させる光束は開き角数中度と云った大きな
開き角で収束させる必要があり、ホログラフィ光学系の
球面収差が大きな障碍となって来る。
Therefore, a method of recording interference fringes using holography was devised. The wavelength of the light used for holography is several thousand years, and when the target X and I wavelengths are set to about 100A, the focal length of the light used for holography is several meters.
Even if a zone plate is made with a distance of m, the focal length for the target X-ray will be about 200 mm. Therefore, when recording a Fresnel zone plate with a focal length of about 200 mm for the target X-ray and a practical diameter of about 2 to 3 mm using visible light holography, the light beams that cause interference are It is necessary to converge at a medium-sized aperture angle, and the spherical aberration of the holographic optical system becomes a major obstacle.

(ハ) 目 的 本発明はX線結像用フレネルゾーンプレートのパターン
を記録するだめのホログラフィ光学系の球面収差を充分
に補正したフレネルゾーンのパターン発生装置を提供し
ようとするものである。
(c) Purpose The present invention provides a Fresnel zone pattern generator in which the spherical aberration of a holographic optical system for recording the pattern of a Fresnel zone plate for X-ray imaging is sufficiently corrected.

に)構 成 本発明は、−個の点光源から発する球面波光束をビーム
スグリツタで2方向に分割し、分割された2光束を夫々
球面鏡で反射させて、光学的に重合させた両法面鏡の共
通光軸上の異る2点に集光させ、同光軸上の適所に干渉
パターン記録担体を配置するようにしたフレネルゾーン
のパターン発生装置である。
B) Structure The present invention splits the spherical wave light beams emitted from - point light sources into two directions with a beam sinter, and reflects the two divided light beams with spherical mirrors to optically overlap the two slopes. This is a Fresnel zone pattern generation device in which light is focused on two different points on a common optical axis of a mirror, and an interference pattern recording carrier is placed at an appropriate position on the same optical axis.

(ホ)実施例 実施例の説明をするに先立って一般的説明をす′る。第
1図でFがフレネルゾーンプレートで、Aはその光軸で
ある。光軸A上でゾーンプレートFの両側に0点と1点
をとシ、ゾーンプレートの中心からこれらの点までの距
離をu、vとする。ゾーンプレートF上に光軸からの半
径rnの円を考え、0点及び1点からこの円周までの距
離をS。
(E) Embodiments Before explaining the embodiments, a general explanation will be given. In Figure 1, F is the Fresnel zone plate and A is its optical axis. Let 0 and 1 points be placed on both sides of the zone plate F on the optical axis A, and let the distances from the center of the zone plate to these points be u and v. Consider a circle with radius rn from the optical axis on zone plate F, and let S be the distance from the 0 and 1 points to the circumference of this circle.

tとするとき、 u 十V = 8 +t −−nλ nは整数て1点に
集光し、1点と0点は結像系の共役点の関係になる。こ
のようなゾーンプレートの焦点距離1はl / u3 
、1 / v3以上の項を無視すれば111 市 uvf、 f=nJ・・・・・・・・・(1)の関係が
成立つ。このようなゾーンプレートを波長λ1の光に対
して用いた場合の焦点距離f1は(1)式から ア・ −乃げ nλ1 従って のフレネルゾーンプレートの波長4000Aの可視光に
対する焦点距離を(21式からめると、1,25mmと
なる。
When t, u 1 V = 8 + t - nλ n is an integer and the light is focused on one point, and the 1 point and the 0 point are in the relationship of conjugate points of the imaging system. The focal length 1 of such a zone plate is l / u3
, 1/v3 or more, the following relationship holds true: 111 uvf, f=nJ... (1). When such a zone plate is used for light with a wavelength of λ1, the focal length f1 is calculated from equation (1) as follows: When intertwined, it becomes 1.25 mm.

ホログラフィでゾーンプレートを作成する原理は第1図
で0点と1点とに夫々互に干渉可能な光を出す点光源を
配置してプレートF上に干渉パターンを形成させ、これ
を記録するものである。このとき使用した光の波長をλ
とすれば(1)式を満足するゾーンプレートが得られる
。そこで400OAの光を使ってホログラフィで100
AのX線に対し50mmの焦点距離のゾーンプレートを
作ろうとすると、(1)式でu = vとした場合、u
=v=2.5mmとなシ、ゾーンプレートの外径を3m
mにすると、光束の開き角は60°近い角になる。
The principle of creating a zone plate using holography is as shown in Figure 1. Point light sources that emit light that can interfere with each other are placed at points 0 and 1, respectively, to form an interference pattern on plate F, and this is recorded. It is. The wavelength of the light used at this time is λ
If so, a zone plate that satisfies equation (1) can be obtained. Therefore, using 400OA light, 100
When trying to make a zone plate with a focal length of 50 mm for X-rays A, if u = v in equation (1), then u
=v=2.5mm, and the outer diameter of the zone plate is 3m.
When m, the opening angle of the luminous flux becomes nearly 60°.

本発明は一つの点光源からの光束をビームスプリッタで
2分割・し、分割された2光束を夫々球面鏡で集光させ
て光源の像を作シ、これらの像を上述した0点及び1点
として干渉パターンを形成させるものである。
The present invention splits the light beam from one point light source into two with a beam splitter, focuses each of the two divided light beams with a spherical mirror to create an image of the light source, and converts these images into the 0 point and 1 point mentioned above. This is to form an interference pattern.

第2図は本発明の一実施例を示す。1はレーザ光源(出
力光波長4t16A)であり、2はコンデンサレンズで
レーザビームをP点に集光させている。hはP点に置か
れたピンホールである。集光レンズ2としては顕微鏡の
対物レンズが使用される。P点に集光したレーザ光はP
点から球面波となって発散する。この発散光束がビーム
スプリッタ3によって2分割される。分割された2光束
のうちビームスプリッタで反射された方の光束は凹球面
鏡Mに入射し、同鏡で反射されて0点に集光する。0点
とP点とはビームスプリッタの反射面に関して対称位置
にあシ、球面鏡Mの曲率中心が0点と一致させである。
FIG. 2 shows an embodiment of the invention. 1 is a laser light source (output light wavelength 4t16A), and 2 is a condenser lens that focuses the laser beam on point P. h is a pinhole placed at point P. As the condensing lens 2, an objective lens of a microscope is used. The laser beam focused on point P is P
It diverges from a point as a spherical wave. This diverging light beam is split into two by the beam splitter 3. Of the two divided beams, the one reflected by the beam splitter enters a concave spherical mirror M, is reflected by the mirror, and is condensed at a zero point. The 0 point and the P point are located symmetrically with respect to the reflecting surface of the beam splitter, and the center of curvature of the spherical mirror M is made to coincide with the 0 point.

従ってP点も赤光学的に球面鏡Mの曲率中心になってい
る。このため0点に集光するレーザ光は完全に無収差で
集光している。ビームスプリッタ3を透過した方の光束
は凹球面鏡M1で反射され、ビームスプリッタ3で反射
されて1点に集光する。1点は0点と共に球面鏡Mの光
軸上にアシ、球面鏡M1に関して1点とP点とは共役の
関係にあるが、これらは球面鏡M1の曲率中心よシ若干
ずれた位置にある。そのため、球面鏡M+だけでは1点
に集光する光束は球面収差を持ったものとなる。レンズ
Lはこの球面収差を補正するものである。干渉パターン
の記録担体Fは0点と1点との中間位置にセットされる
Therefore, the point P is also the center of curvature of the spherical mirror M in red optical terms. Therefore, the laser beam focused on the zero point is completely focused without aberration. The light beam that has passed through the beam splitter 3 is reflected by the concave spherical mirror M1, and then reflected by the beam splitter 3 and condensed at one point. The 1 point and the 0 point are on the optical axis of the spherical mirror M, and the 1 point and the P point are in a conjugate relationship with respect to the spherical mirror M1, but they are located at positions slightly shifted from the center of curvature of the spherical mirror M1. Therefore, if only the spherical mirror M+ is used, the light beam condensed to one point will have spherical aberration. The lens L corrects this spherical aberration. The record carrier F of the interference pattern is set at an intermediate position between the 0 point and the 1 point.

上記実施例では0点に集光する光束の開き角は球面鏡M
の開き角であシ、1点に集光する光束の開き角も0点に
集光する光束のそれと等しくなるように構成されておシ
、大きな開き角を得ようとするとビームスプリッタ、球
面鏡M、M’が大きくなって、工作上不利である。第3
図の実施例はこの点を改良した実施例である。図に記入
した寸法はmm単位でこの装置の大きさを示す。レーザ
ビームが集光レンズ2によpp点に集光され、・P点か
ら発散する球面波の光がビームズブリッタ3によって2
光束に分割され、二つの凹球面鏡M、M’に入射して反
射される構成は上述実施例と同じである。P点と01点
とはビームスプリッタ3に関して対称であシ、かつ凹球
面鏡Mの曲率中心と一致させである。それ放球面鏡Mで
反射された光は無収差で0°点に集光するが、01点と
0点とを共役点とするアブラナチックレンズLlによ)
、01点よシも鏡Mに近い0点に無収差に集光せしめら
れ、光束の開き角はα・1からαへと拡大される。アブ
ラナチックレンズL″は球面屈折面における周知のアブ
ラナチックポイントを利用したものであシ、0点とQl
とに関しては完全無収差である。ビームスプ。
In the above embodiment, the opening angle of the light beam condensed to the 0 point is the spherical mirror M
The aperture angle is set so that the aperture angle of the light beam condensed at one point is also equal to that of the light beam condensed at 0 point, and in order to obtain a large aperture angle, a beam splitter and a spherical mirror M are used. , M' becomes large, which is disadvantageous in terms of construction. Third
The embodiment shown in the figure is an embodiment that improves this point. The dimensions marked in the figure indicate the size of the device in mm. The laser beam is focused on the pp point by the condensing lens 2, and the spherical wave light diverging from the P point is split into 2 by the beam splitter 3.
The configuration in which the light beam is divided into light beams, incident on two concave spherical mirrors M and M', and reflected is the same as in the above embodiment. The P point and the 01 point are symmetrical with respect to the beam splitter 3 and are made to coincide with the center of curvature of the concave spherical mirror M. The light reflected by the spherical mirror M is focused on the 0° point without aberration, but by the abrasive lens Ll whose conjugate points are the 01 point and the 0 point)
, 01 point is also focused without aberration on the 0 point near the mirror M, and the opening angle of the light beam is expanded from α·1 to α. The abranatic lens L'' uses the well-known abranatic point on the spherical refractive surface, and has the 0 point and the Ql
It is completely aberration-free with respect to. beam sp.

リッタ3を透過した光束は凹球面鏡M′、レンズL、レ
ンズL1よりなる光学系で1点に集光される。
The light beam that has passed through the liter 3 is focused at one point by an optical system consisting of a concave spherical mirror M', a lens L, and a lens L1.

M+で反射された光はレンズLを通して工1点に集光さ
れるが、工1と1点とはレン゛ズLlに関してアブラナ
チックポイントでないから、1点では収差が現れるので
あるが、レンズLlは1点に集る光束の収差を補正する
ものである。干渉パターンの記録担体は0点と1点との
間にセットされる。
The light reflected by M+ passes through lens L and is focused on point 1, but since point 1 and point 1 are not abrasive points with respect to lens Ll, aberrations appear at point 1, but lens Ll is for correcting the aberration of the light beam converging at one point. The interference pattern record carrier is set between 0 and 1 points.

なおレンズLlのアブラナチックポイントを■l。In addition, the abrasive point of lens Ll is ■l.

01の中間及び工、Oの中間に置き、球面鏡Mの前面に
も補正レンズを配置するようにしてもよい。
A correction lens may also be placed in front of the spherical mirror M by placing it between 01 and 01, and between 0 and 0.

(へ)効 果 本発明装置は上述したように、球面鏡の曲率中心から発
散する光は曲率中心に無収差に集光し、また曲率中心の
近くから発散する光は曲率中心の近くの他の点に集光し
、収差が少いから収差補正が容易である点を利用したも
ので、簡単な光学系で大きな開き角を有する無収差の光
の集束点を得ることが可能となり、比較的大きな直径を
有するX線結像素子としてのフレネルゾーンプレートを
作ることができるようになった。
(f) Effect As described above, in the device of the present invention, light that diverges from the center of curvature of a spherical mirror is focused on the center of curvature without aberration, and light that diverges from near the center of curvature is focused on other lights near the center of curvature. This method takes advantage of the fact that light is focused on a point and has little aberration, making it easy to correct aberrations.It is possible to obtain an aberration-free focusing point with a large aperture angle using a simple optical system, making it relatively It became possible to make Fresnel zone plates as X-ray imaging elements with large diameters.

【図面の簡単な説明】 第1図はフレネルゾーンプレートの説明図、第2図は本
発明の一実施例装置の平面図、第3図は本発明の他の一
実施例の平面図である。 l・・・レーザ光源、2・・・コンデンサレンズ、3・
・・ビームスプリッタ、M、M+・・・凹面球面鏡、L
・・・収差補正レンズ、L′・・・アブラナチックレン
ズ。 代理人 弁理士 縣 浩 介 少1図
[Brief Description of the Drawings] Fig. 1 is an explanatory diagram of a Fresnel zone plate, Fig. 2 is a plan view of an apparatus according to an embodiment of the present invention, and Fig. 3 is a plan view of another embodiment of the present invention. . l...Laser light source, 2...Condenser lens, 3...
...Beam splitter, M, M+...Concave spherical mirror, L
...Aberration correction lens, L'...abranatic lens. Agent Patent Attorney Hiroshi Agata

Claims (2)

【特許請求の範囲】[Claims] (1)点光源から発散する光をビームスプリッタで2光
束に分割し、分割された一方の光束を、光学的に上記点
光源に曲率中心を有する凹球面鏡によって反射させて上
記点光源とは異る一点に集光させ、上記分割された他方
の光束を他の凹球面鏡によって上記凹球面鏡の光軸上で
上記集光点の近くに反射集光させるようにしたフレネル
ゾーンプレートのパターン発生装置。
(1) The light diverging from the point light source is divided into two beams by a beam splitter, and one of the divided beams is optically reflected by a concave spherical mirror having a center of curvature at the point light source, which is different from the point light source. A pattern generating device for a Fresnel zone plate, wherein the other divided light beam is reflected and focused near the focal point on the optical axis of the concave spherical mirror by another concave spherical mirror.
(2)上記凹球面の一方の直接の集光点又はその近くの
点をアブラナチックポイントの一方とするアブラナチッ
クレンズを用いて二つの集光点を、それを連らねる線上
で凹球面の方に近づけることによシ、集光光束の開き角
を拡大した特許請求の範囲第1項記載のフレネルゾーン
プレートのパターン発生装置。
(2) Using an abranatic lens, in which one of the direct convergence points of the concave spherical surface or a point near it is one of the abranatic points, the two convergence points are set on the line connecting the concave spherical surface. 2. The Fresnel zone plate pattern generating device according to claim 1, wherein the divergence angle of the condensed light beam is expanded by bringing the condensed light beam closer to the side.
JP19005383A 1983-10-11 1983-10-11 Pattern generator of fresnel zone plate Granted JPS6080801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19005383A JPS6080801A (en) 1983-10-11 1983-10-11 Pattern generator of fresnel zone plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19005383A JPS6080801A (en) 1983-10-11 1983-10-11 Pattern generator of fresnel zone plate

Publications (2)

Publication Number Publication Date
JPS6080801A true JPS6080801A (en) 1985-05-08
JPH0475481B2 JPH0475481B2 (en) 1992-12-01

Family

ID=16251555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19005383A Granted JPS6080801A (en) 1983-10-11 1983-10-11 Pattern generator of fresnel zone plate

Country Status (1)

Country Link
JP (1) JPS6080801A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275601A (en) * 1985-09-30 1987-04-07 Shimadzu Corp Fresnel zone plate for soft x-ray
KR100730047B1 (en) 2005-01-26 2007-06-20 단국대학교 산학협력단 Alignment system for compound refractive lens for micro-focusing X-ray beam and method for alignment using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275601A (en) * 1985-09-30 1987-04-07 Shimadzu Corp Fresnel zone plate for soft x-ray
KR100730047B1 (en) 2005-01-26 2007-06-20 단국대학교 산학협력단 Alignment system for compound refractive lens for micro-focusing X-ray beam and method for alignment using the same

Also Published As

Publication number Publication date
JPH0475481B2 (en) 1992-12-01

Similar Documents

Publication Publication Date Title
JPH0412039B2 (en)
US5477554A (en) Phase shift device and laser apparatus utilizing the same
JPS59149315A (en) Optical apparatus for semiconductor laser
JP2004184309A (en) Interferometer
JPH02185722A (en) Optical head device
JP2000030280A (en) Beam shaper and optical disk device
JPS6080801A (en) Pattern generator of fresnel zone plate
JPS59165002A (en) Optical element and scanning optical system using it
JPH04123016A (en) Phase shift element and laser device using the same
JPH03166531A (en) Fiber type optical wavelength converting device
US20020167672A1 (en) Holographic particle-measuring apparatus
JPS63269325A (en) Optical head
JPS62234182A (en) Method for forming hologram
JPS6167821A (en) Reflecting optical system
JP2884075B2 (en) Laser beam focusing and irradiation equipment
JP5093243B2 (en) Objective lens for hologram recording and hologram recording apparatus
JPH06215401A (en) Optical pickup making use of lamp
JPH01144001A (en) Holographic exposing device
JP2904422B2 (en) Light head
SU1661567A1 (en) Method of testing surfaces of optical parts
JPH0876671A (en) Reflection type plane hologram and photographing device therefor
JPH0535871B2 (en)
JP2538192B2 (en) Optical disk drive
JPH0317282Y2 (en)
SU558573A1 (en) Holographic interferometer