JPS6080714A - Optical insulaing position sensor - Google Patents

Optical insulaing position sensor

Info

Publication number
JPS6080714A
JPS6080714A JP58188849A JP18884983A JPS6080714A JP S6080714 A JPS6080714 A JP S6080714A JP 58188849 A JP58188849 A JP 58188849A JP 18884983 A JP18884983 A JP 18884983A JP S6080714 A JPS6080714 A JP S6080714A
Authority
JP
Japan
Prior art keywords
light
photodetector
light source
rows
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58188849A
Other languages
Japanese (ja)
Inventor
Kiyoshi Osato
潔 大里
Junichi Horigome
順一 堀米
Keiji Maruta
丸田 啓二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58188849A priority Critical patent/JPS6080714A/en
Publication of JPS6080714A publication Critical patent/JPS6080714A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • G01D5/34792Absolute encoders with analogue or digital scales with only digital scales or both digital and incremental scales

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To reduce size by providing a slit plate having a slit to allow the passage of the light across n-rows of photodetecting region parts between a photodetector having the n-rows of the photodetecting region parts of the specific width and pitch and a light source and moving the light source and the slit plate relatively with the photodetector. CONSTITUTION:An LED10 which is a light source is provided to a movable side object (not shown in a figure) moving in the direction X and a photodetector 11 is provided to a stationary side object (not shown), respectively. Photodetecting region parts D1... which have the widths W1... corresponding respectively to the weights of the respective digits of n-digits, for example, 6 digits of binary codes are formed on the detector 11 in a way as to be arrayed in the direction X at the pitch P1 of two-fold the respective widths W1.... A slit plate 17 formed with a slit 16 at the width W1 into the slender shape toward the direction intersecting orthogonally with the direction X is disposed between the LED10 and the detector 11. The plate 17 is provided to the moving side object and is moved together with the LED10. Then the light from the LED10 does not irradiate the adjacent photodetecting regions and therefore n-rows of the arranging width is made narrow.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば一方の固定側物体に対する他方の可動
側物体の絶対位置を得るに用いられる光学式絶対位置セ
ンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical absolute position sensor used, for example, to obtain the absolute position of one movable object relative to one fixed object.

背景技術とその問題点 従来、この種の例えばリニア形式のセンサとしては、第
1図および第2図によって示されるものがある。次に、
第1図および第2図を説明する。
BACKGROUND TECHNOLOGY AND PROBLEMS Conventionally, as this type of linear type sensor, for example, there are those shown in FIGS. 1 and 2. next,
FIG. 1 and FIG. 2 will be explained.

さて、一方の固定側物体(図示せず)に対する図示され
る矢印XO力方向の他方の可動側物体(図示せず)の絶
対位置を得るに、1個のLED (LightEmit
ting Diode ) (1)が固定側物体に設け
られている。そして、このL B D (1)に対応し
てXO力方向対して図示される如くに交叉方向に配列さ
れる6個の光検出器(AI)、 (A2)・・・・・・
(A6)が、同様に固定側物体に設けられている。更に
、LED(1)と光検出器(A+)、(A2)・・・・
・・(A6)との間には、前記交叉方向が長手方向にな
る1個の細長状のスリット(2)が1設されたスリット
板(3)が、同様に固定側物体に設けられている。
Now, in order to obtain the absolute position of the other movable object (not shown) in the arrow XO force direction shown in the figure with respect to one fixed object (not shown), one LED (LightEmit
ting Diode (1) is provided on the fixed object. Then, corresponding to this LBD (1), six photodetectors (AI), (A2)... are arranged in the cross direction as shown in the figure with respect to the XO force direction.
(A6) is similarly provided on the fixed side object. Furthermore, LED (1) and photodetector (A+), (A2)...
...(A6), a slit plate (3) provided with one elongated slit (2) whose intersecting direction is the longitudinal direction is similarly provided on the fixed side object. There is.

ところで、光検出器(AI)、(A2)・・・・・・(
A6)の受光域(al)、(B2) ・・・−(B6)
上になる光検出器(A1)、(A2)・・・・・・(A
6)とスリット板(3)との間には、可動側物体に設け
られる遮蔽板(4)が配されている。この遮蔽板(4)
には、 Xo力方向て6桁のバイナリコードの各桁の重
みに夫々対応する巾W01 、WO2・・・・・・WO
6となるスリット(B1)、(B2)・・・・・・(B
6)夫々が、その巾w01、WO2・・・・・−w06
の倍のピッチPo1(=2Wo1)、PO2(=2WO
2)・−・・PO6(=2WO6) で夫々XO方向に
並ぶようにパターニングされ穿設されている。すなわち
、6列になるスリット(Bl)、(B2)・・・・・・
(B6)のバイナリパターンが構成されている。そして
、このバイナリパターンにもとづいて、スリット板(3
)のスリット(2)を通過したL FJD (1)から
の放射光が6個の光検出器(A1)、(A2 ) ・−
= (A6)の受光域(al)、(B2)・・・・・・
(B6)を照射するようになる。
By the way, the photodetector (AI), (A2)...
A6) light receiving area (al), (B2) ...-(B6)
Photodetectors on top (A1), (A2)... (A
A shielding plate (4) provided on the movable object is arranged between the movable object 6) and the slit plate (3). This shielding plate (4)
In the Xo force direction, the widths W01, WO2, etc. correspond to the weights of each digit of the 6-digit binary code, respectively.
6 slits (B1), (B2)... (B
6) Each has its width w01, WO2...-w06
Pitch Po1 (=2Wo1), PO2 (=2WO
2)...PO6 (=2WO6) are patterned and drilled so as to be lined up in the XO direction. That is, 6 rows of slits (Bl), (B2)...
A binary pattern (B6) is configured. Based on this binary pattern, a slit plate (3
) The emitted light from LFJD (1) passing through the slit (2) of
= Light receiving area (al) of (A6), (B2)...
(B6) will be irradiated.

しかして、固定側物体に対して可動−j物体がXO力方
向移動することで遮蔽板(4)は、同様にLED(1)
、光検出器(A1)、(A2)・・・・・・(A6)お
よびスリット板(3)に対してXo力方向移動される。
As the movable -j object moves in the direction of the XO force relative to the fixed object, the shielding plate (4) similarly lights up the LED (1).
, photodetectors (A1), (A2), . . . (A6) and the slit plate (3) in the direction of the Xo force.

したがって、6個の光検出器(A4)、 (A2)・・
・・・・(A6)夫々からの前記バイナリパターンにも
とづく出力信号の0″、甑1″判別によシ、固定側物体
に対する可動側物体の絶対位置となる6桁の絶対番地が
得られる。
Therefore, 6 photodetectors (A4), (A2)...
(A6) By determining whether the output signal is 0'' or 1'' based on the binary pattern from each, a 6-digit absolute address, which is the absolute position of the movable object relative to the fixed object, is obtained.

然るに、このものでは、光検出器(A1)、 (A2)
・・・(A6)と遮蔽板(4)との間に如何しても間隙
が形成されることになる。このために、LE D(1)
からの放射光が、例えば光検出器(A2)に対応するス
リット(B2)からその間隙を介して隣接の光検出器(
A1)のの受光域(al)を照射するようになる。
However, in this one, the photodetectors (A1) and (A2)
...(A6) and the shielding plate (4), a gap will be formed no matter what. For this purpose, LED D(1)
For example, the emitted light from the slit (B2) corresponding to the photodetector (A2) passes through the gap to the adjacent photodetector (A2).
The light receiving area (al) of A1) is irradiated.

したがって、これを防ぐために、6個の光検出器(A1
バ(A2)・・・・・・(A6)を配列するだめの配列
中が広く要されて、コンパクト化が図れないという問題
点があった。
Therefore, to prevent this, six photodetectors (A1
There was a problem in that a large space was required for arranging the bars (A2), . . . (A6), and compactness could not be achieved.

発明の目的 本発明は、このような実情に鑑みて発明されたものであ
って、その目的とするところは、コンパクト化が図れ、
しかも構造の簡素化および低コスト化が図れる光学式絶
対位置センサを提供することにちる。
Purpose of the Invention The present invention was invented in view of the above circumstances, and its purpose is to achieve compactness,
Moreover, it is an object of the present invention to provide an optical absolute position sensor that can be simplified in structure and reduced in cost.

発明の概要 本発明にかかる光学式絶対位置センナは、(a)、光源
と、 (b)、所定方向にて0桁のバイナリコードの各桁の重
みに夫々対応する巾となる受光域部夫々が、その巾、の
倍のピッチで夫々前記所定方向に並んでn列になる受光
域部のバイナリパターンが構成されるようにパターニン
グされ形成される光検出器と、 (C)、前記光源と光検出器との間に配されるとともに
、前記n列になる受光域部のバイナリパターンにそのn
列にまたがって前記光源からの放射光が照射されるよう
に通過させる一個の透間が形成される透間板 とを備えるとともに、前記光源および透間板と、前記光
検出器とが前記所定方向で相対移動されるように構成す
ることを特徴とするものである。
Summary of the Invention The optical absolute position sensor according to the present invention includes (a) a light source; and (b) light-receiving area portions each having a width corresponding to the weight of each digit of a 0-digit binary code in a predetermined direction. (C) a photodetector patterned to form a binary pattern of light-receiving areas arranged in n rows in the predetermined direction at a pitch twice as large as the width; (C) the light source; The n
a transparence plate in which one transparence is formed through which the emitted light from the light source passes so as to be irradiated across the rows, and the light source, the transparence plate, and the photodetector are arranged in the predetermined position. It is characterized by being configured to be relatively moved in the direction.

これにより、n列の配列中を狭くすることが可能となっ
て、コンパクト化が図れ、しかも構造の簡素化および低
コスト化が図れる。
This makes it possible to narrow the n-column array, making it more compact, and also simplifying the structure and reducing costs.

実施例 次に、不発明にかかる光学式絶対位置センサをリニア形
式のものに適用した具体的一実施例につき、図面を参照
しつつ説明する。
Embodiment Next, a specific embodiment in which the optical absolute position sensor according to the invention is applied to a linear type sensor will be described with reference to the drawings.

第6図および第4図夫々は、分解斜視図および縦断面図
である。
6 and 4 are an exploded perspective view and a longitudinal sectional view, respectively.

光源の一例である一個のLED(IQが、可動側物体(
図示せず)に設けられている。このLEDIJ(Jに対
応させて光検出器0υが固定側物体(図示せず)に設け
られている。この光検出器(II)には、可動側物体の
移動方向である図示されるX方向にて例えば6桁のバイ
ナリコードの各桁の重みに夫々対応する巾W1、W2・
・・・・・W6 となる受光域部(Dl)、(B2)・
・・・・・(B6)夫々が、その巾wi、w2・・・・
・・W6 の倍のピッチP1(=2W1)、B2(=2
W2)・・・・・・B6(=2W6)で夫々X方向にて
並ぶようにパターニングされ形成されている。すなわち
、6列になる受光域部(Dl)、(B2)・・・・・・
(B6)のバイナリパターンが構成されている。そして
、6列の受光域部(DI)、(B2)・・・・・・(B
6)は、列毎にグループ化されて、受光域部(Dl)、
(D2)・・・・・・(D6)夫々になる第1受光領域
、第1受光領域・・・・・・第■受光領域とに分けられ
ている。更に、第1受光領域と第1受光領域との列間に
は、第■受光領域となるX方向に延びる受光域部(R)
がノくターニングされ形成されている。
One LED (IQ is an example of a light source)
(not shown). A photodetector 0υ is provided on the fixed object (not shown) in correspondence with this LED IJ (J). For example, the widths W1 and W2 correspond to the weight of each digit of a 6-digit binary code.
... Light receiving area (Dl), (B2) that becomes W6.
...(B6) Each has its width wi, w2...
・Pitch P1 (=2W1), B2 (=2W1), which is twice W6
W2)...B6 (=2W6) are patterned and formed so as to be lined up in the X direction. That is, the light-receiving area portions (Dl), (B2), which are arranged in 6 rows...
A binary pattern (B6) is configured. Then, 6 rows of light receiving area sections (DI), (B2)... (B
6) are grouped by column, and the light receiving area (Dl),
(D2)...(D6) It is divided into a first light-receiving area, a first light-receiving area, and a second light-receiving area. Furthermore, between the rows of the first light-receiving areas, there is a light-receiving area (R) extending in the X direction and serving as the second light-receiving area.
It is formed by turning.

なお、光検出器aυは、第5図に示される如くに、ガラ
ス基板αりに透明共通電極層(13、アモルファスシリ
コン層Iおよび、第1乃至第■受光領域の受光域部(D
l)、(D2)・・・・・・(D6)、(R)夫々に対
応する金属・電極層(15D1)、(15D2)・・・
・・・(15Ds)、(15R)が順次に積層状に設け
られて構成されるいわゆるアモルファスシリコン太陽電
池である。このような太陽・電池によれば前述の如くに
パターニングされる受光域部(Dl)、(D2)・・・
・・・(D6)、(R)は、蒸着によシ安くできる。
In addition, as shown in FIG.
l), (D2)...(D6), (R) corresponding metal/electrode layers (15D1), (15D2)...
...(15Ds) and (15R) are sequentially stacked in a so-called amorphous silicon solar cell. According to such a solar cell/battery, the light-receiving areas (Dl), (D2), etc. are patterned as described above.
...(D6) and (R) can be inexpensively made by vapor deposition.

ところで、LED(11と光検出器aυとの間には、透
間の一例であるスリン) (16)が穿設された透間板
の一例となるスリット板面が配設されている。このスリ
ン) (LFjIは、X方向に対する交叉方向が長手方
向になる細長状に形成されており、またX方向での巾が
6桁のバイナリコードの1桁′目となる受光域部(Dl
)の巾W1と同一になっている。そして、スリット板α
ηは、可動側物体に設けられている。
Incidentally, a slit plate surface, which is an example of a transparent plate, is provided between the LED (11) and the photodetector aυ, in which a transparent plate (16), which is an example of a transparent plate, is bored. (LFjI is formed in a long and narrow shape with the longitudinal direction in the cross direction with respect to the X direction, and the width in the X direction is the light receiving area (Dl
) is the same as the width W1. And slit plate α
η is provided on the movable object.

したがって、スリット板aηは、可動側物体のX方向の
移動にともなってLED(11とともに移動される。し
かして、前記6列に並ぶ受光域部(Dl)、(D2)・
・・・・・(D6)に、それら6列にまたがってスリッ
ト(イ)を通過したLED(1Gからの放射光が照射さ
れることになる。すなわち、第1乃至第1受光領域およ
び受光域部(几)の第1受光領域が、−個のスリットa
0ヲ通過した放射光によって照射されるようになる。
Therefore, the slit plate aη is moved together with the LEDs (11) as the movable object moves in the X direction.
...(D6) will be irradiated with the emitted light from the LED (1G) that has passed through the slit (A) across these six rows. That is, the first to first light receiving area and the light receiving area The first light receiving area of the part (几) is - number of slits a
It will be irradiated by the synchrotron radiation that has passed through 0.

次に、信号処理について、第6図に示されるブロック回
路図によって説明する。
Next, signal processing will be explained using the block circuit diagram shown in FIG.

光検出器0〔の第Vll受光領域からの出力信号S、は
、第1乃至第6の増巾器(AMPl)、(AMP2)、
(AMP3)夫々に与えられて増巾される。なお、これ
ら増巾器(AMPl)〜(AMP5)の増巾力は、第1
の増巾器(AMPl)>第2の増巾器(AMP 2 )
ン第6の増巾器(AMP 3 )の関係にある。
The output signal S from the Vllth light receiving area of the photodetector 0 is the first to sixth amplifiers (AMPl), (AMP2),
(AMP3) is given to each and amplified. Note that the amplifying power of these amplifiers (AMPl) to (AMP5) is the first
amplifier (AMPl)>second amplifier (AMP2)
This is related to the sixth amplifier (AMP 3 ).

一方、光検出器Ql)の第1乃至第■受光領域の出力信
号S!〜S■夫々は、第1乃至第6のコンパレータ回路
(OOMl)、(00M2)・・・・・・(00M6)
にて、前記出力信号S■の第2の増巾器(AMP2)を
通じて増巾され九信号S■−2と比較されて波形成形さ
れる。
On the other hand, the output signals S! ~S■ are the first to sixth comparator circuits (OOMl), (00M2)... (00M6)
Then, the output signal S2 is amplified through a second amplifier (AMP2) and compared with the nine signal S2-2 to form a waveform.

なお、出力信号8夏〜S■と出力信号S■の信号S■−
2とが比較されるのは、外部光、LED(IIの光量変
化あるいはスリット板αnの反シ等の影響によシ出力信
号S!〜8■が変動するのに対して、同様に変動するこ
とになる出力信号S■との比較によってスライスレベル
の最適化を図シ、それらの影響を受けないようにするた
めである。
In addition, the output signal 8 summer~S■ and the signal S■- of the output signal S■
2 is compared with the fact that the output signal S!~8■ fluctuates due to the influence of external light, changes in the light amount of the LED (II, or the slit plate αn), while the output signal S!~8■ fluctuates in the same way. This is to avoid being influenced by the optimization of the slice level by comparison with the corresponding output signal S.

そして、第1および第6のコンパレータ回路(OOMl
)、(00M2)・・・・・・(00M6)からの波形
成形されて矩形波となる信号BID〜Sunは、ラッチ
回路(LATンに与えられる。
Then, the first and sixth comparator circuits (OOMl
), (00M2), . . . (00M6), the signals BID to Sun that are waveform-shaped into rectangular waves are applied to a latch circuit (LAT).

ところで、第1受光領域からの出力信号S夏の一乙 部は、ウンドコンバレータ部(W−00M)を構成する
一対のコンパレータ回路(00M7 ) (00M8 
)にて、第■受光領域の出力信号S■の第1、第6の増
巾器(AMP 1 ) (AMP3 )を通じて増巾さ
れた信号に−1、S、−s夫々と比較される。なお、可
動側物体の移動にともなうL 113 D (IIおよ
びスリット板1ηのX方向の移動によって、出力信号S
!は第7図(A)に示される如くになる。また、出力信
号S、の各増巾器(AMPl)〜(AMP3)を通じた
48号S■−1、S■−2、S■−5は、同様に第7図
(A)に示される如くになる。
By the way, the first part of the output signal S from the first light receiving area is a pair of comparator circuits (00M7) (00M8
), the output signal S2 of the 1st light receiving area is amplified through the first and sixth amplifiers (AMP1) (AMP3) and compared with -1, S, and -s, respectively. In addition, due to the movement of L 113 D (II and the slit plate 1η in the X direction) due to the movement of the movable object, the output signal S
! is as shown in FIG. 7(A). In addition, the output signals S, No. 48 S■-1, S■-2, and S■-5 through the amplifiers (AMPl) to (AMP3) are similarly shown in FIG. 7(A). become.

しかして、一対のコンバレー“夕回路(00M7) (
00M8)夫々の出力はアンド回路(AND)に与えら
れて、第7図(B) K示される如くの信号SCが得ら
れる。この信号Scは、ラッチ回路(LAT)のクロッ
ク信号として与えられ、その信号Scによシ信号810
”−8VIOはラッチされる。なお、第7図Co)に示
されるのは、信号SIoである。
However, a pair of combo valley “Evening circuit (00M7) (
00M8) are applied to an AND circuit (AND) to obtain a signal SC as shown in FIG. 7(B)K. This signal Sc is given as a clock signal of the latch circuit (LAT), and the signal Sc is used as a clock signal for the latch circuit (LAT).
"-8VIO is latched. What is shown in FIG. 7 (Co) is the signal SIo.

以上によシ、ラッチ回路(LAT)から固定側物体に対
する可動側物体の絶対位置となる6桁のバイナリコード
としての絶対番地が得られる。なお、分解能は、受光域
部(Dl)の巾W1である。
As described above, an absolute address in the form of a 6-digit binary code, which is the absolute position of the movable object relative to the fixed object, is obtained from the latch circuit (LAT). Note that the resolution is the width W1 of the light receiving area (Dl).

本実施例では、光検出器αυを固定側物体に、LHD 
(1)およびスリット板a7)を可動側物体に設けたが
、逆にL B D (1)およびスリット板α1を固定
側物体に、光検出器αυを可動側物体に設けてもよい。
In this embodiment, the photodetector αυ is the fixed object, and the LHD
Although (1) and the slit plate a7) are provided on the movable object, conversely, the L B D (1) and the slit plate α1 may be provided on the fixed object, and the photodetector αυ may be provided on the movable object.

すなわち、LED(IIおよびスリット板(17)と、
光検出器住υとが相対移動されればよい。
That is, the LED (II and the slit plate (17)),
It is only necessary that the photodetector is moved relative to the photodetector.

また、本実施例では、リニア形式に適用した場合につい
て説明したが、ロータリ形式にも適用できることは直う
までもない。
Furthermore, although this embodiment has been described with reference to the case where it is applied to a linear type, it goes without saying that it can also be applied to a rotary type.

発明の効果 本発明は、次のような利点を有するものである。Effect of the invention The present invention has the following advantages.

光検出器に1桁のバイナリー−ドの各桁の重みに夫々対
応する巾となる受光域部夫々が所定方向に並んでバター
ニングされ形成されることから、従来の如くに光源から
の放射光が遮蔽板との間隙を介して光検出器の受光域を
照射するというようなことがない。したがって、n列の
配列中を狭くすることが可能となって、コンパクト化が
図れる。
Since the photodetector is patterned and formed with light-receiving areas each having a width corresponding to the weight of each digit of a single-digit binary code, they are lined up in a predetermined direction. There is no possibility that the light will illuminate the light receiving area of the photodetector through the gap with the shielding plate. Therefore, it is possible to make the n-column array narrower, thereby achieving compactness.

しかも、従来如くに遮蔽板を要しないために、構造の簡
素化および低コスト化が図れる。
Furthermore, since a shielding plate is not required as in the conventional case, the structure can be simplified and costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図夫々は従来例を説明するための分解
斜視図および縦断面図、第6図乃至第7図(A)乃至(
0)は本発明にかかる光学式絶対位置上ンサを説明する
ための図面であって、第6図は分解斜視図、第4図は第
3図における(IV) −(iV)線断断面図、第5図
は光検出器の第6図における(V) −〔VJ線線断断
面詳細図第6図はブロック回路図、第7図(A)乃至(
0)はブロック回路の各部信号波形図である。 なお、図面中において用いられる符号において、001
・・・・・・・・・・・・LED(Iυ・・・・・・・
・・・・・光検出器αe・・・・・・・・・・・・スリ
ット11n・・・・・・・・・・・・スリット板(A1
)、(A2)・・・(A6)・・・受光域部である。 代理人 土星 勝 〃 常 包 芳 男 〃 杉浦俊貴
FIG. 1 and FIG. 2 are an exploded perspective view and a vertical cross-sectional view for explaining a conventional example, and FIGS. 6 to 7 (A) to (
0) is a drawing for explaining the optical absolute position sensor according to the present invention, FIG. 6 is an exploded perspective view, and FIG. 4 is a sectional view taken along the line (IV)-(iV) in FIG. 3. , FIG. 5 is a detailed cross-sectional view of the photodetector taken along line (V)-[VJ in FIG. 6. FIG. 6 is a block circuit diagram, and FIGS. 7(A) to (
0) is a signal waveform diagram of each part of the block circuit. In addition, in the codes used in the drawings, 001
・・・・・・・・・・・・LED(Iυ・・・・・・・
・・・・・・Photodetector αe・・・・・・・・・Slit 11n・・・・・・・・・Slit plate (A1
), (A2)...(A6)... Light receiving area portions. Agent: Masaru Saturn, Yoshio Tsune, Toshiki Sugiura

Claims (1)

【特許請求の範囲】 (a)、光源と、 (b)、所定方向にて1桁のバイナリコードの各桁の重
みに夫々対応する巾となる受光域部夫々が、その巾の倍
のピッチで前記所定方向に並んでn列になる受光域部の
バイナリパターンが構成されるようにパターニングされ
形成される光検出器と、 (C)、前記光源と光検出器との間に配されるとともに
、前記n列になる受光域部のバイナリパターンにそのn
列にまたがって前記光源からの放射光が照射されるよう
に通過させる一個の透間が形成される透間板 とを備えるとともに、前記光源および透間板と、前記光
検出器とが前記所定方向で相対移動されるように構成す
ることを特徴とする光学式絶対位置センサ。
[Scope of Claims] (a) a light source; and (b) light-receiving area portions each having a width corresponding to the weight of each digit of a one-digit binary code in a predetermined direction, each having a pitch twice that width. and (C) a photodetector arranged between the light source and the photodetector, which is patterned to form a binary pattern of light-receiving areas arranged in n rows in the predetermined direction. At the same time, the n
a transparence plate in which one transparence is formed through which the emitted light from the light source passes so as to be irradiated across the rows, and the light source, the transparence plate, and the photodetector are arranged in the predetermined position. An optical absolute position sensor configured to be relatively moved in a direction.
JP58188849A 1983-10-07 1983-10-07 Optical insulaing position sensor Pending JPS6080714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58188849A JPS6080714A (en) 1983-10-07 1983-10-07 Optical insulaing position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58188849A JPS6080714A (en) 1983-10-07 1983-10-07 Optical insulaing position sensor

Publications (1)

Publication Number Publication Date
JPS6080714A true JPS6080714A (en) 1985-05-08

Family

ID=16230913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58188849A Pending JPS6080714A (en) 1983-10-07 1983-10-07 Optical insulaing position sensor

Country Status (1)

Country Link
JP (1) JPS6080714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223606A (en) * 1986-02-18 1987-10-01 メツセルシユミツト−ベルコウ−ブロ−ム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Digital position sensor
JPS6433612U (en) * 1987-08-19 1989-03-02
JP2007071734A (en) * 2005-09-07 2007-03-22 Fuji Electric Holdings Co Ltd Absolute value encoder of optical type

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223606A (en) * 1986-02-18 1987-10-01 メツセルシユミツト−ベルコウ−ブロ−ム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Digital position sensor
JPS6433612U (en) * 1987-08-19 1989-03-02
JP2007071734A (en) * 2005-09-07 2007-03-22 Fuji Electric Holdings Co Ltd Absolute value encoder of optical type

Similar Documents

Publication Publication Date Title
DE69028865T3 (en) Reflective axis angle encoder
US4857721A (en) Optical direction sensor having gray code mask spaced from a plurality of interdigitated detectors
JPH01180615U (en)
US7262714B2 (en) Interpolating encoder utilizing a frequency multiplier
DE69133037D1 (en) Photoelectric converter
CN1388960A (en) Optical device, optical semiconductor device, and optical information processor comprising them
JPS6080714A (en) Optical insulaing position sensor
JP2001184703A5 (en)
JPH0785034B2 (en) Spectroscopic measurement sensor
EP0237812A3 (en) Semiconductor laser array with a collimated beam
JP2732701B2 (en) Scintillation detector
JPS6363916A (en) Optical type displacement detector
JPH08304112A (en) Vernier type absolute encoder
SU1315827A1 (en) Scanning photometer
JPS61140827A (en) Semiconductor photodetecting device
JPH0715376B2 (en) Rotation angle detector
JPH04136716A (en) Optical type encoder
SU954817A1 (en) Photoelectronic device for measuring flat body area
JPH02302620A (en) Displacement detecting method of optical relative-displacement detecting apparatus
JPS602788B2 (en) Multi-channel semiconductor radiation detector
JPS61144510A (en) Optical position detecting instrument
JPH0627977Y2 (en) Semiconductor laser device
JP2602475Y2 (en) Spectrophotometer
JPS5849233U (en) semiconductor detector
JPS6188114A (en) Semiconductor photodetector