JPS6080080A - Steam condenser - Google Patents

Steam condenser

Info

Publication number
JPS6080080A
JPS6080080A JP18850683A JP18850683A JPS6080080A JP S6080080 A JPS6080080 A JP S6080080A JP 18850683 A JP18850683 A JP 18850683A JP 18850683 A JP18850683 A JP 18850683A JP S6080080 A JPS6080080 A JP S6080080A
Authority
JP
Japan
Prior art keywords
condenser
drain
steam
group
condensed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18850683A
Other languages
Japanese (ja)
Inventor
Noboru Matsumura
昇 松村
Shinichi Nomura
真一 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18850683A priority Critical patent/JPS6080080A/en
Publication of JPS6080080A publication Critical patent/JPS6080080A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To increase the condensing performance in a main condenser and prevent overcooling of condensed water by a method wherein a pre-condenser is provided at the upstream side of the group of heat transfer tubes of the condenser for a steam turbine or the like and condensed water, generated in the pre- condenser, is discharged directly by a drain catcher. CONSTITUTION:A pre-condenser 20 is provided at the upper upstream side of a condenser section 11 to pre-condense the steam (b) flowed into a steam inflow section 12. The group of drain catchers 21 is provided at the lower side of the group 20a of cooling tubes of the pre-condenser 20 remaining steam flowing intervals 21c and produced condensed water arrives at a drain reservoir 13, provided below the drain catchers, along the inner wall of a case from both ends of the case. The generating amount of condensed water in the condenser section 11 is comparatively small by the provision of the pre-condenser 20 and the condensed water in the pre-condenser 20 is not provided to the condenser section 11, therefore, water film is not produced on the cooling tubes 11a of the condenser 11, the heat conductivity of the tubes is increased and general steam condensing performance may be improved.

Description

【発明の詳細な説明】 本発明は、スチームタービン等の排気即ち蒸気を凝縮し
て復水する蒸気凝縮器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam condenser that condenses exhaust gas, that is, steam, from a steam turbine or the like.

蒸気原動所におけるスチームタービンの排気即ち蒸気を
凝縮する蒸気凝縮器(スチームコンデンサー)について
従来例を説明すると、第1図ないし第3図に示すように
、コンデンサ一部(1)の上部に蒸気流入部(2)を設
けるとともに下部にドレン溜(3)ヲ設け、該コンデン
サ一部(1)は、冷却水(α)が給水室(4α)、下半
部の冷却管群(1α)、中間氷室(4b)、上半部の冷
却管群(1b)、および排水室(4C)の順序で流通さ
れる構造になっており、スチームタービン、(図示省略
)の排気即ち蒸気(Alが、上側から蒸気流入部(2)
内に流入され、第1,2図に示すように伝熱管群(IA
、1α)に接触し凝縮されて復水iC)となり、残余の
気体は、伝熱管群(IA、1z)の中央部に配設され有
孔空気抜管(5)ン経て排気管(6)および(7)を介
し排気されるとともに、前記復水(C)は、多数の水滴
(C″)となり下部のドレン溜(3)に流入し溜りとな
って外部へ取出される構造になっている。
To explain a conventional example of a steam condenser (steam condenser) that condenses the exhaust gas, that is, steam, from a steam turbine in a steam power plant, as shown in Figures 1 to 3, steam flows into the upper part of the condenser (1). A part (2) is provided, and a drain reservoir (3) is provided in the lower part. The ice chamber (4b), the upper cooling pipe group (1b), and the drainage chamber (4C) are structured so that the exhaust gas (aluminum) from the steam turbine (not shown) flows through the upper Steam inflow section (2)
As shown in Figures 1 and 2, heat exchanger tubes (IA
, 1α) and is condensed into condensate iC), and the remaining gas is disposed in the center of the heat exchanger tube group (IA, 1z) and passes through the perforated air vent pipe (5) to the exhaust pipe (6) and (7), and the condensate (C) becomes a large number of water droplets (C'') and flows into the drain reservoir (3) at the bottom, where it becomes a reservoir and is taken out to the outside. .

しかし、従来の前記蒸気凝縮器においては、蒸気(Al
が直接に伝熱管群(1b)(1g)に接触して復水(C
)となり、多数の水滴(CI)が生じて第3図に示すよ
うに伝熱管群の表面に水膜(C“)が形成されそれを覆
って流れるようになる□ため、前記水膜(C“)の介在
によって冷却管への蒸気(α)の接触が著しく少なくな
り伝熱性能が著しく悪化されるとともに、前記水膜(C
“)が伝熱管の表面を覆って流れるため、復水(,71
の温度が下り過ぎ過冷却となって、凝縮効率低下、脱気
不良となる欠点がある。
However, in the conventional steam condenser, steam (Al
directly contacts the heat exchanger tube group (1b) (1g) and condensate (C
), a large number of water droplets (CI) are generated, and a water film (C") is formed on the surface of the heat exchanger tube group as shown in FIG. The presence of the water film (C
“) flows over the surface of the heat exchanger tube, so condensate (,71
The disadvantage is that if the temperature drops too much, supercooling occurs, resulting in lower condensation efficiency and poor deaeration.

本発明は、従来の蒸気凝縮器における前記のような欠点
を解消するために開発されたものであって、コンデンサ
一部の上部に蒸気流入部を設けるとともに下部にドレン
溜を設けた蒸気凝縮器において、前記コンデンサ一部の
上側上流部にプレコンデンサーを設けるとともに、該プ
レコンデンサーの冷却管群の下側に蒸気流通間隔を存し
て並置されたドレンキャッチャ一群を設け、前記ドレン
キャッチャ一群の端部と前記ドレン部間に前記コンデン
サ一部を迂回したドレン流路を設けた点に特徴を有し、
その目的とする処は、コンデンサ一部の伝熱管群上流側
にプレコンデンサー!設け、かつ該プレコンデンサーで
発生する復水なドレンキャッチャ−によって直接に排出
することにより、メインコンデンサーにおける凝縮性能
を高めかつ復水の過冷却を防止し前記のような欠点を解
消した蒸気凝縮器を供する点にある。
The present invention was developed in order to eliminate the above-mentioned drawbacks of conventional steam condensers. A pre-condenser is provided at the upper upstream part of the part of the condenser, and a group of drain catchers are provided below the cooling pipe group of the pre-condenser and arranged in parallel with a steam flow interval, and an end of the group of drain catchers is provided. It is characterized in that a drain flow path is provided between the part and the drain part, bypassing a part of the capacitor,
The purpose of this is to install a pre-condenser on the upstream side of the heat transfer tube group of a part of the condenser! A steam condenser which improves condensation performance in a main condenser and prevents overcooling of condensate, eliminating the above-mentioned drawbacks by directly discharging condensate generated in the pre-condenser through a drain catcher. The point is that it provides

本発明は、前記の構成になっており上部の蒸気流入部に
流入された蒸気はプレコンデンサーの冷却管群に接触し
て凝縮され、その復水は下側のドレンキャッチャ一群に
よって直接にキャッチされその端部からドレン流路を通
り下部のドレン溜に排出され、また、プレコンデンサー
によって前凝縮処理された蒸気はドレンキャッチャ一群
の蒸気流通間隔ン経て下流側のメインコンデンサ一部の
冷却管群に接触して再び凝縮されることになり、前記プ
レコンデンサーによる前凝縮処理およびその復水の排出
によって、メインコンデンサ一部の冷却管群における復
水量が著しく少なくなり水膜発生が防止され、伝熱性能
が高められて、凝縮復水性能が著シく向上されるととも
に、プレコンデンサーにおける復水はFシンキャッチャ
一群およびドレン流路によって直接的にドレン溜に排出
され、かつメインのコンデンサ一部における復水けその
発生量が少なくなり水滴となって早目に下部のドレン溜
に流入されるため、復水の適冷が防止され、プラント効
率低下を防止できる。
The present invention has the above-mentioned structure, and the steam flowing into the upper steam inflow section is condensed by contacting the cooling pipe group of the pre-condenser, and the condensed water is directly caught by the lower drain catcher group. The steam is discharged from the end through the drain flow path to the drain reservoir at the bottom, and the steam that has been pre-condensed by the pre-condenser passes through the steam flow interval of a group of drain catchers to a group of cooling pipes in a part of the main condenser on the downstream side. Due to the pre-condensation process by the pre-condenser and the discharge of the condensate, the amount of condensate in the cooling pipe group of a part of the main condenser is significantly reduced, preventing the formation of a water film, and improving heat transfer. The condensate performance is improved significantly, and the condensate in the pre-condenser is directly discharged to the drain reservoir by a group of F sink catchers and the drain passage, and the condensate in the main condenser part is Since the amount of condensate generated is reduced and water droplets are quickly flowed into the lower drain reservoir, proper cooling of the condensate is prevented and a decrease in plant efficiency can be prevented.

以下、本発明の実施例を図示について説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第4図ないし第6図に本発明の一実施例を示しており、
図中(11)はコンデンサ一部、(11α)はコンデン
サ一部αDの冷却管群、(14α)は冷却水(α)の給
水室、(14A)は中間氷室であって、冷却水(α)が
給水室(14α)から冷却管群(11α)内に導入され
中間氷室(14h)へ流通されるメインのコンデンサ一
部(印に構成されているとともに、該コンデンサ一部a
0の上部には蒸気流入fIS(I7Jが設けられ、また
、コンデンサ一部Q11の下部にドレン溜a3が設けら
れている。
An embodiment of the present invention is shown in FIGS. 4 to 6,
In the figure, (11) is a part of the condenser, (11α) is a group of cooling pipes for the condenser part αD, (14α) is a water supply chamber for the cooling water (α), and (14A) is an intermediate ice chamber, which is the cooling water (α). ) is introduced into the cooling pipe group (11α) from the water supply chamber (14α) and distributed to the intermediate ice chamber (14h).
A steam inlet fIS (I7J) is provided in the upper part of the capacitor 0, and a drain reservoir a3 is provided in the lower part of the condenser part Q11.

さらに、本発明の実施例においては、前記コンデンサ一
部α9の上側上流部にプレコンデンサー翰を設け、該プ
レコンデンサー(イ)によって蒸気流入部ロクに流入さ
れた蒸気(h)が前凝縮処理するようになっており、該
プレコンデンサー翰の冷却管群(亦)には、前記中間氷
室(14M)に連設された第2給水室(15α)から冷
却水(alが導入され排水室(15b)から排出される
ようになっている。
Furthermore, in the embodiment of the present invention, a pre-condenser is provided in the upper upstream part of the condenser part α9, and the steam (h) flowing into the steam inflow part R is pre-condensed by the pre-condenser (A). Cooling water (al) is introduced into the cooling pipe group (亦) of the pre-condenser from the second water supply chamber (15α) connected to the intermediate ice chamber (14M), and the cooling water (al) is introduced into the drainage chamber (15b). ).

また、前記プレコンデンサー(7)の冷却管群(20α
)の下側に蒸気流通間隔(21c) ’aj存してドレ
ンキャッチャ一群(211設けるとともに、該ドレンキ
ャッチャ一群(211の両端部からケースの内壁に沿っ
て下部のドレン溜(13に達し前記コンデンサ一部(1
11ヲ迂回したドレン流路(22)(21設けた構成に
なっている。
In addition, the cooling pipe group (20α) of the pre-condenser (7)
A group of drain catchers (211) are provided below the steam flow interval (21c)'aj, and a drain catcher (211) is connected from both ends of the drain catcher group (211) to the lower drain reservoir (13) along the inner wall of the case. Some (1
The drain flow path (22) (21) detoured from 11.

前記ドレンキャッチャ一群3υについてさらに詳述する
と、各ドレンキャッチャ−は、第6図に示すようにプレ
コンデンサー(イ)の冷却管群(20α)の下側におい
て斜めに配置され復水の水滴を受けて流下する斜板部(
21α)と、該斜板部(21α)の下縁に沿って設けら
れ前記水滴tキャッチして案内する橋部(21j)とか
らなり、前記斜板部(21α)と橋部(21b)とから
なる多数のドレンキャッチャ−が、第4図に示すように
冷却管群(201りに直交して配置され、かつ蒸気流通
間隔(211’) ’!ff存して全長にわたって配置
されているとともに、前記樋111(21A)は、第5
図に示すように山型形状になっていてキャッチした復水
(CI Y両端部へ案内して前記ドレン流路(社)(社
)の上部内へ導入する構成になっている。
To explain the drain catcher group 3υ in more detail, each drain catcher is arranged diagonally below the cooling pipe group (20α) of the pre-condenser (A) to receive water droplets of condensate, as shown in FIG. The swash plate part (
21α) and a bridge portion (21j) provided along the lower edge of the swash plate portion (21α) to catch and guide the water droplet t, and the swash plate portion (21α) and the bridge portion (21b) As shown in FIG. , the gutter 111 (21A) is the fifth
As shown in the figure, it has a chevron shape and is configured to guide the captured condensate to both ends of the CI Y and introduce it into the upper part of the drain flow path.

なお、図中(5)は、メインになっているコンデンサ一
部a0の冷却管群(11α)の中央に配設され多数の気
孔を有する空気抜管、(6)(7)は空気抜管(5)に
連設された排気管である。
In addition, (5) in the figure is an air vent pipe that is arranged in the center of the cooling pipe group (11α) of the main condenser part a0 and has many air holes, and (6) and (7) are air vent pipes (5). ) is an exhaust pipe connected to the exhaust pipe.

図示した本発明の実施例は、前記のような構成になって
おり作用効果について説明すると、冷却水(g)は、給
水室(14α)からコンデンサ一部α9の各冷却管(1
1α)内に導入されたのち中間氷室(14h)内に入り
、さらに、中間氷室(14h)から第2給水室(15α
)を経てプレコンデンサー(至)の各冷却管(20α)
中ン流通し排水室(15h)から排水されるとともに、
スチームタービン(図示省略)等の排気即ち蒸気(A)
は、上部の蒸気流入部0りに流入されプレコンデンサー
翰の各冷却管(20α)に接触して一次的に凝縮され復
水を生ずるが、該復水は、ドレンキャッチャ一群Qυの
各ドレンキャッチャ−の斜板部(21a)上を流下し各
橋部(21A)にキャッチされその端部へ案内されたの
ち、ドレン流路(2)(23によってコンデンサ一部(
11)の冷却管群(11α)を迂回して下部のドレン溜
0内に直接的に流入されて、プレコンデンサー翰によっ
て発生した復水はメインになっているコンデンサ一部(
11)の冷却を群(11α)には接触しない。
The illustrated embodiment of the present invention has the above-mentioned configuration, and to explain the operation and effect, the cooling water (g) is supplied from the water supply chamber (14α) to each cooling pipe (14α) of the condenser part α9.
1α), enters the intermediate ice chamber (14h), and then enters the second water supply chamber (15α) from the intermediate ice chamber (14h).
) to each cooling pipe (20α) of the pre-condenser (to)
The water flows inside and is drained from the drainage room (15h), and
Exhaust gas (A) from a steam turbine (not shown), etc.
The water flows into the upper steam inlet part 0 and contacts each cooling pipe (20α) of the pre-condenser screen and is temporarily condensed to produce condensate, but this condensate flows through each drain catcher of the drain catcher group Qυ. After flowing down on the swash plate part (21a) of - and being caught by each bridge part (21A) and guided to the end thereof, part of the capacitor (
11) The condensate generated by the pre-condenser is directly flowed into the lower drain reservoir 0 by bypassing the cooling pipe group (11α) in the main condenser (11).
The cooling of 11) does not come into contact with the group (11α).

さらに、前記プレコンデンサー(イ)によって前凝縮処
理された蒸気(hlは、ドレンキャッチャ一群(21)
中の前記多数の蒸気流通間隔(21C)を通り、メイン
のコンデンサ一部(11)の各冷却管(11α)に接触
して再び凝縮され復水を発生するが、該コンデンサ一部
α9における蒸気は、前記前凝縮処理によって復水発生
量が比較的に少なくなっており、また、前記のようにプ
レコンデンサー(7)における復水が付与されないため
、該コンデンサー(11)の各冷却管(11α)におけ
る復水は前記のように少なく水滴となり落下し水膜発生
がなくなって、伝熱性が著しく高められ総合的な蒸気凝
縮性能が著しく向上される。
Furthermore, the steam pre-condensed by the pre-condenser (A) (hl is a group of drain catchers (21)
The vapor in the main condenser part (11) passes through the large number of vapor flow intervals (21C) in the main condenser part (11) and is condensed again to generate condensate water. The amount of condensate generated is relatively small due to the pre-condensation treatment, and since condensate is not provided in the pre-condenser (7) as described above, each cooling pipe (11α) of the condenser (11) As mentioned above, the condensate in the condensate is reduced to a small amount and falls as water droplets, eliminating the formation of a water film, thereby significantly improving heat transfer and overall steam condensation performance.

また、プレコンデンサー翰における復水(c)は前記の
ようにドレンキャッチャ一群ρυおよびドレン流路(2
つ@によって下部のドレン溜a急に直接的に流入され排
出されるとともに、メインになっているコンデンサ一部
a9における復水(C)は比較的に少なくな9水膜を生
じないで水滴(C′)になって早目に下部のドレン溜a
3内に流入されるようになるため、復水の適冷が防止さ
れプラント効率の低下が防止される。
In addition, the condensate (c) in the pre-condenser is collected by a group of drain catchers ρυ and a drain channel (2) as described above.
At the same time, the condensate (C) in the main condenser part a9 suddenly flows directly into the drain reservoir a at the bottom and is discharged. As soon as C') occurs, the drain reservoir a at the bottom
3, the condensate is prevented from being properly cooled and a decrease in plant efficiency is prevented.

なお、前記ドレンキャッチャ一群Q1の各橋部(21A
)は山型形状にして両端部を低く形成しているが、斜設
して一方の端部のみを低く形成した構成等にすることも
でき、この場合のドレン流路は一方のみとなる。
In addition, each bridge part (21A) of the drain catcher group Q1
) is formed into a chevron shape and both ends are formed low, but it is also possible to have a configuration in which only one end is formed diagonally and low, and in this case, the drain flow path is only on one side.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種々の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蒸気発生器の縦断面図、第2図は第1図
の横断面図、第3図は第1図の冷却管群の一部拡大斜視
図、第4図は本発明の一実施例を示す縦断面図、第5図
は第4図の横断面図、第6図は第4図のドレンキャッチ
ャ一群の一部拡大斜視図である。 11:コンデンサ一部(メイン) 12:蒸気流入部1
3:ドレンW 20ニア’レコンデンサー21:ドレン
キャッチャ一群 22:ドレン流路11α、20α:冷
却管群 α:冷却水 h:蒸気 C:復水 復代理人 弁理士 岡 本 重 文 外3名
FIG. 1 is a longitudinal sectional view of a conventional steam generator, FIG. 2 is a cross-sectional view of FIG. 5 is a cross-sectional view of FIG. 4, and FIG. 6 is a partially enlarged perspective view of a group of drain catchers shown in FIG. 4. 11: Part of the condenser (main) 12: Steam inflow part 1
3: Drain W 20 near recondenser 21: Drain catcher group 22: Drain flow path 11α, 20α: Cooling pipe group α: Cooling water h: Steam C: Condensate condensation agent Patent attorney Shige Okamoto 3 other people

Claims (1)

【特許請求の範囲】[Claims] コンデンサ一部の上部に蒸気流入部を設けるとともに下
部にドレン溜を設けた蒸気凝縮器において、前記コンデ
ンサ一部の上側上流部にプレコンデンサーを設けるとと
もに、該プレコンデンサーの冷却管群の下側に蒸気流通
間隔を存して並置されたドレンキャッチャ一群を設け、
前記ドレンキャッチャ一群の端部と前記ドレン滴量に前
記コンデンサ一部を迂回したドレン流路を設けたことt
特徴とする蒸気凝縮器。
In a steam condenser in which a steam inlet is provided at the upper part of a part of the condenser and a drain reservoir is provided at the lower part, a pre-condenser is provided at the upper upstream part of the condenser part, and a pre-condenser is provided at the lower part of the cooling pipe group of the pre-condenser. A group of drain catchers are installed side by side with a steam flow interval,
A drain flow path that bypasses a part of the capacitor is provided at the end of the group of drain catchers and the drain droplet volume.
Features a steam condenser.
JP18850683A 1983-10-11 1983-10-11 Steam condenser Pending JPS6080080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18850683A JPS6080080A (en) 1983-10-11 1983-10-11 Steam condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18850683A JPS6080080A (en) 1983-10-11 1983-10-11 Steam condenser

Publications (1)

Publication Number Publication Date
JPS6080080A true JPS6080080A (en) 1985-05-07

Family

ID=16224911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18850683A Pending JPS6080080A (en) 1983-10-11 1983-10-11 Steam condenser

Country Status (1)

Country Link
JP (1) JPS6080080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692139A (en) * 2012-05-30 2012-09-26 深圳中兴新源环保股份有限公司 Water film evaporative condenser vacuum tube box

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692139A (en) * 2012-05-30 2012-09-26 深圳中兴新源环保股份有限公司 Water film evaporative condenser vacuum tube box

Similar Documents

Publication Publication Date Title
US2663547A (en) Condenser deaerator
US3834133A (en) Direct contact condenser having an air removal system
US4434112A (en) Heat transfer surface with increased liquid to air evaporative heat exchange
RU2005136433A (en) COMBINED AIR COOLED CONDENSER
US4513813A (en) Air-cooled steam condenser
RU2208750C2 (en) Air-cooled condenser
US3795273A (en) Feedwater heater
GB1211969A (en) Improvements in or relating to air cooled surface condensers
US4274481A (en) Dry cooling tower with water augmentation
US6233941B1 (en) Condensation system
CA1182700A (en) Wet/dry steam condenser
JP3735405B2 (en) Condenser
US20100065253A1 (en) Condenser
JP2576292B2 (en) Condenser and power plant using the same
US20050034455A1 (en) Multistage pressure condenser
US2848197A (en) Condenser
JPH11159706A (en) Feed water heater
JPS6080080A (en) Steam condenser
US2812164A (en) Heat exchanger
JP2005048980A (en) Condenser
US4417619A (en) Air-cooled heat exchanger
US4537248A (en) Air-cooled heat exchanger
US3391911A (en) Mixing condensers
US2916260A (en) Condenser deaerator
US1406356A (en) Condenser