JPS6079225A - Electromagnetic flow meter - Google Patents

Electromagnetic flow meter

Info

Publication number
JPS6079225A
JPS6079225A JP18685583A JP18685583A JPS6079225A JP S6079225 A JPS6079225 A JP S6079225A JP 18685583 A JP18685583 A JP 18685583A JP 18685583 A JP18685583 A JP 18685583A JP S6079225 A JPS6079225 A JP S6079225A
Authority
JP
Japan
Prior art keywords
electrode
detection
tube
fluid
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18685583A
Other languages
Japanese (ja)
Other versions
JPH0228091B2 (en
Inventor
Tadashi Akiyama
正 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP18685583A priority Critical patent/JPH0228091B2/en
Publication of JPS6079225A publication Critical patent/JPS6079225A/en
Publication of JPH0228091B2 publication Critical patent/JPH0228091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable measurement of super-low electric conductive fluid, for instance, 10<-7>OMEGA/cm and less, by compensating electrodes arranged extendedly along the outer periphery in the direction of pipe axis and providing these compensating electrodes with the specified electrodes in the direction respectively in which they intersect with detecting electrodes through an angle in a section perpendicular to the pipe axis. CONSTITUTION:An angle of 90 deg. is divided into 4 sectors and in each sector is provided with the compensating electrodes arranged by eight pieces in top and bottom positions respectively. On the other hand, an operational amplifier 12 as a preamplifier converting a detected potential into a non-inverted output obtained in a detecting electrode 3, and a divider 13 dividing at inside and outside diameters a, a' and angle of compensating electrode theta, an output voltage of an amplifier 12 into a products of (a/a') cos theta are installed. The voltage obtained in each output point of the divider 13 is applied to a compensating electrode 11 corresponding to each angle. Outside part of the compensating electrode 11 is covered by conventional insulating material and its outside part is covered by metallic shielding pipe and the assembly is grounded. A magnitude of signals similar with that which would have been obtained, by using a pipe of finite thickness with its outer periphery being grounded when an electroinductive pipe of infinite thickness were employed. At the same time, damping of a leader line shield of the detecting electrode by floating capacity can be compensated also.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電磁流@、組、特に、超低電導変流体を対象と
する電磁流量計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electromagnetic flow meter for electromagnetic flow, particularly for ultra-low conductivity variable fluids.

〔従来技術〕 従来流量を測定する流れに直交して交流磁界を発生させ
、流体に発生する起電力を、流体が流れる管の内壁に流
体と直接後するようにして設けた1対の電極により取り
出す通常の電磁流量計においては、その測定可能な流体
型導度は2〜5 X 10−’σ/cmが下限とされて
いる。これに対し、一般に、「油」と呼ばれるもツノ電
導度は10−” −i!1−” 07cmであり、この
「油」についてはもちろん、中間的な存在であるアセト
/やアンモニア等についても、上述した方式でその流量
を測定することは不可能と考えられる。しかしながら、
他方で電磁流輸引は機械式のもの等に比べて保守が容易
であること彦どから、上述した超低電導変流体について
も測定可能な電磁流破割の実現への要望は強い3、〔発
明の概要〕 本発明はこのような事情に鑑みてなされたものであり、
その目的は、従来子=T能とされている例えば10−’
 U /an以下の超低電導変流体の測定を可能にする
電磁流量計を提供することにある。
[Prior art] Conventionally, an alternating current magnetic field is generated perpendicular to the flow whose flow rate is to be measured, and the electromotive force generated in the fluid is absorbed by a pair of electrodes installed directly behind the fluid on the inner wall of a pipe through which the fluid flows. The lower limit of the measurable fluid conductivity of an ordinary electromagnetic flowmeter to be taken out is 2 to 5 x 10-'σ/cm. On the other hand, although it is generally called "oil", its horn conductivity is 10-"-i!1-"07cm, and not only this "oil" but also intermediate entities such as acetate/ammonia etc. , it is considered impossible to measure the flow rate using the method described above. however,
On the other hand, since electromagnetic transport is easier to maintain than mechanical methods, there is a strong desire to realize electromagnetic transport that can measure even the ultra-low conductivity variable fluids mentioned above3. [Summary of the invention] The present invention has been made in view of the above circumstances, and
Its purpose is conventionally considered to be T-ability, for example 10-'
An object of the present invention is to provide an electromagnetic flowmeter that enables measurement of ultra-low conductivity variable fluids of U 2 /an or less.

このような目的を達成するために、本発明は、流体と検
出電極との間に誘電体を介在させ、電極面が直接流体に
接しないようにして流体に発生うる起電力を客用結合に
より取り出すいわゆる容1.l結合形の電磁流量計を用
い、かつその場合誘電体からなる管の厚さが有限であり
外周をシールド接地して用いる必要があることによって
内部電界分布が乱されかつ減衰されることを補償するた
めに、外周に管軸方向に沿って延在する補償電極を設け
、この補償電極に、管軸方向に垂直な断面内で検出電極
とθの角度をなす方向に管の内・外半径をそれぞれ、 
、 、+として検出電極に得られる電位の−cosθ倍
となる電位を与えた。ものである。
In order to achieve such an object, the present invention interposes a dielectric material between the fluid and the detection electrode, prevents the electrode surface from directly contacting the fluid, and eliminates the electromotive force that may be generated in the fluid by using a custom coupling. The so-called container to be taken out 1. Compensate for the disturbance and attenuation of the internal electric field distribution due to the use of a coupled type electromagnetic flowmeter, in which case the thickness of the dielectric tube is finite and the outer periphery must be shielded and grounded. In order to respectively,
As , , +, a potential that is −cosθ times the potential obtained at the detection electrode was applied. It is something.

また、さ−ちに検出電極と流体間の微小な結合容量に対
し、差動増幅器の前段に設けた各検出電極から得られる
検出電位を非反転入力とする演算増幅器の入力容量が同
程度またはそれ以上となるととによる出力電圧の低下を
補償するために、出力電圧を一定の利得で増幅してコン
デンサを介して正帰還する回路を設けたものである1、
なお、上記演算増幅器の反転・非反転入力端子間の浮遊
容量による減衰については、フォロア接続により補償す
ることを前提としている。
In addition, with respect to the minute coupling capacitance between the detection electrode and the fluid, the input capacitance of the operational amplifier whose non-inverting input is the detection potential obtained from each detection electrode provided in the front stage of the differential amplifier is approximately the same or In order to compensate for the drop in output voltage caused by exceeding this level, a circuit is provided that amplifies the output voltage with a constant gain and provides positive feedback via a capacitor.
It is assumed that attenuation due to stray capacitance between the inverting and non-inverting input terminals of the operational amplifier is compensated for by a follower connection.

以下、実施例を用いて本発明の詳細な説明するが、はじ
めに合量結合によることの妥当性の説明およびその場合
に解決しなければならない上述したような問題の解析を
行なって、次にそれらの解決手段としての実施例の説明
に移行する。
The present invention will be explained in detail below using examples. First, we will explain the validity of the combined bond and analyze the above-mentioned problems that must be solved in that case. Now, we will move on to an explanation of an embodiment as a means for solving the problem.

〔実施例〕〔Example〕

超低電導変流体におdるファラデー効果による流量検出
電位差については、V、Cushingによる解析があ
る(”Induction Flowmeter”、R
ev、Sci、Instrum、。
There is an analysis by V. Cushing ("Induction Flowmeter", R.
ev, Sci, Instrum.

29、pp692−697.1958)。それによ;ば
、第1図に示すように誘電体からなる管1の さが有限
でありかつ外周を金属シールド管2に比りシ」ルド接地
されている場合に流体を挾んで 置された1対の検出電
極30間に得られる電位系Δ■は、次の11) 、 t
2)式で示される。なお、4が一体を示す。
29, pp692-697.1958). Accordingly, as shown in Figure 1, if the tube 1 made of dielectric material has a finite size and its outer periphery is shielded and grounded compared to the metal shield tube 2, it is possible to place the tube between the fluid. The potential system Δ■ obtained between a pair of detection electrodes 30 is as follows 11), t
2) It is shown by the formula. Note that 4 indicates one piece.

1゜ Δv=に−n−p−u l −−−−(1)□ 1 ・・・・1(2) □ −゛゛′″″″″″。1゜ Δv=ni-n-p-u l ---(1)□ 1...1(2) □ −゛゛′″″″″″.

D=管の直径(内径)(−21L) U:平均流速 ( σ、:流体の電導度 σ2°管の電導度 ε。:真空の誘電率 ε7□:流体の比誘電率 εt−2’管の比誘電率 ω:磁場の角周波数 a:管の内半径 b:管の外半径 これが、一般に電磁流量計の出力信号を与える基本式と
なり、通常の、すなわち超低型導度流体を対象としない
電磁流量計においてはσ1が十分に大きいために=1と
考えて差支えない。
D = Diameter (inner diameter) of the tube (-21L) U: Average flow velocity (σ,: Electrical conductivity of the fluid σ2° Electrical conductivity of the tube ε.: Permittivity of vacuum ε7 □: Relative permittivity of the fluid εt-2' Tube Relative permittivity ω: Angular frequency of the magnetic field a: Inner radius of the tube b: Outer radius of the tube This is generally the basic equation that gives the output signal of an electromagnetic flowmeter, and is used for ordinary, that is, ultra-low conductivity fluids. In an electromagnetic flowmeter that does not have σ1, σ1 is sufficiently large, so it can be safely assumed that σ1 is equal to 1.

さて、実用上σ2は十分に小さくすることができるから
(例えばテフロンでは1t)−18U 7cm )無視
すると、(2)式は次の(3)式のように表わせる。
Now, since σ2 can be made sufficiently small in practice (for example, 1t for Teflon) -18U 7cm), equation (2) can be expressed as the following equation (3).

この(3)式から具体的に実現可能な限界を検討すると
、まず、実際上置の厚さは零にするととも無限大にする
こともできず、a/bの変域ij Q < a/b <
1であるが、 n/bm4n= 0.5 a/b = 0.8 程度が限界と考對−られる。ここでは数をまとめるため
にaA = 0.65とする。
Examining the practical limit from Equation (3), first of all, the actual thickness of the upper layer cannot be made zero or infinite, and the range of a/b ij Q < a/ b <
1, but n/bm4n=0.5 a/b=0.8 is considered to be the limit. Here, in order to summarize the numbers, aA = 0.65.

次に、εr2はライニング材、すなわち管の内壁部、検
出電極と流体間の誘電体で決まるが、これは特に高絶縁
性が°皮求されるため例え(I′J’テフロンなどが用
いられ、その」易合 εr2−2 したがって、(3)式は次の(4)式のようになる。
Next, εr2 is determined by the lining material, that is, the inner wall of the tube, the dielectric between the detection electrode and the fluid, which requires particularly high insulation, so for example (I'J' Teflon etc. are used). , the equation εr2-2 Therefore, equation (3) becomes the following equation (4).

ε7、については2種類の流体を考えることにする。す
なわち、その1つは石油系であってε7、−2 他の1つは純水などであって εr1=80 アルコール類などはこれらの中間に位置する。
Regarding ε7, two types of fluids will be considered. That is, one of them is petroleum-based, ε7, -2, and the other is pure water, εr1=80. Alcohols are located in between these.

次にこれらの値を用いて(4)式からめたKの絶対値の
周波数特性を第2図および第3図に示す。
Next, the frequency characteristics of the absolute value of K calculated from equation (4) using these values are shown in FIGS. 2 and 3.

第2図が石油系で図中(イ)、(ロ)、(ハ)、に)は
それぞれσlが10−15110−11″、 10−”
 、 10−’ U/C1n の場合を示し、第3図が
純水系で図中(イ)、←)はそれぞれσlが10−7お
よびIQ−JJ/c1nの場合を示す3.また第3図中
(ハ)は5.55 X 10−8という最小のσ1を有
する理論純水について示したものである。各曲線におい
て、ωの低域のフラット部が検出電極を流体に直接接触
させた場合に相当するが、電磁流f’F(tlが用いら
れる主要な分野であるプロセス制御系では、少なくとも
1〜2秒程度の応答性が要求されるから、ωの下限は2
0(周波数では3Hz’) i度と考えねばならない。
Figure 2 shows petroleum systems, and σl in (a), (b), (c), and ni) are 10-15110-11" and 10-", respectively.
, 10-' U/C1n, and FIG. 3 shows the pure water system, and (A) and ←) in the figure show the cases where σl is 10-7 and IQ-JJ/c1n, respectively. Further, (c) in FIG. 3 shows theoretical pure water having the minimum σ1 of 5.55×10 −8 . In each curve, the flat part in the low range of ω corresponds to the case where the detection electrode is brought into direct contact with the fluid. Since responsiveness of about 2 seconds is required, the lower limit of ω is 2
0 (3 Hz' in frequency) must be considered as i degrees.

すると、図から明らかなように、純水系では理論純水ま
で、すなわちすべて測定可能であるが、石油系では1O
−10U 71mが測定できる電導度の下限となる。し
かもこれは全く理想的な計測回路による理論的限界であ
るから、実際には上述した方式での[油」の測定は不可
能で、容量結合によらなければならないこととなる。
Then, as is clear from the figure, in pure water systems it is possible to measure everything up to theoretically pure water, but in petroleum systems it is possible to measure up to 1O
-10U 71m is the lower limit of conductivity that can be measured. Moreover, since this is a theoretical limit of a completely ideal measurement circuit, it is actually impossible to measure oil using the method described above, and capacitive coupling must be used.

そこで、(3)式において次の(5)式のようにσ□拗
→0とした場合が容量結合に相当する1゜εrl−’ ここでa/b = 1とすると11mK=Ohiってし
σ1/′o巌0 1うように、第1図に示したように外周をシールド接地
した誘電体からなる管1においてその厚さを小さくする
と、得られる出力信号が小さくなる。
Therefore, in equation (3), if σ□su → 0 as shown in equation (5) below, 1゜εrl-' corresponds to capacitive coupling.Here, if a/b = 1, then 11mK=Ohi. As shown in FIG. 1, if the thickness of the tube 1 made of a dielectric material whose outer periphery is shielded and grounded is reduced, the output signal obtained becomes smaller.

したがって、できるだけ厚い管を使う必要があるが、設
計上ならびにコスト面から(例えばテフロンは高価)制
限がある。そこで、不発OJJでは次のような方法で等
測的にa/b・0、すなわち無限大の厚さを達成した。
Therefore, it is necessary to use a tube as thick as possible, but there are restrictions due to design and cost considerations (for example, Teflon is expensive). Therefore, in the unexploded OJJ, a/b・0, that is, infinite thickness, was achieved isometrically using the following method.

今、b→ωとして、第4図に示すように管1の管軸方向
に垂直な断面内で中心点に対して検出電極の方向とθの
角度をなす方向における管内面の点p (0)の電位を
V(θ)とし、p点に対向する半径a′の点q(のの電
位をv’(のとすると、管の軸方向には電場は存在しな
いから、 v’(θ)−−!17v(の このことは逆に、q点に電極を1首きそれにv′(のの
電位を与えておけば、半径a′の外側には何も存在しな
くてもb−ωと等価になることを示している。aおよび
a′、すなわち現実の管の外半径は既知であるから、V
(のを知れば、V′(のが決まる。θ−〇におけるV(
θ)は検出電極の電位V′″Cあり、■(の−v co
sθとおくことができるから、結局v’(θ)−’=V
cosθ となる。
Now, as b → ω, a point p (0 ) is the potential at V(θ), and the potential at point q( of radius a' opposite to point p is v'(). Since there is no electric field in the axial direction of the tube, v'(θ) --!17v()Conversely, if you put one electrode at point q and give it the potential of v'(, b-ω even if there is nothing outside the radius a') Since a and a′, that is, the outer radius of the actual pipe, are known, V
If you know (, you can determine V'(.V() at θ-〇
θ) is the potential V′″C of the detection electrode, and ■(-v co
Since it can be set as sθ, v'(θ)-'=V
cos θ.

すなわち、誘電体から力る内半径a1外半径a′の管の
外周に管軸方向に延在する補償電極を設け、これに上式
で示される電位分布を与えれは、管の厚さが有限である
ことに基く信号の減衰は補償できる。近似的には、これ
は例えば第5図に示すように軸方向に複数に分割した帯
状の補償電極11を設け、それぞれにそのθに対応して
−v cosθの電位を与えることが実現できる。
That is, if a compensating electrode extending in the axial direction of the tube is provided on the outer periphery of a tube with an inner radius a1 and an outer radius a' that is applied from a dielectric material, and a potential distribution given by the above equation is applied to the tube, the thickness of the tube is finite. The attenuation of the signal due to this can be compensated for. Approximately, this can be realized, for example, by providing a band-shaped compensation electrode 11 divided into a plurality of parts in the axial direction, as shown in FIG. 5, and applying a potential of -v cos θ to each of them corresponding to θ.

第5図は本発明の一実施例(部分)を示す構成図である
が、90 を4分割してその各部に、上下それぞれ8個
ずつの補償電極を設けである。他方、本実施例では、差
動増幅器(図示せず)の前段に、検出電極3に得られる
検出電位を非反転入力とする前置増幅器としての演算増
幅器12と、この演算増幅器12の出力電圧を一!7C
O3θ(θは上記各補償電極11を配置した角度)倍に
分圧する分圧器13とを設け、この分圧器13の各出力
点に得られる電圧をそれぞれ対応する角度の補償電極1
1に印加している。図上省略したが、下側の検出電極に
ついても同様の構成の回路を有している。なお、図示の
例では補償電極11を検出電極3からずらして(θ\・
0 )設けであるが、これは引出しの都合上で、θ−0
に合うように配置してもよいことは言うまでもない。
FIG. 5 is a block diagram showing an embodiment (part) of the present invention, in which 90mm is divided into four parts, and eight compensation electrodes are provided in each of the upper and lower parts. On the other hand, in this embodiment, an operational amplifier 12 as a preamplifier which uses the detection potential obtained at the detection electrode 3 as a non-inverting input is provided before the differential amplifier (not shown), and the output voltage of this operational amplifier 12 is One! 7C
A voltage divider 13 that divides the voltage by O3θ (θ is the angle at which each of the compensation electrodes 11 is arranged) is provided, and the voltage obtained at each output point of the voltage divider 13 is applied to the compensation electrode 1 at the corresponding angle.
1 is applied. Although omitted in the figure, the lower detection electrode also has a circuit with a similar configuration. In the illustrated example, the compensation electrode 11 is shifted from the detection electrode 3 (θ\・
0), but due to the drawer, θ-0
Needless to say, they may be arranged as appropriate.

補償電極11の外側は、通常の絶縁材で覆い、その外側
をシールド用の金属管で覆って接地する。
The outside of the compensation electrode 11 is covered with a normal insulating material, and the outside is covered with a metal tube for shielding and grounded.

−例として補償電極11としてフレキシブルプリント基
板のようなものを用い、これを例えばテフロンからなる
管1の外側に貼り付け、外側をシールド接地する方法を
とれば、容易に実現できる1゜なお、管1については例
えばテフロンを用い、その内壁近くに検出電極を埋込む
構造が用いら」するが、特に流体に直接接する部分につ
いては主として耐摩耗性の点からより耐摩耗強度の高い
セラミックを用いてもよい。その場合、例えばそのセラ
ミック管の外周に検出電極を貼り伺け、その外側をテフ
ロンでモールドするなどの方法が考えられる。
- For example, if a flexible printed circuit board or the like is used as the compensation electrode 11, and this is attached to the outside of the tube 1 made of Teflon, for example, and the outside is grounded as a shield, this can be easily realized. Regarding 1, for example, Teflon is used, and a structure in which the detection electrode is embedded near the inner wall is used, but ceramics with higher abrasion resistance and strength are used mainly for the parts that are in direct contact with the fluid, mainly from the viewpoint of wear resistance. Good too. In that case, for example, a detection electrode may be pasted on the outer periphery of the ceramic tube, and the outside may be molded with Teflon.

上記構成により、外周をシールド接地した有限な厚さの
管を用いながら、厚さが無限大の誘電体管を用いたと同
様の信号量が得られると同時に検出電極の引出し線のシ
ールドの浮遊容量による減衰も補償′できる。
With the above configuration, while using a tube with a finite thickness whose outer periphery is shielded and grounded, it is possible to obtain the same signal amount as using a dielectric tube with an infinite thickness. It is also possible to compensate for the attenuation due to

ここで、検出電極からの信号を入力とする初段の増幅器
である演算増幅器12の入力容量、が問題となる。すな
わち、検出電極により各端結合で取り出される信号は本
来非常に小さなものであるのに対し、上記入力容量が結
合容量と同程度もしくはそれ以上となって、信号を大幅
に減衰させる。
Here, the input capacitance of the operational amplifier 12, which is the first-stage amplifier that receives the signal from the detection electrode, becomes a problem. That is, although the signal taken out by the detection electrode at each end coupling is originally very small, the input capacitance becomes equal to or greater than the coupling capacitance, and the signal is significantly attenuated.

すなわち、第6図において、21を結合芥惜、22をバ
イアス抵抗として、結合容量21の容鼠値Cは、容吟唱
本体の設N1で決定される。すなわち、検出電極30面
積を81この検出「民権と流体間の間隙をtlその間の
誘電体の比誘電率をεr2としてCは、 c=、ε0εr2 で示されるが、実際の設計上は、例えばt = 0.1
5 <cn+) S = 2.5 x 1.5 (Cm2)ε、2= 2
 (テフロンの場合) として c = 4.43X10−” (F) 程度が構造上の限度と考えられる。
That is, in FIG. 6, 21 is a coupling capacitor, 22 is a bias resistor, and the capacitance C of the coupling capacitance 21 is determined by the setting N1 of the capacitor body. That is, if the area of the detection electrode 30 is 81, and the gap between the sensing electrode and the fluid is tl, and the relative dielectric constant of the dielectric between them is εr2, then C is expressed as c=, ε0εr2, but in actual design, for example, t = 0.1
5 <cn+) S = 2.5 x 1.5 (Cm2)ε, 2=2
(In the case of Teflon) c = 4.43X10-'' (F) is considered to be the structural limit.

とれに対し、入力容量23 (CIN)は、3〜49F
程度で、上記結合容量、すなわち信号源直列容量とほぼ
同程度であるから、バイアス′亀流の小さなFET入力
の演算増幅器を用い、3000MΩの高バ非反転・反転
入力端子間のディファレンシャルモードの浮遊容量24
 (CD)は、演、算増幅器12をフォロア接続とする
ことにより簡単に補償できるが、上記入力容量(CIN
)はそれによっては補償されず、また、演算増幅器のユ
ニット内部に存在するものであるため、検出電極引出し
線のシールドの浮遊容量の場合のような補償信号をとる
こともできない。
In contrast, the input capacitance 23 (CIN) is 3 to 49F.
Since the coupling capacitance is approximately the same as the signal source series capacitance, an operational amplifier with a FET input with a small bias current is used to reduce the differential mode floating between the non-inverting and inverting input terminals with a high voltage of 3000 MΩ. Capacity 24
(CD) can be easily compensated by connecting the operational amplifier 12 as a follower, but the input capacitance (CIN
) is not compensated for by this, and since it exists inside the operational amplifier unit, it is not possible to take a compensation signal as in the case of the stray capacitance of the shield of the detection electrode lead line.

そこで、本発明では例えば第6図に示すようにコンデン
サ31、抵抗32.33および演算増幅器34からなる
補償回路を設ける。
Therefore, in the present invention, a compensation circuit consisting of a capacitor 31, resistors 32 and 33, and an operational amplifier 34 is provided, as shown in FIG. 6, for example.

図から明らかなように、との補償回路は演算増幅器12
に対して正帰還ループを構成するから、が安定条件であ
る。
As is clear from the figure, the compensation circuit for and is the operational amplifier 12
This is a stable condition because a positive feedback loop is formed for .

ただしC′はコンデンサ31の容W・値R1は抵抗32
の抵抗値 R2は抵抗33の抵抗値 また、この場合の信号源容量値Cは、流体内部の容量と
電極容量との直列容縫値とする。
However, C' is the capacity W of the capacitor 31, and the value R1 is the resistance 32
The resistance value R2 is the resistance value of the resistor 33, and the signal source capacitance value C in this case is the series capacitance value of the internal fluid capacitance and the electrode capacitance.

したがって、エンプティ(流体が全くない)状態で発振
を生じないように設定する必汐があるが、面積Sの平板
電極の片面の自由空間に対する容量値は近似的に 回ε。
Therefore, it is necessary to set the setting so that oscillation does not occur in an empty state (no fluid at all), but the capacitance value for the free space on one side of a flat plate electrode of area S is approximately times ε.

で与えられ、前述の数値例S −3,75L:m を用
いると0.43 pFとなる。この結果、 が安定条件となる。
Using the numerical example S −3,75L:m described above, it becomes 0.43 pF. As a result, becomes the stability condition.

この補償回路の動作は次のように解析できる。The operation of this compensation circuit can be analyzed as follows.

すなわち、第6図の回路は第7図に示すように、演算増
幅器12の入力を増幅器35によりA倍を介して正帰還
する回路となっており、さらに、A−2(すなわちR1
=”jt )とすると、ここで、 ω=314 C= 4.4pF ’R= 30(H)MΩ C,N= 3.5 pF としてv7EとC′との関係をめると、第8図に示すよ
うになる。
That is, as shown in FIG. 7, the circuit of FIG. 6 is a circuit in which the input of the operational amplifier 12 is positively fed back via the amplifier 35 by a factor of A.
="jt", then ω = 314 C = 4.4 pF 'R = 30 (H) MΩ C, N = 3.5 pF and the relationship between v7E and C' is shown in Fig. 8. It becomes as shown in .

第8図において、1点はC″−CIhh すなわち入力
容量のみを補償した状態であり、1点はバイアス抵抗R
を流れる電流による効果も補償した状態で、このときの
C′は約3.63 pFである。C′に留水される安定
度としては、t/真の変イヒを105%1で許容するも
のとして約to、6%であり、例えばエアートリマコン
デンサを用いることにより全く問題なく達成できる。
In Fig. 8, one point is C''-CIhh, that is, the state where only the input capacitance is compensated, and one point is the bias resistance R
C' at this time is approximately 3.63 pF, with the effect due to the current flowing through the capacitor being compensated for. The stability of water retained in C' is about to, 6%, assuming that t/true deformation is allowed at 105%1, and can be achieved without any problem by using, for example, an air trimmer capacitor.

C′の設定は、CINが既知であれば、C′を01Nに
合わせることで1点調整が完了するが、動作状態でのM
OSのゲート容量の実測は危険と考えられる。
For the setting of C', if CIN is known, one point adjustment is completed by setting C' to 01N.
Actual measurement of OS gate capacity is considered dangerous.

入力抵抗(CtN)には、バイアス抵抗の浮遊容量、絶
縁配線中テフロンビンの浮遊容1?1:なども含−まわ
The input resistance (CtN) includes the stray capacitance of the bias resistor, the stray capacitance of the Teflon bottle in the insulated wiring, etc.

るから、正規に組付けた増幅器ユニットで実測しなけれ
ばならない3、このような点から、発信器本体の管内面
に検出電極の位置に合せて金属箔を貼り、既知電圧Eを
与え、■を実測し7てV===EとなるようにC′を調
整する方法が最適と考えらノア、る。
3. From this point of view, paste metal foil on the inner surface of the tube of the transmitter body in line with the position of the detection electrode, apply a known voltage E, and It is thought that the best method is to measure C' and adjust C' so that V===E.

なお、このような補償回路により入力容量を補償するに
は、入力容量値CTNが安定であることが前提となるが
、MOS FET入力であれば十分な安定性が得られる
Note that in order to compensate for the input capacitance using such a compensation circuit, it is a prerequisite that the input capacitance value CTN is stable, but sufficient stability can be obtained with a MOS FET input.

このような初段増幅器ユニットは、電磁シールドし、か
つ乾燥ガス(例えばNZ)を封入した容器内に収容して
用いることが望ましい。コンデンサ31の調整ねじカど
も、気密シール軸によって連結する必要がある。検出電
極に接続される部分はテフロンビンなとで絶縁し、かつ
リーケージガードをしなければならない。この部分を樹
脂でボッティングすることは、浮遊容量を増大させるこ
とと迷走リークを発生させることの2点から避けねばガ
らない。
It is desirable that such a first-stage amplifier unit be housed in a container that is electromagnetically shielded and filled with dry gas (for example, NZ). The adjustment screws of the capacitor 31 must be connected by an airtight seal shaft. The part connected to the detection electrode must be insulated with a Teflon bottle and provided with a leakage guard. Botting this part with resin must be avoided from the two viewpoints of increasing stray capacitance and generating stray leaks.

以上の説明から、初段増幅器ユニットは例えば第9図の
ように構成される。図において、41はNチャネルMO
8FET入力の演算増幅器、42は演算増幅器34と同
様の一般用演算増幅器で、この両増幅器が前述した演算
増幅器12に相当する。
From the above explanation, the first stage amplifier unit is configured as shown in FIG. 9, for example. In the figure, 41 is an N-channel MO
The 8FET input operational amplifier 42 is a general-purpose operational amplifier similar to the operational amplifier 34, and both of these amplifiers correspond to the operational amplifier 12 described above.

また43はコンデンサ31のリーケージガード用の抵抗
で、上記演算増幅器41、抵抗43およびコンデンサ3
1以外の回路素子はプリント配線が可能である。44は
検出電極の引出し線シールドである。図は、片側の電極
についてのみ示したが、他方の検出電極についても同様
の回路構成となり両者の演算増幅器42の出力OUTの
差を図示t〜ない差動増幅器で増幅して最終的な検出出
力が得られる。才だ、全体は、N2 ガス封入シールド
ケ=−745に封入される。なお、演算増幅器42の出
力を検出電極の引出し線シールド44に帰還することに
より引出し線(心線)とシールド間の浮遊容量による減
衰を補償しである。
Further, 43 is a resistor for leakage guarding the capacitor 31, which includes the operational amplifier 41, the resistor 43, and the capacitor 3.
Circuit elements other than 1 can be printed wiring. 44 is a lead wire shield for the detection electrode. The figure shows only one electrode, but the circuit configuration is similar for the other detection electrode, and the difference between the outputs OUT of both operational amplifiers 42 is amplified by a differential amplifier (not shown) to obtain the final detection output. is obtained. The whole thing is sealed in a N2 gas-filled shield case = -745. Note that the output of the operational amplifier 42 is fed back to the lead wire shield 44 of the detection electrode to compensate for attenuation due to stray capacitance between the lead wire (core wire) and the shield.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、容敞結合方式を
用い、かつ誘電体管の外周に管軸方向に沿って延在する
補償電極を設けてこれに検出電極に得られる電位の′一
部θ倍の電位分布を与えたことにより、上記誘電体管が
有限の厚さを有し外周をシールド接地していることによ
り生ずる信号の減衰を補償することが可能である1、ま
た、上記構成を、検出電位を非反転入力とするフォロア
接続の前置演算増幅器の出力を分圧器で分圧した出力を
補償電極に与えることによって近似的に実現し、さらに
上記演算増幅器の出力を一定の利得で増幅してコンデン
サを介して正帰還する回路を設けたことにより、信号発
生源の微小な結合容量に対して上記演算増幅器の入力容
量が同等もしくはそれ以上となることによる信号の減衰
を補償することができる。これにより、本発明は従来の
電磁流量。
As explained above, according to the present invention, a compensating electrode is provided on the outer periphery of the dielectric tube and extends along the tube axis direction using a capacitive coupling method, so that the potential obtained at the detection electrode is By giving a potential distribution that is partially θ times as large as θ, it is possible to compensate for signal attenuation caused by the fact that the dielectric tube has a finite thickness and its outer periphery is grounded as a shield. The above configuration can be approximately realized by applying the output obtained by dividing the output of a follower-connected pre-operational amplifier with a non-inverting input using a voltage divider to the compensation electrode, and furthermore, the output of the above-mentioned operational amplifier is kept constant. By providing a circuit that amplifies with a gain of can be compensated. Thereby, the present invention is different from the conventional electromagnetic flow rate.

計では不可能とされていた超低伝導度流体の流量測定を
可能にするものである1゜
The 1°

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電磁流量:側において得られる電位差を説明
するだめの図、第2図は石油系流体における補正項にの
ω依存性を流体の電導度をノ(ラメータとして示す図、
第3図は純水系における同様の図、第4図は管の厚さが
有限であることに基く信号の減衰の補償原理を説明する
だめの図、第5図は本発明の一実施例における補償電極
の構成例を示す図、第6図は前置演算増幅器の入力容量
に基く信号の減衰を補償する回路の構成例を示す図、第
7図はその動作を説明するための図、第8図は補償効果
を説明するための図、第9図は本発す]の一実施例にお
ける前置増幅器部分の構成を示す図である。 1・・・・誘電体からなる管、2・・・・シールド管、
3・・・・検出11極、4・・・・M11体、11・・
・・補償電接、12・・・・前置演算増幅器、13・・
・・分圧器、21・・・・結合容量、23・・・・入力
容量、31・・・・コンアンサ、34・・・・帰還用演
算増幅器、41.42・・・・前置演算増幅器12を構
成する増幅器。 !冑飲用)願人 山弐ノ・ネウエル株式会を十代理人 
山川政樹(ほか1名) 第5図 1? 第6図 ]Il。 第7図 V 第8図 C’(ρF)
Figure 1 is a diagram to explain the potential difference obtained on the electromagnetic flow rate side, Figure 2 is a diagram showing the ω dependence of the correction term in oil-based fluids as a function of the electrical conductivity of the fluid.
Fig. 3 is a similar diagram for a pure water system, Fig. 4 is a diagram explaining the principle of compensating for signal attenuation based on the finite thickness of the tube, and Fig. 5 is a diagram for an embodiment of the present invention. 6 is a diagram showing an example of the configuration of a compensation electrode, FIG. 6 is a diagram showing an example of the configuration of a circuit that compensates for signal attenuation based on the input capacitance of a pre-operational amplifier, FIG. FIG. 8 is a diagram for explaining the compensation effect, and FIG. 9 is a diagram showing the configuration of the preamplifier portion in one embodiment of the present invention. 1... Tube made of dielectric material, 2... Shield tube,
3...11 detection poles, 4...11 M bodies, 11...
... Compensation electrical connection, 12... Pre-operational amplifier, 13...
... Voltage divider, 21 ... Coupling capacitance, 23 ... Input capacitance, 31 ... Condenser, 34 ... Feedback operational amplifier, 41.42 ... Pre-operational amplifier 12 Amplifiers that make up the. ! 10 representatives of Yamani-no-Newel Co., Ltd.
Masaki Yamakawa (and 1 other person) Figure 5 1? Figure 6] Il. Figure 7 V Figure 8 C' (ρF)

Claims (1)

【特許請求の範囲】 (11外周をシールド接地した誘電体からなる管内を流
れる流体を挾んで対向しかつそれぞれ誘電体を介して流
体と接するように配置され流体に発生する起電力を容量
結合により取シ出す1対の検出電極と、これらの検出電
極間に得られる電位差を増幅する差動増幅器とを備えた
容′…結合形の電磁流量計において、上記管の外周に管
軸方向に延在する補償電極を設け、この補償電極に、管
軸方向に垂直な断面内で中心点に対して検出FfK [
iとθの角度をなす方向での電位が検出電極に得られる
電位a′ の−cosθ(aは管の内半径、a′は外半径)倍とな
る電位分布を与えたことを特徴とする電磁流量計。 (2)外周をシールド接地した誘電体からなる管内を流
れる流体を挾んで対向しかつそれぞれ誘電体を介して流
体と接するように配置され流体に発生する起電力を容量
結合により取り出す1対の検出電極と、これらの検出電
極間に得られる電位差を増幅する差動増幅器とを備えた
容量結合形の電磁流量計において、上記管の外周に管軸
方向に延在する補償電極を設けるとともに、差動増幅器
の前段に、各検出電極から得られる検出電位を非反転入
力とする7オロア接続の演算増幅器と、この演算増幅器
の出力電圧を見cosθ(aは管の内半径、a′は外半
径)倍に分圧する分圧器とを設け、この分圧器の各出力
点に得られる電圧を、i!’ +tll+方向に垂直な
断面内で中心点に対して検出電流とθの角度をなす方向
の上記補償電極に印加したことを%徴とする電磁流量計
。 (3)外周をシールド接地した誘′亀体からなる管内を
流れる610体を挾んで対向しかつそれぞれに誘1L体
を介して流体と接するように配置Nされ流体に発生する
起電力を容量結合により取り出す1対の検出′電極と、
これらの検出電極間に得られ、る電位差を増幅する差動
増幅器とを備えた容量結合形の電磁流量計において、上
記管の外周に管軸方向に延在する補償電極を設けるとと
もに、差動増幅器の前段に、各検出電極から得られる検
出電位を非反転入力とするフォロア接続の演算増幅器と
、この演算増幅器の出力電圧を一17cosθ(aは管
の内半径、a′は外半径)倍に分圧する分圧器とを設け
、この分圧器の各出力点に得られる電圧を、管軸方向に
垂直な断面内で中心点に対して検出′電極とθの角度を
なす方向の上記補償電極に印加し、かつ上記演算増幅器
の出力を一定の利得で増幅しコンデンサを介して入力側
に正帰還する回路を設けたことを特徴とする電磁流量計
[Claims] (11) The pipes are arranged so as to sandwich the fluid flowing in the pipes, which are made of a dielectric material whose outer periphery is shielded and grounded, and are in contact with the fluid through the dielectric material. In a capacitor-coupled electromagnetic flowmeter that is equipped with a pair of detection electrodes that are taken out and a differential amplifier that amplifies the potential difference obtained between these detection electrodes, a A compensation electrode is provided, and this compensation electrode is used to detect FfK [
It is characterized by providing a potential distribution in which the potential in the direction forming the angle between i and θ is −cosθ (a is the inner radius of the tube, a′ is the outer radius) times the potential a′ obtained at the detection electrode. Electromagnetic flowmeter. (2) A pair of detection devices arranged to sandwich the fluid flowing in a pipe made of a dielectric material whose outer periphery is shielded and grounded, and to be arranged so as to be in contact with the fluid through the dielectric material, and to extract the electromotive force generated in the fluid through capacitive coupling. In a capacitively coupled electromagnetic flowmeter equipped with electrodes and a differential amplifier that amplifies the potential difference obtained between these detection electrodes, a compensation electrode is provided on the outer periphery of the tube and extends in the tube axis direction. In the preceding stage of the dynamic amplifier, there is an operational amplifier with a 7-oror connection that uses the detection potential obtained from each detection electrode as a non-inverting input. ) is provided, and the voltage obtained at each output point of this voltage divider is expressed as i! ' An electromagnetic flowmeter whose percentage sign is the voltage applied to the compensation electrode in a direction forming an angle θ with the detection current with respect to the center point within a cross section perpendicular to the +tll+ direction. (3) 610 bodies flowing in a pipe consisting of a dielectric body whose outer periphery is shielded and grounded are placed so as to sandwich and face each other, and each is in contact with the fluid through a dielectric body, and the electromotive force generated in the fluid is capacitively coupled. a pair of detection electrodes taken out by the
In a capacitively coupled electromagnetic flowmeter equipped with a differential amplifier that amplifies the potential difference obtained between these detection electrodes, a compensation electrode extending in the tube axis direction is provided on the outer periphery of the tube, and a differential At the front stage of the amplifier, there is a follower-connected operational amplifier that uses the detection potential obtained from each detection electrode as a non-inverting input, and the output voltage of this operational amplifier is multiplied by -17 cos θ (a is the inner radius of the tube, a' is the outer radius). The voltage obtained at each output point of this voltage divider is detected by detecting the voltage obtained at each output point of the voltage divider with respect to the center point in a cross section perpendicular to the tube axis direction. 1. An electromagnetic flowmeter characterized by being provided with a circuit that applies a voltage to the operational amplifier, amplifies the output of the operational amplifier at a constant gain, and provides positive feedback to the input side via a capacitor.
JP18685583A 1983-10-07 1983-10-07 DENJIRYURYOKEI Expired - Lifetime JPH0228091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18685583A JPH0228091B2 (en) 1983-10-07 1983-10-07 DENJIRYURYOKEI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18685583A JPH0228091B2 (en) 1983-10-07 1983-10-07 DENJIRYURYOKEI

Publications (2)

Publication Number Publication Date
JPS6079225A true JPS6079225A (en) 1985-05-07
JPH0228091B2 JPH0228091B2 (en) 1990-06-21

Family

ID=16195828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18685583A Expired - Lifetime JPH0228091B2 (en) 1983-10-07 1983-10-07 DENJIRYURYOKEI

Country Status (1)

Country Link
JP (1) JPH0228091B2 (en)

Also Published As

Publication number Publication date
JPH0228091B2 (en) 1990-06-21

Similar Documents

Publication Publication Date Title
US4513624A (en) Capacitively-coupled magnetic flowmeter
US4943889A (en) Electrostatic capacitor type sensing device
US4086528A (en) Capacitive transducers
US20060139035A1 (en) Capacitive sensor for non-contacting gap and dielectric medium measurement
US7765875B2 (en) High temperature capacitive static/dynamic pressure sensors
US4920795A (en) Electromagnetic flowmeter for conductive or dielectric fluids and its applications in particular oilfield
US7421907B2 (en) Electromagnetic flowmeter including a feedback voltage distributed to the inner conductor of the shielded cable and the input circuit
EP2075563A2 (en) High temperature capacitive static/dynamic pressure sensors
US4008609A (en) Inductive flowmeter
US3722274A (en) Magnetic flow meter
US4308752A (en) Magnetic flowmeter
JPS6079225A (en) Electromagnetic flow meter
Savic et al. A frequency modulation circuit for the measurement of gas conductivity and boundary layer thickness in a shock tube
JPS6182104A (en) Electrostatic capacity type range finder
US3329020A (en) Screened electromagnetic flowmeter
CN104133116A (en) Relative dielectric constant testing method based on principle of capacitance calculation
JPH0228092B2 (en) DENJIRYURYOKEI
JP2003065815A (en) Capacitive electromagnetic flowmeter
JPS63142219A (en) Flowmeter
US11982553B2 (en) Apparatus for monitoring fluid flow in a pipe using electromagnetic velocity tomography
Liao et al. Micro-capacitance measurement based on phase-sensitive detection
CN211086144U (en) Gas-liquid two-phase flow phase content detection device based on coaxial line phase method
CA2256706A1 (en) Capacitively coupled magnetic flowmeter
JP2894011B2 (en) Electromagnetic flow meter detector
USRE26797E (en) Screened electromagnetic flowmeter