JPS6078601A - Composite separation membrane for pervaporation - Google Patents

Composite separation membrane for pervaporation

Info

Publication number
JPS6078601A
JPS6078601A JP58186334A JP18633483A JPS6078601A JP S6078601 A JPS6078601 A JP S6078601A JP 58186334 A JP58186334 A JP 58186334A JP 18633483 A JP18633483 A JP 18633483A JP S6078601 A JPS6078601 A JP S6078601A
Authority
JP
Japan
Prior art keywords
separation membrane
polymer
membrane
composite separation
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58186334A
Other languages
Japanese (ja)
Inventor
Koichi Takada
耕一 高田
Yoshiro Nakada
中田 義郎
Hidehiko Matsuka
松家 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP58186334A priority Critical patent/JPS6078601A/en
Publication of JPS6078601A publication Critical patent/JPS6078601A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the titled separation membrane having excellent separation property of an org. substance-aqueous system and org. permeability and capable of being formed into a thin membrane, by polymerizing or copolymerizing 1- monoalkyldimethylsilylpropine. CONSTITUTION:This composite separation membrane for the pervaporation of an org. substance-aqueous system is formed of an active layer comprising 1- monoalkyldimethylsilylpropine polymer having a repeating unit represented by formula (wherein R is one or more of an 1-12C straight chain or branched alkyl group) and a porous support layer. The M.W. of the polymer is pref. 100,000 or more. Various materials can be used as the porous support layer but substituted polyacetylene, polysulfone or polypropylene are pref. The thickness of the active layer is pref 20.0-0.05mum. As an org. substance capable of being separated from water by this separation membrane, there are water soluble ones such as lower alcohol, lower fatty acid, ketone, ether or amide. This separation membrane has a high permeation speed and practical strength as compared with silicone rubber.

Description

【発明の詳細な説明】 本発明は有機物−水系のパーベーパレイジョン用複合分
離膜に関するものである。今日、活発に研究されている
石油代替エネルギーの1つとして、バイオマスを発酵に
よってエタノールに転換する技術が注目をあびているが
、このバイオマス転換アルコールは、アルコール濃11
10〜15%の低濃度アルコール水溶液であり、この低
濃度アルコール水溶液を高濃度化するには、従来の蒸留
操作では莫大なエネルギーを必要とし、コスト高になる
問題がある。そこで、省エネルギー型分離技術である膜
分離技術が検討されている。まず従来の逆浸透膜が検討
されたが、逆浸透法では多量に存在する水を分離膜に通
過させ水−アルコールを分離させるため、充分な省エネ
ルギー効果が期待されない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite separation membrane for organic substance-water pervaporation. Today, the technology of converting biomass into ethanol through fermentation is attracting attention as an energy alternative to petroleum that is being actively researched.
This is a low-concentration alcohol aqueous solution of 10 to 15%, and in order to increase the concentration of this low-concentration alcohol aqueous solution, conventional distillation operations require an enormous amount of energy, resulting in high costs. Therefore, membrane separation technology, which is an energy-saving separation technology, is being considered. First, conventional reverse osmosis membranes were considered, but because the reverse osmosis method passes a large amount of water through a separation membrane to separate water and alcohol, sufficient energy-saving effects cannot be expected.

次に低級アルコールを選択的に透過させる方法として、
木材ら 〔膜(MEMBRANE) 、 8 (3)、
 177−183(1983))によりシリコーンゴム
を素材としたパーベーパレイジョン法が提唱された。し
かしこの方法は、アルコールを選択的に透過させるのに
優れているが、シリコーンゴムの強度が劣り、実用的な
透過量を得るため薄膜化できないなどの問題点がある。
Next, as a method for selectively permeating lower alcohols,
Wood et al. [MEMBRANE, 8 (3),
177-183 (1983)) proposed a pervaporation method using silicone rubber as a material. However, although this method is excellent in allowing alcohol to permeate selectively, there are problems such as the strength of the silicone rubber is poor and it is not possible to form a thin film to obtain a practical amount of permeation.

本発明者はこれらの問題点を克服するため鋭意研究を行
った結果、優れた有機物−水系の分離性をもち、かつ・
活性層の薄膜化により卓越した有機透過性をもつ複合膜
を発明するに至った。
As a result of intensive research to overcome these problems, the present inventor has found that it has excellent organic substance-water separation properties and...
By making the active layer thinner, we have invented a composite membrane with excellent organic permeability.

即ち本発明は、一般式(1) (式中Rは1種以上の01〜CI2の直鎖状または分岐
状のアルキル基)で示される繰返し単位を有する、1−
モノアルキルジメチルシリルプロピン重合体からなる活
性層と多孔性支持層より形成される有機物−水系のパー
ベーパレイジョン用複合分離膜である。
That is, the present invention provides a 1-
This is a composite separation membrane for pervaporation of an organic matter-water system formed of an active layer made of a monoalkyldimethylsilylpropyne polymer and a porous support layer.

本発明における一般式(1)で示される活性層番、こ用
いる重合体を得る方法としては、相当する1−モノアル
キルジメチルシリルプロピンを重合または共重合するこ
とによって得られる。具体的なモノマーの例として1−
トリメチルシリルプロピン、l−モノ−n−プロピルジ
メチルシリルプロピン、■−モノーn−へキシルジメチ
ルシリルプロピン、1−モノ−ローデシルジメチルシリ
ルプロピンおよびこれらの2柿以上の混合物が挙げられ
る。
The active layer number represented by the general formula (1) in the present invention can be obtained by polymerizing or copolymerizing the corresponding 1-monoalkyldimethylsilylpropyne. As an example of a specific monomer, 1-
Examples include trimethylsilylpropyne, l-mono-n-propyldimethylsilylpropyne, ■-mono-n-hexyldimethylsilylpropyne, 1-mono-rhodecyldimethylsilylpropyne, and mixtures of two or more of these persimmons.

本発明の活性層に用いられるモノアルキルジメチルシリ
ルモノマーはアルキル基の炭素の数は1から12までそ
のいずれも優れた効果をもつが、水と有機物の分離性に
おいて平均アルキル炭素数が1.1−3.0の範囲にあ
るのが好ましく、特に好ましいのはその範囲が1.2−
2.0の範囲である。
The monoalkyldimethylsilyl monomer used in the active layer of the present invention has excellent effects when the number of carbon atoms in the alkyl group ranges from 1 to 12, but the average number of alkyl carbon atoms is 1.1 in terms of separation of water and organic matter. -3.0, particularly preferably 1.2-
It is in the range of 2.0.

これらのモノマーを重合するには、束材、増田らの方法
(第32同高分子学会年次大会、予稿集Vo1.32 
Na3 page 181 )および、本発明者らが発
見した方法(特許願「重合体の製法」昭和58年5月1
3日)で行うことができる。具体的には、これらの1種
以上のモノマーを芳香族炭化水素(ベンゼン・トルエン
)・、脂環式炭化水素(シクロヘキサン)、ハロゲン系
炭化水素(1,2ジクロロエタン)などに溶解し、ハロ
ゲン化タンタル(TaX、、)またはハロゲン化−オブ
(Nb×ヂ〉また必要によりトリエチルアルミニウムな
どの存在下で重合させることができる。
To polymerize these monomers, the method of bundle material, Masuda et al. (32nd Annual Conference of the Society of Polymer Science, Proceedings Vol.
Na3 page 181) and the method discovered by the present inventors (patent application ``Method for producing polymers'' May 1, 1981)
It can be done in 3 days). Specifically, one or more of these monomers are dissolved in aromatic hydrocarbons (benzene, toluene), alicyclic hydrocarbons (cyclohexane), halogenated hydrocarbons (1,2 dichloroethane), etc., and halogenated. Polymerization can be carried out in the presence of tantalum (TaX, . . . ) or halogenated (Nb×di) or triethylaluminum or the like if necessary.

得られたモノアルキル(C1〜Cl2)ジメチルシリル
プロピン重合体は高い分子量を持ち、極限粘度(トルエ
ン溶媒、30℃)にして0.5(dlV/F )以上で
ある。重合体は、上記重合溶剤の他に、脂肪族炭化水素
(ヘキサン、石油エーテル)およびテトラヒドロフラン
に溶解させることができる。
The obtained monoalkyl (C1-Cl2) dimethylsilylpropyne polymer has a high molecular weight and an intrinsic viscosity (toluene solvent, 30°C) of 0.5 (dlV/F) or more. In addition to the polymerization solvents mentioned above, the polymer can be dissolved in aliphatic hydrocarbons (hexane, petroleum ether) and tetrahydrofuran.

本発明に用いるl−モノアルキルジメチルシリルプロピ
ン重合体の分子量は、重量平均分子量(光散乱法)にし
て旬万以上のものならその優れた有機物透過性と水−有
機物分散性をもつが、好ましくは分子量50万以上でよ
りそれらの効果を発揮し、特に好ましくは分子量100
万以上である。本発明の1−モノアルキルジメチルシリ
ルプロピン重合体をパーベーパレイジョン分離膜として
使用する時、実用的透過流量を得るため該重合体を薄膜
化する必要があるが、薄膜はそれ自体で実用的強度を保
ち得ないので支持体と複合化し使用する必要がある。
If the molecular weight of the l-monoalkyldimethylsilylpropyne polymer used in the present invention is 10,000 or more in terms of weight average molecular weight (light scattering method), it will have excellent organic matter permeability and water-organic matter dispersibility. Preferably, those effects are better exhibited when the molecular weight is 500,000 or more, particularly preferably when the molecular weight is 100,000 or more.
More than 10,000. When the 1-monoalkyldimethylsilylpropyne polymer of the present invention is used as a pervaporation separation membrane, it is necessary to make the polymer into a thin film in order to obtain a practical permeation flow rate. Since it cannot maintain physical strength, it is necessary to use it in combination with a support.

本発明の複合膜の作成法は、通常の複合1模の作成法に
従って行うことができる。すなわち、■多孔質支持体の
上にコーティングする方法、■活性層である薄膜をキャ
スティング法、あるいは水面膜性であらかじめ作成し、
多孔質支持体に接着する方法、■特に支持体層と活性層
が同一重合体の場合は、通常の非対称膜の作成法を採用
することができる。すなわち、1−モノアルキルジメチ
ルシリルプロピン重合体を一定濃度(通常1〜10重量
パーセント)で上記溶剤(単独もしくは混合)で溶解さ
せドープを作成する。このドープ溶液をガラス板、金属
板、プラスチックなどの固体平滑平面上に塗布し、一定
時間ドープ表面から溶剤を蒸発させた後、非溶剤(たと
えば、水、アルコール類、ケトン類、非環状エーテル類
など)に浸漬して、表面に活性層をもち、かつ下部に多
孔質体をもつ2層構造状の非対称膜を作成する方法であ
る。この■の方法を除いて、一般には活性層と多孔性支
持体層は別々の重合体を用いる。多孔性支持体層として
は市販の多孔性膜つまり精密濾過膜(MF幕)、限外濾
過膜(IJF膜)、逆浸透膜(RO膜)などの他に金属
多孔質体(ステンレス、ニッケル)、セラミック多孔質
体、ガラス多孔質体を用いることができるが、特にこの
多孔質体が置換ポリアセチレン重合体、ポリスルホン重
合体、ポリプロピレン重合体で構成されている時、活性
層である1−モノアルキルジメチルプロピン重合体との
接着性が良好で実用性が高いことが分った。置換ポリア
セチレン重合体の多孔質体の例としては、本発明者の1
人高田が先に工業技術院の増田と共同発明した、特願昭
56−75976 F半透膜およびその製法」に記載の
アリールアセチレンポリマー半透膜をはじめ、その他タ
ーシャリーブチルアセチレン車合体も同様に半透膜化で
き、本発明の支持層として用いることができる。アリー
ルアセチレンポリマー半透膜のうち1−フェニル−2−
クロロアセチレン重合体の半透膜が特に安定性が良好で
あった。
The method for producing the composite film of the present invention can be carried out in accordance with the usual method for producing one composite film. Namely, (1) a method of coating on a porous support, (2) a method in which a thin film serving as an active layer is prepared in advance by a casting method or a water surface film, and
Method of adhering to a porous support (1) Particularly when the support layer and the active layer are made of the same polymer, an ordinary method for producing an asymmetric membrane can be adopted. That is, a dope is prepared by dissolving a 1-monoalkyldimethylsilylpropyne polymer at a fixed concentration (usually 1 to 10 weight percent) in the above solvent (single or mixed). This dope solution is applied onto a solid flat surface such as a glass plate, metal plate, plastic, etc., and after evaporating the solvent from the dope surface for a certain period of time, a non-solvent (for example, water, alcohols, ketones, acyclic ethers) etc. This is a method to create an asymmetric membrane with a two-layer structure, which has an active layer on the surface and a porous material on the bottom. Except for method (1), different polymers are generally used for the active layer and the porous support layer. As the porous support layer, in addition to commercially available porous membranes, such as microfiltration membranes (MF curtains), ultrafiltration membranes (IJF membranes), and reverse osmosis membranes (RO membranes), metal porous materials (stainless steel, nickel) can be used. , a porous ceramic material, and a porous glass material can be used, but especially when this porous material is composed of a substituted polyacetylene polymer, a polysulfone polymer, or a polypropylene polymer, the active layer 1-monoalkyl It was found that it has good adhesion to dimethylpropyne polymer and is highly practical. Examples of porous bodies of substituted polyacetylene polymers include
The same goes for the arylacetylene polymer semipermeable membrane described in Japanese Patent Application 1976-75976 "F Semipermeable Membrane and Manufacturing Method Thereof", which Hitotakata co-invented with Masuda of the Agency of Industrial Science and Technology, as well as other tert-butylacetylene vehicle combinations. It can be made into a semi-permeable membrane and can be used as a support layer in the present invention. 1-Phenyl-2- of the arylacetylene polymer semipermeable membranes
The semipermeable membrane made of chloroacetylene polymer had particularly good stability.

市販のポリスルホン膜としては、東洋2戸紙(曝の限外
濾過膜■シリーズを用いることができる。
As a commercially available polysulfone membrane, the ultrafiltration membrane ■ series manufactured by Toyo Nito Paper (Sake) can be used.

市販のポリプロピレン多孔膜としては、ジュラガード2
400および2500 (ポリプラスチック社■販売)
などが好適であった。これらの支持層の上に1−モノア
ルキルジメチルシリルプロピン重合体の活性層を作成す
る方法の1つである、コーティング法は通常のコーター
によるコーティング、スプレーコーティング、スピンコ
ーティングなどを用いることができる。また、この支持
層に通常のキャスティング基を圧着させても良く、更に
水面膜のような極薄重合体膜を使用しても良い。
As a commercially available polypropylene porous membrane, Duraguard 2
400 and 2500 (sold by Polyplastics)
etc. were suitable. One of the methods for creating an active layer of 1-monoalkyldimethylsilylpropyne polymer on these support layers is a coating method that can use a conventional coater, spray coating, spin coating, etc. . Further, a conventional casting group may be pressure-bonded to this support layer, and furthermore, an ultra-thin polymer film such as a water surface film may be used.

本発明におけろこれらの1−モノアルキルジメチルシリ
ル重合体の活性層の厚さは通常20μm0.05μ、好
ましくは108m0.1μである。この薄膜は支持層と
の接着性が優れているので十分に安定性を保ち、かつ活
性層が薄いために分離される有機物の透過流量が極めて
大きいという特徴をもつ。
In the present invention, the thickness of the active layer of these 1-monoalkyldimethylsilyl polymers is usually 20 m 0.05 m, preferably 108 m 0.1 m. This thin film has excellent adhesion to the support layer, so it maintains sufficient stability, and because the active layer is thin, the permeation flow rate of organic matter to be separated is extremely large.

本発明の複合分離膜によるパーベーパレイジョン法は水
と可溶性の有機物を選択的に透過分離させることができ
る。水の可溶性の有機物としては低級アルコール(メタ
ノール、エタノール、イソプロパツール、ターシャリ−
ブタノールなど)、低級脂肪酸(ギ酸、酢酸など)、ケ
トン類(アセトンなど)、エーテル類(ジオキサンなど
)、アミド類(ジメチルホルムアミドなど)などが挙げ
られる。
The pervaporation method using the composite separation membrane of the present invention can selectively permeate and separate water and soluble organic substances. Water-soluble organic substances include lower alcohols (methanol, ethanol, isopropanol, tertiary alcohols)
butanol, etc.), lower fatty acids (formic acid, acetic acid, etc.), ketones (acetone, etc.), ethers (dioxane, etc.), and amides (dimethylformamide, etc.).

以上、本発明による複合分離膜はパーベーパレイジョン
法により選択的に有機物を分離し、かつ薄膜化でき過量
速度はシリコンゴムに比べて顕著に大きく、かつ実用的
な強度をもつなど数々の優れた特徴を持つものである。
As described above, the composite separation membrane according to the present invention selectively separates organic substances by the pervaporation method, can be formed into a thin film, has a significantly higher excess rate than silicone rubber, and has a practical strength. It has certain characteristics.

以下、本発明を具体的に実施例を用いて述べるが11本
8発明はこれに限定されるものではない。
Hereinafter, the present invention will be specifically described using examples, but the invention is not limited thereto.

製造例1 (11重合体(6) トルメチルシリルプロピンをトルエン 100+1!に0.2mol仕込み、TaclHを触媒
として、1m mol加えて80℃−昼夜重合した。生
成したポリマーゲルをトルエンで希釈し、メタノール中
に沈澱させ白色固体の重合体(A)を得た。光散乱法で
めた重量平均分子量は140万であった。
Production Example 1 (Polymer 11 (6) 0.2 mol of tolumethylsilylpropyne was added to toluene 100 + 1!, 1 mmol was added using TaclH as a catalyst, and polymerization was carried out at 80°C day and night. The resulting polymer gel was diluted with toluene. The polymer (A) was precipitated in methanol to obtain a white solid polymer (A).The weight average molecular weight determined by a light scattering method was 1.4 million.

(2) 重合体(B) 同様にトルメチルシリルプロピン0.15’molとn
−プロピルジメチルシリルプロピン0.05 molの
混合モノマーを共重合し、重合体(B)を得る。光散乱
法でめた重量平均分子量は110万であった。
(2) Polymer (B) Similarly, tolumethylsilylpropyne 0.15'mol and n
-Propyldimethylsilylpropyne 0.05 mol of mixed monomers are copolymerized to obtain a polymer (B). The weight average molecular weight determined by light scattering method was 1.1 million.

(3) 重合体(C) 同様にトルメチルシリルプロピン0.18mo+と、n
ヘキシル・ジメチルシリルプロピン0.02 molの
混合モノマーを共重合する。この場合、触媒としてTa
c151 m molの他に共触媒としてトリエチルア
ルミニューム1mmolを使用する。得られた重合体(
C)の重量平均分子量は115万であった。
(3) Polymer (C) Similarly, tolumethylsilylpropyne 0.18 mo+ and n
A mixed monomer of 0.02 mol of hexyl-dimethylsilylpropyne is copolymerized. In this case, Ta as a catalyst
In addition to c151 mmol, 1 mmol of triethylaluminum is used as a cocatalyst. The obtained polymer (
The weight average molecular weight of C) was 1.15 million.

実施例1〜15 比較例1′〜5′ 重合体(A)(B)(C)に異なる多孔体支持層を組み
合わせ、表1に示すような複合膜を作成する。まず重合
体の5%重量トルエン溶液を調整する。このドープ溶液
を多孔質体支持層の上に200ミクロンのキャスト厚に
なるようコーターで塗布する。同時にガラス板上にも同
じ厚さで塗布し、乾燥後の膜厚を測定する。
Examples 1 to 15 Comparative Examples 1' to 5' Polymers (A), (B), and (C) were combined with different porous support layers to create composite membranes as shown in Table 1. First, a 5% by weight toluene solution of the polymer is prepared. This dope solution is applied onto the porous support layer using a coater so as to have a casting thickness of 200 microns. At the same time, the same thickness was applied onto a glass plate, and the film thickness after drying was measured.

と8.0μであった。多孔質体支持層としては1−フェ
ニル−2−クロロアセチレン重合体(以下PPCAと略
す)の半透膜(特開昭5657.5976)、ポリスル
ホン限外濾過膜(以下psと略す)(東洋濾紙社(製)
U←50)、 ポリプロピレン多孔膜(以下PPと略す
)(ポリプラスチック社、ジュラガード#2500)を
それぞれ使用した。比較のため重合体(A)〜(C)に
代って、重量平均分子量30万のポリジメチルシロキサ
ン(東しシリコン5H410) モ同様にポリプロピレ
ン多孔膜を使用して複合膜を作成した。
and 8.0μ. As the porous support layer, a semipermeable membrane of 1-phenyl-2-chloroacetylene polymer (hereinafter abbreviated as PPCA) (Japanese Patent Application Laid-Open No. 5657.5976), a polysulfone ultrafiltration membrane (hereinafter abbreviated as PS) (Toyo Roshi Company (manufactured)
U←50) and a polypropylene porous membrane (hereinafter abbreviated as PP) (Polyplastics Co., Ltd., Duraguard #2500) were used, respectively. For comparison, a composite membrane was prepared by using a polypropylene porous membrane in place of the polymers (A) to (C) and polydimethylsiloxane (Toshi Silicon 5H410) having a weight average molecular weight of 300,000.

パーベーパレイションタ ]吹 パーベーパレイジョン分m対称c水−有機液体の混合物
)としてエタノール、アセトン、ジオキサンの10%(
重量)水溶液を用いた。装置は有効膜直径45−1の東
洋科学産業■の平膜型限外濾過装置(セル中にマグネチ
ツクスターラー内装)と真空ラインを直結した装置を用
いた。
[Pervaporation] 10% of ethanol, acetone, dioxane (as a water-organic liquid mixture)
Weight) Aqueous solution was used. The apparatus used was a flat membrane type ultrafiltration apparatus manufactured by Toyo Kagaku Sangyo (IV) with an effective membrane diameter of 45-1 (with a magnetic stirrer inside the cell) directly connected to a vacuum line.

透過実験は25℃で行った。減圧度は1.Q Torr
で行い、透過液の捕集は液体窯素で冷却したトラップで
行った。一定時間透過液を採集し、流量(kg/4.h
)を計算した。一方、透過液の有機物濃度は、ガスクロ
マトグラフィーで定量した。これらの実験結果も表1に
示す。
Permeation experiments were conducted at 25°C. The degree of pressure reduction is 1. Q Torr
The permeate was collected in a trap cooled with liquid kiln. The permeate was collected for a certain period of time, and the flow rate (kg/4.h
) was calculated. On the other hand, the organic matter concentration of the permeate was determined by gas chromatography. The results of these experiments are also shown in Table 1.

表1 実施例 16〜18 重合体(A)、(B) 、 GC)を石油エーテルに溶
解させ、0.5重量パーセントの溶液を作成した。
Table 1 Examples 16-18 Polymers (A), (B), GC) were dissolved in petroleum ether to create a 0.5 weight percent solution.

0.5gの溶液を水面上に滴下すると薄膜が生成した。A thin film was formed when 0.5 g of the solution was dropped onto the water surface.

生成した薄膜の膜面積から平均膜厚は、それぞれ0.2
μで等しかった。
The average film thickness is 0.2 from the film area of the produced thin film.
They were equal in μ.

支持体としてPPCA半透膜を用い複合膜化した。A composite membrane was prepared using a PPCA semipermeable membrane as a support.

実施例1〜15と同様にlθ%エタノール濃度水溶液の
パーベーパレイジョン実験を行った。結果を表2に示す
A pervaporation experiment using an aqueous solution of lθ% ethanol concentration was conducted in the same manner as in Examples 1 to 15. The results are shown in Table 2.

手続補正書く方力 昭和59年2月1σ日 1、事件の表示 昭和58年特許願第186334号 2、発明の名称 パーベーパレイジョン用複合分111膜3、補正をする
者 事件との関係 特許出願人 昭和59年1月11日 5、補正により増加する発明の数 6、補正の対象 願書および明細…
How to write a procedural amendment February 1st, 1980 1, Indication of the case 1986 Patent Application No. 186334 2, Name of the invention Composite component 111 membrane for pervaporation 3, Person making the amendment Relationship with the case Patent Applicant January 11, 19805, number of inventions increased by amendment6, application subject to amendment and specification...

Claims (6)

【特許請求の範囲】[Claims] (1) 一般式 %式% (式中Rはli以上のCI〜C1lの直鎖状または分岐
状のアルキル基)で示される繰返し単位を有する1−モ
ノアルキルジメチルシリルプロピン重合体からなる活性
層と、多孔性支持Mより形成される有機物−水系のパー
ベーパレイジョン用複合分離膜。
(1) Activity consisting of a 1-monoalkyldimethylsilylpropyne polymer having a repeating unit represented by the general formula % formula % (wherein R is a linear or branched alkyl group of CI to C1l of li or more) A composite separation membrane for organic matter-water pervaporation formed from a layer and a porous support M.
(2)1−モノアルキルジメチルシリルプロピン重合体
の分子量が100000以上である特許請求の範囲第1
項記載の複合分離膜。
(2) Claim 1 in which the molecular weight of the 1-monoalkyldimethylsilylpropyne polymer is 100,000 or more.
Composite separation membrane as described in section.
(3) 該重合体よりなる活性J−の厚さが20−0.
05μmよりなる特許請求の範囲第1あるいは2項記載
の複合分離膜。
(3) The thickness of the active J- made of the polymer is 20-0.
The composite separation membrane according to claim 1 or 2, which is made of 0.05 μm.
(4) 多孔性支持層が置換アセチレンポリマー半透膜
よりなる特許請求の範囲第1〜3項いずれかに記載の複
合分離膜。
(4) The composite separation membrane according to any one of claims 1 to 3, wherein the porous support layer is a substituted acetylene polymer semipermeable membrane.
(5) 該当支持層がポリスルホン多孔膜よりなる特許
請求の範囲第1〜3項いずれかに記載の複合分離膜。
(5) The composite separation membrane according to any one of claims 1 to 3, wherein the supporting layer is a porous polysulfone membrane.
(6) 当該支持層がポリプロピレン多孔膜よりなる特
許請求の範囲第1〜3項いずれかに記載の複合分離膜。
(6) The composite separation membrane according to any one of claims 1 to 3, wherein the support layer is a porous polypropylene membrane.
JP58186334A 1983-10-04 1983-10-04 Composite separation membrane for pervaporation Pending JPS6078601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186334A JPS6078601A (en) 1983-10-04 1983-10-04 Composite separation membrane for pervaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186334A JPS6078601A (en) 1983-10-04 1983-10-04 Composite separation membrane for pervaporation

Publications (1)

Publication Number Publication Date
JPS6078601A true JPS6078601A (en) 1985-05-04

Family

ID=16186526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186334A Pending JPS6078601A (en) 1983-10-04 1983-10-04 Composite separation membrane for pervaporation

Country Status (1)

Country Link
JP (1) JPS6078601A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178402A (en) * 1984-09-21 1986-04-22 Shin Etsu Chem Co Ltd Separation of organic liquid mixture
JPS61174212A (en) * 1985-01-28 1986-08-05 Toyo Soda Mfg Co Ltd Copolymer of substituted acetylene
JPS61174905A (en) * 1985-01-31 1986-08-06 Toyo Soda Mfg Co Ltd Liquid separating membrane
JPS61230705A (en) * 1985-04-08 1986-10-15 Agency Of Ind Science & Technol Separation membrane for liquid mixture
US4657564A (en) * 1985-12-13 1987-04-14 Air Products And Chemicals, Inc. Fluorinated polymeric membranes for gas separation processes
JPS62140603A (en) * 1985-12-12 1987-06-24 Agency Of Ind Science & Technol Liquid separation membrane
JPS63197504A (en) * 1987-02-13 1988-08-16 Agency Of Ind Science & Technol Membrane for separating liquid mixture
JPS63264103A (en) * 1987-04-22 1988-11-01 Agency Of Ind Science & Technol Liquid separation membrane of substituted acetylene polymer
US4859215A (en) * 1988-05-02 1989-08-22 Air Products And Chemicals, Inc. Polymeric membrane for gas separation
WO1991014499A1 (en) * 1990-03-27 1991-10-03 Toray Industries, Inc. Composite membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075306A (en) * 1983-09-30 1985-04-27 Toshinobu Higashimura Liquid separation membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075306A (en) * 1983-09-30 1985-04-27 Toshinobu Higashimura Liquid separation membrane

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178402A (en) * 1984-09-21 1986-04-22 Shin Etsu Chem Co Ltd Separation of organic liquid mixture
JPH0388B2 (en) * 1984-09-21 1991-01-07 Shinetsu Chem Ind Co
JPS61174212A (en) * 1985-01-28 1986-08-05 Toyo Soda Mfg Co Ltd Copolymer of substituted acetylene
JPH0582407B2 (en) * 1985-01-28 1993-11-18 Tosoh Corp
JPS61174905A (en) * 1985-01-31 1986-08-06 Toyo Soda Mfg Co Ltd Liquid separating membrane
JPH0551330B2 (en) * 1985-01-31 1993-08-02 Tosoh Corp
JPS61230705A (en) * 1985-04-08 1986-10-15 Agency Of Ind Science & Technol Separation membrane for liquid mixture
JPH0475050B2 (en) * 1985-04-08 1992-11-27
JPH0464729B2 (en) * 1985-12-12 1992-10-15 Kogyo Gijutsuin
JPS62140603A (en) * 1985-12-12 1987-06-24 Agency Of Ind Science & Technol Liquid separation membrane
US4657564A (en) * 1985-12-13 1987-04-14 Air Products And Chemicals, Inc. Fluorinated polymeric membranes for gas separation processes
JPS63197504A (en) * 1987-02-13 1988-08-16 Agency Of Ind Science & Technol Membrane for separating liquid mixture
JPS63264103A (en) * 1987-04-22 1988-11-01 Agency Of Ind Science & Technol Liquid separation membrane of substituted acetylene polymer
JPH0570492B2 (en) * 1987-04-22 1993-10-05 Kogyo Gijutsuin
US4859215A (en) * 1988-05-02 1989-08-22 Air Products And Chemicals, Inc. Polymeric membrane for gas separation
EP0480039A1 (en) * 1990-03-27 1992-04-15 Toray Industries, Inc. Composite membrane
WO1991014499A1 (en) * 1990-03-27 1991-10-03 Toray Industries, Inc. Composite membrane

Similar Documents

Publication Publication Date Title
Fadeev et al. Extraction of butanol from aqueous solutions by pervaporation through poly (1-trimethylsilyl-1-propyne)
US5296144A (en) Composite membrane of a hydrophilic asymmetric membrane coated with an organosiloxane block copolymer
US4591440A (en) Membranes for liquid separations
US4971695A (en) Sulfonated hexafluoro bis-a polysulfone membranes and process for fluid separations
US4689267A (en) Composite hollow fiber
Volkov et al. Effects of synthesis conditions on the pervaporation properties of poly [1‐(trimethylsilyl)‐1‐propyne] useful for membrane bioreactors
JPS6078601A (en) Composite separation membrane for pervaporation
Uragami et al. Dehydration from alcohols by polyion complex cross-linked chitosan composite membranes during evapomeation
JPS6178402A (en) Separation of organic liquid mixture
US5143620A (en) Membrane separation process
WO1993022040A1 (en) Separating membrane made from polyion complex
US5147549A (en) Membrane separation process
JPS6097002A (en) Composite separation membrane for pervaporation
Kononova et al. New polymer multilayer pervaporation membrane
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
JPH0114801B2 (en)
JPH0464729B2 (en)
JPS63264102A (en) Liquid mixture separation membrane and its use
JPS61200833A (en) Carbon dioxide permselective membrane
JPH0475050B2 (en)
Samadi et al. Supramolecular Membranes for Liquid Separation
KR0123279B1 (en) Method for semipermeable composite membrane
JPH0551330B2 (en)
JPS61230706A (en) Liquid separating membrane
JPH0423569B2 (en)