JPS6078498A - Voiced sound section extractor - Google Patents

Voiced sound section extractor

Info

Publication number
JPS6078498A
JPS6078498A JP58185987A JP18598783A JPS6078498A JP S6078498 A JPS6078498 A JP S6078498A JP 58185987 A JP58185987 A JP 58185987A JP 18598783 A JP18598783 A JP 18598783A JP S6078498 A JPS6078498 A JP S6078498A
Authority
JP
Japan
Prior art keywords
section
output
waveform
voice
voiced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58185987A
Other languages
Japanese (ja)
Other versions
JPH034919B2 (en
Inventor
義則 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58185987A priority Critical patent/JPS6078498A/en
Publication of JPS6078498A publication Critical patent/JPS6078498A/en
Publication of JPH034919B2 publication Critical patent/JPH034919B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は音声認識、あるいは言語1ニζ′・害者の発声
訓練等に利用さhるイ1−声区間抽出装置に町する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to an apparatus for extracting voice segments used for speech recognition, language training, etc.

従来例のfit)成とその問題点 有声音とは)4−H−’i;’の振動により発せられる
音声であり、呼気の閉鎖や、ぜばめ等により発せられる
無声音と区別さ1+、でいるか、有声音を正ff(ii
に抽出することは音声認識における基本的要素技術であ
るのみならず、fit帯が1°4韻によりどのように振
動しているかを測定することは8殆障害者の発声訓練の
」二からも非常VこΦ要なことである。従来、有声音の
抽出は音声信シシ」:り周波数分析等の手/L、により
、声道特性にJ、る高調波信号や無声π″を除去して声
帯の振動周波19 (基本周波数又はピッチと称する)
を抽出し、ピッチが抽出されている17間を有声区間と
する方法が一般的であるが、音声中よりピンチを正確に
抽出することは個人差、外来ノイズの影響、v1′4j
′?様式による差等でダブルピッチの出現や、ピッチの
脱落等は避けがたい。そのため、マイクロホンでひろっ
た音声中から声帯振勅を抽出するよりも、喉頭に直接、
加速度ピックアップやコンタクトマイクロホンを当てて
声帯の振動を気管外壁を通して抽出する方法があり、こ
の方法の方が直接的で有効な場合が多い。この例のブロ
ック図を第1図に示す。
Conventional fit) formation and its problems What is a voiced sound? A voiced sound is a sound emitted by the vibration of)4-H-'i;'. Or, if the voiced sound is correct ff(ii
Not only is it a basic elemental technology in speech recognition, but also measuring how the fit band vibrates in 1°4 rhymes is an important part of vocal training for people with disabilities. This is extremely important. Conventionally, voiced sounds have been extracted by removing harmonic signals and unvoiced π'' that affect the vocal tract characteristics using voice signal frequency analysis, etc. (referred to as pitch)
The common method is to extract the pitch and define the interval 17 where the pitch is extracted as a voiced section, but extracting the pinch accurately from the voice depends on individual differences, the influence of external noise, v1'4j
′? It is difficult to avoid the appearance of double pitches or missing pitches due to differences in style. Therefore, rather than extracting the vocal cord vibration from the voice picked up by a microphone, it is possible to
There are methods to extract the vibrations of the vocal cords through the outer wall of the trachea using an accelerometer or contact microphone, but this method is often more direct and effective. A block diagram of this example is shown in FIG.

第1図において1は喉頭振動検出器で一般的には加速度
ピックアップ等、振動の加速度全抽出するセノザー又は
コンタクトマイクロホンで、ノクンド又は両面接着テー
プで喉頭に固定される。2は喉頭振動検出器1からの信
号を整流積分し信号のエネルギーに比例したDC信号に
変換する整流積分回路である。3は整流積分回路2で得
た値をあq一定の閾値で切り有声区間を抽出する閾値回
路Jある。以下、従来例の構成及び問題点に?lr、2
図をもとに説明する。第2図の波形aは喉頭振動検出器
1の出力であるが、声帯の振動を気管外壁を通して検出
した波形a1の他に、つばを飲み込んだり、首を動かし
たりするとき生ずる喉の動きによる波形a2も同時に検
出される。波形すは、波形乙の信号を整流積分回路2に
よりDC信号に変換したもので、波形すを閾値回路3に
より一定の閾値で切ると波形Cに/」りす有声出力がイ
1)られるが、この波形Cでは1.j・帯のII+u動
による本来のイ3声区間の他に喉の動きVC,1:る区
間VCおいても有声出力が得られ有声区間と、11目1
0出さizることか多い。このような喉の動き(つばを
飲み込んだり、首−全動かしたりすること)による波形
は波形dに示す音声信号にはあられノ1.ない。このよ
うに有声区間を喉から直接抽出する力θくは、音声と異
なり、声帯の運動をより直接的Vこあられしているため
、非常に有効ではあるが、喉の動きによる信号も抽出し
てしまい、誤抽出が多く、しかも、声帯振動と同じ周波
数成分を有することが多いため、フ、イルター等で分離
することか知しり、リアルクイj、で補正することも困
φ1[で、(りるという問題点金有してい発明の目的 本発明は上記従来の問題点を解消するもので、喉頭振動
キリ声帯の振動とは無関係な喉の動きによる波形を取り
除き、喉頭振動より正確かつリアルタイツ・で有声区間
全抽出することのできる有声区間抽出装置全提供する。
In FIG. 1, numeral 1 denotes a laryngeal vibration detector, which is generally a sensor or contact microphone, such as an acceleration pickup, that extracts all vibration acceleration, and is fixed to the larynx with a nokundo or double-sided adhesive tape. 2 is a rectifier-integrator circuit that rectifies and integrates the signal from the laryngeal vibration detector 1 and converts it into a DC signal proportional to the energy of the signal. Reference numeral 3 denotes a threshold circuit J which cuts the value obtained by the rectifier/integrator circuit 2 using a constant threshold value Aq to extract a voiced section. Below is the configuration and problems of the conventional example. lr, 2
This will be explained based on the diagram. Waveform a in Fig. 2 is the output of the laryngeal vibration detector 1, but in addition to waveform a1, which is the vibration of the vocal cords detected through the outer wall of the trachea, there is also a waveform caused by the movements of the throat that occur when swallowing or moving the neck. a2 is also detected at the same time. The waveform S is the signal of waveform B converted into a DC signal by the rectifier/integrator circuit 2, and when the waveform S is cut at a certain threshold by the threshold circuit 3, the waveform C is produced. In this waveform C, 1. In addition to the original A 3-voice section due to the II + u movement of the j band, voiced output is also obtained in the throat movement VC, 1: - section VC, and the voiced section and the 11th 1 voiced section.
I often get 0 out. Waveforms caused by such movements of the throat (swallowing, full head movements) are not included in the audio signal shown in waveform d. do not have. Unlike speech, the force θ that extracts voiced sections directly from the throat is very effective because the movement of the vocal cords is more directly affected, but it also extracts signals caused by the movement of the throat. In addition, it often has the same frequency component as the vocal fold vibration, so it is difficult to know whether to separate it with a filter or the like, and to correct it with a real-quick j. OBJECT OF THE INVENTION The present invention solves the above-mentioned conventional problems, and eliminates the waveform caused by the movement of the throat that is unrelated to the vibration of the vocal cords.・Provide a complete voiced section extraction device that can extract all voiced sections.

こと([−+”l的とする。([−+”l).

発明の構成 本発明は、喉頭に固定し気管外壁を通して声帯の振動を
検出するための喉頭振動検出手段と、1口腔内に配置し
て調音時の閉鎖や、せばめの形成に伴う1」腔内の気圧
の変化を測定するだめの1−1内圧検出手段と、音声検
出手段と、1」内圧検出手段の出力により口内圧の上昇
している区間を検出する[」内圧区間検出手段と、音声
検出手段の音声出力より音声の存在している区間を検出
する音声区間検出手段と、この口内用区間検出手段及び
8ノラ区間検出回路の出力により、喉頭振動検出手段の
出力を制御し調音時や音声出力のある区間だけ喉頭振動
出力を通す2個のゲート手段と、2個のゲート手段の出
力を加算する加算手段と、加算手段の出力の大小より有
声区間を検出する有声検出手段とを備えた有声区間抽出
装置であり、喉頭振動波形よゆ、音声の調音及び実際の
音声出力に関係する部分のみ抽出し、喉の動き等による
波形部分全除去することにより、リ−)′ルタイムでj
誤まりなくオ声区間を抽出することのできるものである
Structure of the Invention The present invention provides a laryngeal vibration detection means fixed to the larynx for detecting the vibration of the vocal cords through the outer wall of the trachea, and a laryngeal vibration detection means placed in the oral cavity to detect vibrations in the cavity during closure during articulation and the formation of a narrowing. 1-1 internal pressure detection means for measuring changes in atmospheric pressure; 1-1 internal pressure detection means; 1-1 internal pressure detection means for detecting an area in which the intraoral pressure is increasing based on the output of the internal pressure detection means; The output of the laryngeal vibration detection means is controlled by the voice section detection means which detects the section where the voice is present from the voice output of the detection means, and the output of this oral section detection means and the 8-nola section detection circuit. It is equipped with two gate means for passing the laryngeal vibration output only in the section where the voice output is present, an addition means for adding the outputs of the two gate means, and a voicing detection means for detecting the voiced section from the magnitude of the output of the addition means. This is a voiced section extraction device that extracts only the parts related to the laryngeal vibration waveform, vocal articulation, and actual speech output, and removes all the waveform parts caused by throat movements, etc.
This makes it possible to extract the voice section without error.

実施例の説明 以下、本発明の実施例について図面とともに説゛明する
○第3図に、木げ1′:明の一実施例における有声区間
抽出装置を示ずノ゛Iノワタ図である。第3図において
4は発話11、テの1′4声を検出するマイクロボ/、
5は発話+1yの声・11;の振動を気(7,fH:外
壁全通して検出する喉頭振動検量:(;;であり、例え
ば加ぬ度ピックアップ又はコンタクトマイクロホンなど
で構成される。6は(」腔内の気月−の変化を検出する
1」内圧検出器であり、例えば半導体歪ケージのような
小型EE力検出器などで4’f7+成される。7は音声
検出用マイクロホン4からの)°)声量カイ1−1−弓
より音声が保存すること(イJ’ −f’、r ’lj
s 7i、j4であること)を検出する音声区間検出回
路であり、整流積分回路及び閾値回路から構成され、8
Vユ11内圧検出回路で、1」内圧検出器6の出力から
11内1「の」1昇が認められる区間を検出する回路で
あシ閾値回路により構成される。9は第1のゲート回路
で、音声区間検出回路−7の出力により有音区間と認め
られた区間のみ喉頭振動検出器6の出力を1通す回路で
あり、アナログスイッチ回路により容易に構成される。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a diagram showing a voiced section extracting device according to a second embodiment of the present invention. In Fig. 3, 4 is the micro-bore that detects the utterance 11 and the 1'4 voice of te.
5 is the utterance + 1y voice, 11; vibration (7, fH: Laryngeal vibration calibration that is detected through the entire outer wall: (;;, and is composed of, for example, a pickup or a contact microphone. 6 is (1) is an internal pressure detector that detects changes in the air inside the cavity, and is made up of, for example, a small EE force detector such as a semiconductor strain cage.7 is from the microphone 4 for sound detection. ) °) Voice volume Chi 1-1 - Preservation of voice from bow (I J' - f', r 'lj
s 7i, j4), and is composed of a rectifying and integrating circuit and a threshold circuit.
The V unit 11 internal pressure detection circuit is a circuit for detecting an interval in which an increase of 1 in 11 from the output of the internal pressure detector 6 is recognized, and is constituted by a threshold circuit. Reference numeral 9 denotes a first gate circuit, which allows the output of the laryngeal vibration detector 6 to pass through only the section recognized as a sound section by the output of the voice section detection circuit 7, and can be easily configured with an analog switch circuit. .

10は第1のゲート回路9と同様の構成の第2のゲート
回路で、[」内圧検出回路8により口内圧上昇区間店認
められた区間のみ喉頭振動検出器6の出力をトす回路で
ある。11は加算回路であり、第1の、?−1−回路9
と第2のゲート回路10の出力を加’=にする。12は
加算回路11の出力から有声区間を抽出する有声検出回
路で、整流積分回路と閾値回路から構成され、整流積分
値がある一定の閾値を越えた時、有声と判定される。
Reference numeral 10 denotes a second gate circuit having the same configuration as the first gate circuit 9, and is a circuit that turns on the output of the laryngeal vibration detector 6 only in the section where the intraoral pressure rising section is recognized by the internal pressure detection circuit 8. . 11 is an adder circuit, and the first, ? -1-Circuit 9
and the output of the second gate circuit 10 are added to '=. Reference numeral 12 denotes a voiced detection circuit which extracts a voiced section from the output of the adder circuit 11, and is composed of a rectification and integration circuit and a threshold circuit, and when the rectified integral value exceeds a certain threshold value, it is determined that the voiced section is voiced.

第4図は第3図における各信弓検出器4,6゜6の配置
を示す配置図である。第4図において、マイクロホン4
は口の前方に配置され音声を検出する。口内圧検出器6
ばに1腔内の硬(口蓋に接着剤等で固定され10腔内の
気圧を検出する。喉頭振動検出器6は喉頭部に両面接着
テープのような接着剤又は首に巻くバンドのようなもの
で固定し、声帯の振動を検出する。なお、第4図におい
て、13は歯、14日4・1.腔、16はl−1蓋、1
6は[」腔、17は舌、18t」、唇である。
FIG. 4 is a layout diagram showing the arrangement of the respective bow detectors 4, 6°6 in FIG. 3. In Figure 4, microphone 4
is placed in front of the mouth to detect sound. Oral pressure detector 6
The laryngeal vibration detector 6 is attached to the larynx with an adhesive such as double-sided adhesive tape or a band worn around the neck. Fix it with something and detect the vibration of the vocal cords.In Fig. 4, 13 is the tooth, 14th is the 4.1. cavity, 16 is the l-1 lid, 1
6 is the cavity, 17 is the tongue, and 18t is the lips.

以上のように構成さ)した本実施f夕11の有声区間検
出装置について以1−その動作(C−説明する。
The voiced section detecting device of the present embodiment F11 configured as described above will be described below.

実験によれは415..111時Vこおける喉頭振動と
音声信号と1」内圧波形の関係しJ、音韻により異なり
、lU′音や無声音では音声と喉頭振動は時間的にほぼ
同時に立ち上り、同時VCr′l’、 ’I−)’J”
る。例として、IEJ音lalを発音したときの第3図
の各部の波形を第1図に示す。波形・[は喉νI′l振
動検出蒲5の出力で、1樽の動きによる波形イ1と声帯
の振動による波形、−d 2f有している(17皮形「
jはマイクロホン4の出つ)を、波形・・は1−1内1
1−検出器6の出力を示している。この時、音声区間検
出回路7の出カニがオンとなっている区間のみゲート回
路9のゲー[r開いて喉頭振動波形−16=j1+すの
で、波形イの初めに見られるような喉の動きVこよる波
形は波形ホのゲート回路9の出力では除去されている。
According to the experiment, it is 415. .. The relationship between laryngeal vibration, voice signal, and internal pressure waveform at 111 o'clock V differs depending on the phoneme, and for lU' sounds and unvoiced sounds, voice and laryngeal vibration rise almost simultaneously in time, and simultaneous VCr'l', 'I'−)'J”
Ru. As an example, FIG. 1 shows the waveforms of various parts in FIG. 3 when the IEJ sound lal is produced. The waveform [is the output of the throat νI′l vibration detection unit 5, and has a waveform A1 due to the movement of one barrel and a waveform −d2f due to the vibration of the vocal cords (17 skin type
j is the output of microphone 4), and the waveform is 1 in 1-1.
1- shows the output of detector 6; At this time, the gate circuit 9 is opened only in the section where the output of the voice section detection circuit 7 is on, and the laryngeal vibration waveform -16=j1+ is generated, so that the movement of the throat as seen at the beginning of the waveform A is generated. The waveform caused by V is removed from the output of the gate circuit 9 with waveform E.

10内圧は1″J音等の1−1 i開けて”;j’5 
’i:s’する音韻ではほとんど」1昇しないため、波
形ノーでは変化がない。従って波形へに見られるように
1−」内圧検出回路8の出力もオフであり、波形トに示
すようにケート回路10は閉じられ出力があられれない
。よって加算回路11の出力チはゲート回路9の出力ホ
のみとなり、有声検出回路12により喉の動き等の音声
の生成に関係のない1侯頭振動波形が除去され、声帯振
動に対応した有声区間りが検出できる。
10 Internal pressure is 1" J sound etc. 1-1 i open";j'5
In the phoneme with 'i:s', it hardly increases by 1, so there is no change in the waveform no. Therefore, as shown in the waveform 1-1, the output of the internal pressure detection circuit 8 is also off, and as shown in the waveform 1-1, the gate circuit 10 is closed and no output is output. Therefore, the output H of the adder circuit 11 becomes only the output H of the gate circuit 9, and the voicing detection circuit 12 removes the 1-head vibration waveform unrelated to voice generation such as throat movement, and detects the voiced section corresponding to the vocal fold vibration. can be detected.

これに対して、有声破裂音、例えば1balの発話時に
おける動作を第6図により説1明する。実験によi″L
は、有声破裂音での音声、喉頭振動1口内圧の関係は、
先ず、第4図の舌先17と山13、又は[二1唇18に
よる呼気の閉鎖によるI」内11−の」−昇と、BuZ
Zと呼ばれる喉頭振動が先行するが、9中ではとのBu
ZZは微少なプこめ判別か困知な場合が多い。閉鎖によ
る1−1内圧の上昇は破裂に計Iる呼気の解放により急
政に低−トし、後続母音の廃用へと移行していくが、母
音)Xbでの音声、喉振動1口内圧は第5図での場合と
同様である。破裂までのBuZZ部においては、マイク
ロホン4で検出した音声のレベルは十分でない場合が多
く、ざ−声区間検出回路T K :J=・いてt′f 
)”・区間とは18.已められず、従って波形、−Vこ
小ずようにゲート回路9は閉じられている。こノしVC
対して11内L1モはBuZZ部において」1昇して」
、・す、波形へに示すように11内圧検出回路8の出)
Jかオフとなり、ゲート回路10が開いて、波形1・V
C示すようにBuZZ部の喉頭振動か検出さ、11.る
。1麦続nノ14部では、この関係が逆になり:’Z 
)−’・区間検出回路7の出力がオン(波形二)、に1
[)旧1検出回路8の出力がオフ(波形へ)となって波
形よV(示すようにt、lT !”区間においてのみ喉
頭振動か検出される。加算回路11ではゲート回路9 
、 ’I Oの出力全加算することにより、波形チのよ
うに喉の動きによる波形全除去し声帯振動のみに」、/
2.喉頭振動波形を抽出でき、この波形から有声検出回
路12により正確な有i’A区間りが抽出できる。
On the other hand, the operation when uttering a voiced plosive, for example 1bal, will be explained with reference to FIG. i″L by experiment
The relationship between voice, laryngeal vibration, and intraoral pressure in voiced plosives is
First, the tip of the tongue 17 and the peak 13 in FIG.
Laryngeal vibration called Z precedes, but in 9, Bu
In many cases, ZZ is difficult to distinguish between minute gaps. The increase in 1-1 internal pressure due to closure suddenly decreases due to the release of exhaled air during rupture, and the following vowels are disused, but the sound and throat vibration of the vowel (Xb) The internal pressure is the same as in FIG. In the BuZZ section up to the burst, the level of the sound detected by the microphone 4 is often not sufficient, and the noise section detection circuit T K :J=・t'f
)”・The interval is 18. Therefore, the gate circuit 9 is closed as the waveform is small.
On the other hand, the L1 Mo in 11 was promoted by 1 in the BuZZ section.
As shown in the waveform 11, the output of the internal pressure detection circuit 8)
J is turned off, the gate circuit 10 is opened, and the waveform 1・V
As shown in C, laryngeal vibration in the BuZZ region was detected.11. Ru. In the 14th part of 1 Mugi Zoku n no, this relationship is reversed: 'Z
)-'・The output of section detection circuit 7 is on (waveform 2), and 1
[) The output of the old 1 detection circuit 8 is turned off (to the waveform), and laryngeal vibration is detected only in the waveform V (as shown, t, lT!'' section. In the addition circuit 11, the gate circuit 9
, 'By adding all the outputs of I O, all the waveforms due to throat movement, like waveform Q, are removed and only the vocal cord vibrations are left.'', /
2. The laryngeal vibration waveform can be extracted, and the voicing detection circuit 12 can extract the accurate i'A interval from this waveform.

、日り(に有ji−+摩擦j′實こついて、1Zalの
発音金側7@ して説明する。;Qtすi・摩擦−音の
場合と同様である、゛緊しイj声摩擦i名〕鳴合t、j
、破裂γ?ト、1・′トイ、占装置:4.’51@°に
より、ぜばめを形成しそこVこ])ア気を流し込んで乱
流を作る調音方法であるため、波形ハに示すように口内
圧は摩擦性子音区間を通じてゆるやかな」1昇を示す。
, day(niji-+friction j′ truth), 1Zal pronunciation gold side 7@ and explain.; i name] Narai t, j
, rupture γ? To, 1. Toy, fortune-telling device: 4. '51@° forms a gag and V ko ]) Since this is an articulation method that creates a turbulent flow by letting air flow in, the intraoral pressure is gradual throughout the fricative consonant section, as shown in the waveform C. Indicates rising.

摩擦性子音区間においては波形口に示す音用信号には摩
擦音特有の高周波成分とともに声帯振動による調波構造
を有する波形が見られるが、後続母音と比較してレベル
も小さく持続時間も虹ノいため音声区間検出回路7によ
り有音部と認められない場合が多く、従って波形二、ポ
に見られるように音声信号からは後続母音部でのみ喉頭
振動が検出される。これに対して、前述のように、摩擦
性子音区間では1」内圧の上昇が見られるので、口内圧
検出回路8の出力がオンとなり、この区間での喉頭振動
が波形1・のように出力され、加算回路11で後続母音
部の出力(波形ホ)と加算された後、有声検出回路12
により喉の動きによる波形を除去された正確な有声区間
りが抽出される。
In the fricative consonant section, the sound signal shown at the beginning of the waveform shows a waveform with a harmonic structure due to vocal fold vibration as well as high-frequency components unique to fricatives, but the level is small compared to the following vowel and the duration is rainbow-like. In many cases, the voice section detection circuit 7 does not recognize a voiced section, and therefore laryngeal vibration is detected only in the following vowel section from the speech signal, as seen in waveforms 2 and 2. On the other hand, as mentioned above, in the fricative consonant section, an increase in the internal pressure of 1" is observed, so the output of the oral pressure detection circuit 8 is turned on, and the laryngeal vibration in this section is output as shown in waveform 1. is added to the output of the subsequent vowel part (waveform E) in the adder circuit 11, and then added to the output of the following vowel part (waveform E).
Accurate voiced sections are extracted from which waveforms due to throat movements are removed.

以上のように本実施例によれば、喉頭振動をマイクロホ
ンで検出した音声波形からの有音検出信号及び口内圧検
出器からの口内圧の上昇区間検出信号によりゲート回路
の開閉を制御すること((よ1す、喉の動きVcJ、る
喉!7+’i l辰動波形を除去呟喉頭阪動より声帯の
動きに対応した有声区間を抽出すしことができる。
As described above, according to this embodiment, the opening/closing of the gate circuit is controlled by the presence detection signal from the voice waveform detected by the microphone of laryngeal vibration and the detection signal for the period of increase in oral pressure from the oral pressure detector. (Yo1, throat movement VcJ, throat!7+'i l) Remove the linac waveform. From the mutter laryngeal oscillation, it is possible to extract the voiced section corresponding to the movement of the vocal cords.

発明の効果 本発明の有声区間抽出装置は、喉頭に固定して気管外壁
を通してJ:1弗の振動を検出するための喉頭振動検出
器と、l l 1lil内に配置して調音時の閉鎖やぜ
ばめの形成K f’l’っ11腔内の気1i:、の変化
全測定するための1」内1)−検出:(:;と、音j!
−検出用マイク【」ポンと、l−1内Li、[″!出出
;、創の出刃により1−」内圧の上バ。
Effects of the Invention The voiced interval extraction device of the present invention includes a laryngeal vibration detector fixed to the larynx to detect the vibration of J:1 through the outer wall of the trachea, and a laryngeal vibration detector placed inside the l l l to detect the closure during articulation. Formation of a glen K f'l' 11 Intraluminal Qi 1i:, To measure all changes in 1'' within 1) - Detection: (:; and the sound j!
- Detection microphone ['' pops, Li inside l-1 [''! comes out;, 1-'' internal pressure rises due to the appearance of the wound.

している1区間を検°出する回路と、音声より有8′メ
間を検出する回路と、11内圧」1昇区間とイJ音区間
のみゲートを開きl’I’;5 vJ’j振動を通す2
個のゲート回路と、2個のゲート回路の出刃を加豹、す
る加算回路と、力11訊1回路の出力レベルにより有声
区間を抽出する有声検出回路をイJすることにより、喉
頭振動波形より、音声の調1′?及び実際の音声出刃に
関係する部分のみ抽出し、喉の動きhfF Kよる波形
部分を除去することにより、リアルタイムで正確な有声
区間全抽出することができる。
A circuit that detects the 1 section where the sound is on, a circuit that detects the 8' interval from the sound, and a circuit that opens the gate only in the 1 rising section and the A J section from the sound. Pass vibration 2
The laryngeal vibration waveform is , vocal key 1'? By extracting only the part related to the actual voice production and removing the waveform part caused by throat movement hfFK, it is possible to accurately extract all voiced sections in real time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の111954j’i振動検出による有声
区間検出装置のブロック図、第2図は同装置の動作を示
す波形図、第3図tよ本発明の一実施例における窮鳥区
間抽出装置1′iのブ1」ツク図、第4図は同実施例1
の°各種検出器の配置金示す配置図、第6図は勾音鉗話
時における゛」\発明の詳細な説明するだめの波形図、
第6図はイ」声破裂音発話時における本発明の詳細な説
明するだめの波形図、第7図は有声摩擦音発話時におけ
る本発明の詳細な説明するための波形図である。 4・・・・・・マイクlitホン、6・・・・・・喉頭
振動検出器、6・・・・・・(−1内圧倹il’l ’
Arj、7・−・・・・音声区間検出回路、8・・・・
・1−1内圧検出回路、9,10・・・・・ゲート回路
、11・・・・・・加算回路、12・・・・・・有声検
出回路。 4、!鱈′1出願人 L7−技術院長 川 1)裕 部
第1図 第3図 第 4 図
Fig. 1 is a block diagram of a conventional voiced section detection device using 111954j'i vibration detection, Fig. 2 is a waveform diagram showing the operation of the same device, and Fig. 3 t is a corner extraction device according to an embodiment of the present invention. Figure 4 shows Example 1 of 1'i.
Figure 6 is a diagram showing the arrangement of various detectors, and a waveform diagram for explaining the invention in detail.
FIG. 6 is a waveform diagram for explaining the present invention in detail when a voiced plosive is uttered, and FIG. 7 is a waveform diagram for explaining the present invention in detail when a voiced fricative is uttered. 4...Microphone, 6...Laryngeal vibration detector, 6...(-1 internal pressure)
Arj, 7... Voice section detection circuit, 8...
-1-1 internal pressure detection circuit, 9, 10...gate circuit, 11...addition circuit, 12...voiced detection circuit. 4,! Cod '1 Applicant L7-Director of the Technology Agency Kawa 1) Hirobe Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 音声を検出する音声検出手段と、前記音声検出手段の出
力から音声の存在する区間を検出する音声区間検出手段
と、喉頭部に固定され声帯の振動を検出する喉頭振動検
出手段と、口腔内に配置され1コ内圧を検出する口内圧
検出手段と、前記1−」内圧検出手段の出力から前記口
内圧が所定の値よりも高い区間を検出する口内用区間検
出手段と、前記喉頭振動検出手段の出力を前記音声区間
検出手段の出力により制御する第1のゲート手段と、前
記、喉頭振動検出手段の出力を前記口内用区間検出手段
の出力により制御する第2のゲート手段と、前記第1及
び第2のゲート手段の出力を加算する加算手段と、前記
加算手段の出力より有声区間を検出する有声検出手段と
を有することを特徴とする有声区間抽出装置。
a voice detection means for detecting voice; a voice section detection means for detecting a section in which voice exists from the output of the voice detection means; a laryngeal vibration detection means fixed to the larynx for detecting vibration of the vocal cords; an intraoral pressure detecting means arranged to detect the intraoral pressure; an intraoral section detecting means detecting a section where the intraoral pressure is higher than a predetermined value from the output of the intraoral pressure detecting means; and the laryngeal vibration detecting means. a first gate means for controlling the output of the voice section detecting means according to the output of the voice section detecting means; a second gate means controlling the output of the laryngeal vibration detecting means according to the output of the oral section detecting means; and a voiced section extraction device, comprising an adding means for adding the outputs of the second gate means, and a voiced section detecting means for detecting a voiced section from the output of the adding means.
JP58185987A 1983-10-06 1983-10-06 Voiced sound section extractor Granted JPS6078498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58185987A JPS6078498A (en) 1983-10-06 1983-10-06 Voiced sound section extractor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185987A JPS6078498A (en) 1983-10-06 1983-10-06 Voiced sound section extractor

Publications (2)

Publication Number Publication Date
JPS6078498A true JPS6078498A (en) 1985-05-04
JPH034919B2 JPH034919B2 (en) 1991-01-24

Family

ID=16180375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185987A Granted JPS6078498A (en) 1983-10-06 1983-10-06 Voiced sound section extractor

Country Status (1)

Country Link
JP (1) JPS6078498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358089A (en) * 2001-06-01 2002-12-13 Denso Corp Method and device for speech processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358089A (en) * 2001-06-01 2002-12-13 Denso Corp Method and device for speech processing

Also Published As

Publication number Publication date
JPH034919B2 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
US7529670B1 (en) Automatic speech recognition system for people with speech-affecting disabilities
Esling et al. States of the glottis: An articulatory phonetic model based on laryngoscopic observations
Anusuya et al. Front end analysis of speech recognition: a review
Stevens Features in speech perception and lexical access
Lim Computational differences between whispered and non-whispered speech
Lindqvist-Gauffin Laryngeal articulation studied on Swedish subjects
US10269356B2 (en) Systems and methods for estimating age of a speaker based on speech
Ball et al. Non-segmental aspects of disordered speech: Developments in transcription
JPH04505369A (en) Apparatus and method for generating stabilized images from waveforms
JPS6078498A (en) Voiced sound section extractor
Sharifzadeh Reconstruction of natural sounding speech from whispers
Traill Pulmonic control, nasal venting, and aspiration in Khoisan languages
Koreman Decoding linguistic information in the glottal airflow
Simpson et al. Detecting larynx movement in non-pulmonic consonants using dual-channel electroglottography
Demolin et al. Whispery voiced nasal stops in rwanda.
Flanagan et al. Digital analysis of laryngeal control in speech production
JPH0475520B2 (en)
Georgopoulos An investigation of audio-visual speech recognition as applied to multimedia speech therapy applications
JPH036520B2 (en)
JPH036519B2 (en)
JPS616696A (en) Fracturing tendency detector
JPH025099A (en) Voiced, voiceless, and soundless state display device
JPH0139600B2 (en)
JPS6236700A (en) Inhaling flow detector
Bedi et al. Investigations of Formant Extraction of Male and Female Speech Signal Via Cepstral De-convolution Method