JPS6078346A - Ultrasonic imaging device - Google Patents
Ultrasonic imaging deviceInfo
- Publication number
- JPS6078346A JPS6078346A JP18507083A JP18507083A JPS6078346A JP S6078346 A JPS6078346 A JP S6078346A JP 18507083 A JP18507083 A JP 18507083A JP 18507083 A JP18507083 A JP 18507083A JP S6078346 A JPS6078346 A JP S6078346A
- Authority
- JP
- Japan
- Prior art keywords
- image
- area
- circuit
- imaging processing
- memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0609—Display arrangements, e.g. colour displays
- G01N29/0618—Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
- G01N29/0627—Cathode-ray tube displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/56—Display arrangements
- G01S7/62—Cathode-ray tube displays
- G01S7/6218—Cathode-ray tube displays providing two-dimensional coordinated display of distance and direction
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、超音波を送受信し、被検体の断面像や平面像
を形成・表示する超音波映像化装置に係り、特に広い範
囲の探傷を行う超音波探傷装置に好適な超音波映像化装
置に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an ultrasonic imaging device that transmits and receives ultrasonic waves to form and display cross-sectional images and planar images of a subject, and is particularly applicable to flaw detection over a wide range. The present invention relates to an ultrasonic imaging device suitable for an ultrasonic flaw detection device.
従来、多点で超音波の送受信を行い、多点の受信データ
を合成して、被検体の断面像や平面像を形成・表示する
超音波映像化装置において、長い径路に沿った被検体の
連続的な映像化を実行する場合には、画像の形成に用い
る画像メモリが有限な領域のみしか扱えなかったため、
連続した映像形成ができないという欠点があった。Conventionally, in ultrasound imaging equipment that transmits and receives ultrasound waves at multiple points and synthesizes the received data from multiple points to form and display cross-sectional or planar images of the object, When performing continuous visualization, the image memory used to form images could only handle a limited area;
The drawback was that continuous image formation was not possible.
本発明の目的は、長い径路に沿った被検体の連続的な映
像化を実現できる超音波映像化装置を提供することにあ
る。An object of the present invention is to provide an ultrasound imaging apparatus that can realize continuous imaging of a subject along a long path.
本発明は、画像メモリのうち、演算が完了している領域
に着目し、該演算完了領域の画像メモリを初期化し、他
の領域のメモリとして使用すれば有限な大きさの画像メ
モリを用いて、連続的映像形成が可能となることを見出
し、長い径路に沿つた被検体の連続的映像化を実現した
ものである。The present invention focuses on an area in the image memory where calculations have been completed, initializes the image memory in the area where calculations have been completed, and uses the image memory of a finite size when used as memory for other areas. discovered that continuous image formation was possible, and realized continuous imaging of a subject along a long path.
以下、本発明の一実施例を図面によって説明する。第1
図は高い解像度で映像形成を行うことができる開口合成
法の原理説明図である。超音波送受信点11をベクトル
表示でrI+、被検体14の位置rにおける反射率をρ
(r)とし、超音波の送信波形をs t (t)、音速
をVとすれば、パルス状の送信波形SL (t)を用い
ると、超音波送受信点r、と反射率ρ(r)なる位置r
を往復して反射エコーが得られるため、受信信号Sr
(r、 t) は21r−r、、l
S−(rs、t)−/ ρ(r)・5t(t 、) d
r・・・・・・・・・・・・(1)
と表現できる。ここで、超音波の伝播時の減衰は補償し
であるものとする。送受信点r8に対する受信信号Sr
(rg、t:)を用いて、被検体中の反射分布ρ(r
)をめるため、開口合成法では、再生像の強度分布をI
(r、) とすると
21raral 2
Hru)= Σ8. (rs ) −(2)rB v
で映像形成する。映像形成の様子を第2図に示す。An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is an explanatory diagram of the principle of an aperture synthesis method that allows image formation with high resolution. The ultrasonic transmitting/receiving point 11 is expressed as a vector by rI+, and the reflectance at the position r of the subject 14 is ρ.
(r), the ultrasonic transmission waveform is s t (t), and the speed of sound is V. If the pulsed transmission waveform SL (t) is used, the ultrasonic transmission and reception point r and the reflectance ρ (r) position r
Since a reflected echo is obtained by going back and forth, the received signal Sr
(r, t) is 21r-r,,l S-(rs, t)-/ρ(r)・5t(t,) d
r・・・・・・・・・・・・(1) It can be expressed as follows. Here, it is assumed that attenuation during propagation of ultrasonic waves is compensated. Received signal Sr for transmission/reception point r8
(rg, t:), the reflection distribution ρ(r
), in the aperture synthesis method, the intensity distribution of the reconstructed image is
(r,) then 21ral 2 Hru) = Σ8. (rs) - (2) Form an image with rBv. Figure 2 shows how the image is formed.
映像形成は(2)式に従って実行すればよい。つまシ超
音波送受信点11を中心に、受信信号S、(rs、t)
を同心円状に画像再生面16に加算累積する。第2図に
示す様に点反射源12に対応する位置に円弧の交点が形
成され点反射源12の再生像13が形成される。Image formation may be performed according to equation (2). The received signal S, (rs, t) centered around the ultrasonic transmitting/receiving point 11
are added and accumulated concentrically on the image reproduction surface 16. As shown in FIG. 2, an intersection of circular arcs is formed at a position corresponding to the point reflection source 12, and a reconstructed image 13 of the point reflection source 12 is formed.
ここで映像形成の方位方向の分解能δは、使用する超音
波ビームの指向角εと超音波の波長λを用いて
と表現できる。指向角εを60° とすれば1波長の方
位分解能が実現できる。Here, the resolution δ of image formation in the azimuth direction can be expressed using the directivity angle ε of the ultrasound beam used and the wavelength λ of the ultrasound. If the directivity angle ε is set to 60°, a azimuthal resolution of one wavelength can be achieved.
実際に用いる探触子は有限の指向角εを持つ、つまり超
音波照射範囲は有限の領域である。映像形成の再生演算
においても、超音波照射領域のみに関して、(匂に基づ
く演算を実行すればよい。The probe actually used has a finite directivity angle ε, that is, the ultrasonic irradiation range is a finite area. In the reproduction calculation for image formation as well, it is sufficient to perform the calculation based on the smell only with respect to the ultrasound irradiation area.
次に長い径路に沿って被検体の映像化を行う場合を考え
る。第3図に探触子を直線走査し、その断面を映像表示
する場合を示す。従来の映像化装置においては再生領域
17が限定されていたため、a2 + b2 + C2
+ ’2だけの領域しか取シ扱えなかった。次のa3
+ b3 H’3 + d3の領域を再生するためには
、再度設定し直して演算する必要があった。Next, consider a case where the object is visualized along a long path. FIG. 3 shows the case where the probe is scanned in a straight line and the cross section thereof is displayed as an image. In the conventional imaging device, since the playback area 17 is limited, a2 + b2 + C2
+ '2 area could only be handled. next a3
In order to reproduce the area + b3 H'3 + d3, it was necessary to reset the settings and perform calculations.
ここでa2 + b2 + C2+ d2の領域を再生
する場合は超音波送受信点としてはx(、−X8が必要
となる。ところで、a2の領域に関してはX。Here, when reproducing the area a2 + b2 + C2 + d2, x(, -X8 is required as the ultrasonic transmission/reception point. By the way, for the area a2, X.
〜x4までの送受信点が必要となるが、X5〜x8は超
音波ビームが22を照射しないため、映像形成の演算に
は寄与しない。そこで、演算が終了したa2の画像デー
タを外部に出力し、次のa3なる領域の演算用として用
いる方法を見出した。第4図に画像メモリの領域側し当
でと外部画像記憶データを示す。まず画像メモリ261
は、超音波送受信点Xo〜x4までの受信信号を合成し
たものである。その時点で外部画像記憶部341にはa
1〜d、までの領域の両端データが入っているものとす
る。次の超音波の送受信点はX5であるとすると画像メ
モリ261の22の領域は映像形成処理が終了している
。そこで領域a2の画像データを外部画像記憶部341
に転送してa2を加えて外部画像記憶部342とする。Transmission/reception points up to x4 are required, but the ultrasonic beams do not irradiate 22 at x5 to x8, so they do not contribute to image formation calculations. Therefore, we have found a method of outputting the image data of a2 for which the calculation has been completed to the outside and using it for calculation of the next region a3. FIG. 4 shows the area side of the image memory and external image storage data. First, image memory 261
is a combination of received signals from ultrasonic transmitting/receiving points Xo to x4. At that point, the external image storage unit 341 stores a
It is assumed that data at both ends of areas 1 to d are included. Assuming that the next ultrasonic wave transmission/reception point is X5, the image forming process has been completed in area 22 of the image memory 261. Therefore, the image data of area a2 is stored in the external image storage unit 341.
A2 is added to the external image storage unit 342.
更に画像メモリの82が入っていた領域を初期化して画
像メモリを262とする。次にx6の位置での受信信号
を映像形成処理する。ここで初期化した領域を新たに領
域a3用として使用し、映像化処理した画像メモリの領
域割υ当てを263に示す。同様にして画像メモリの領
域b2が映像化処理が終了した時点で該領域を初期化し
、bB用に用いる。Furthermore, the area where 82 of the image memory was stored is initialized to set the image memory to 262. Next, the received signal at the position x6 is processed to form an image. The area initialized here is newly used for area a3, and area allocation υ of the image memory subjected to visualization processing is shown in 263. Similarly, the area b2 of the image memory is initialized when the imaging process is completed and used for bB.
以上の操作を繰シ返すことにより長い径路に沿った連続
的映像形成が実現できる。By repeating the above operations, continuous image formation along a long path can be realized.
第5図に本実施例の構成ブロック図を示す。まず探触子
1を被検体14の表面上を走査する。超音波の送受信は
超音波送受信部21を用いて行い、受信信号は波形記憶
部22でデジタル化し記憶する。これと同時に超音波送
受信点の座標は位置検山部23で検出し、位置信号変換
部24でデジタル化し、画像メモリの書き込みアドレス
を発生する省−き込み座標発生回路27に入力する。波
形記憶部から受信信号の受信データを出力すると共に、
遅れ時間データ全上記書き込み座標発生回路27に入力
する。ここで映像化処理が終了した領域の画像データに
ついて画像読み出し回路31で外部画像記憶部34に出
力する。次に画像初期化回路32を使って、上記映像化
処理が終了した画像メモリ26を初期化する。次に初期
化した領域を第4図に説明したように次の領域の演算用
として用い映像化処理を行う。映像化は、波形記憶部2
2から出力された受信データを書き込み割り当て回路2
7を用いて画像メモリに加算累積する。映像形成は画像
メモリ26を用いて、行われるが、画像の記憶は外部画
像記憶部34を介して、画像表示部35及び画像記録部
36に出力され、モニタ及び記録ができる。なお画像読
み出し回路31及び画像初期化回路32のアドレス発生
は画像初期化アドレス発生部にて行われる。また本装置
の全体の制御は制御部20により行われる。FIG. 5 shows a block diagram of the configuration of this embodiment. First, the probe 1 is scanned over the surface of the subject 14. Ultrasonic waves are transmitted and received using an ultrasound transmitting and receiving section 21, and the received signal is digitized and stored in a waveform storage section 22. At the same time, the coordinates of the ultrasonic transmitting and receiving points are detected by the position detection section 23, digitized by the position signal conversion section 24, and inputted to the write-in coordinate generation circuit 27 which generates the write address of the image memory. Outputs the received data of the received signal from the waveform storage unit, and
All delay time data is input to the write coordinate generation circuit 27. Here, the image reading circuit 31 outputs the image data of the area for which the visualization process has been completed to the external image storage section 34. Next, the image initialization circuit 32 is used to initialize the image memory 26 in which the above imaging process has been completed. Next, as explained in FIG. 4, the initialized area is used for calculation of the next area to perform imaging processing. Visualization is performed using the waveform storage unit 2.
Write the received data output from 2 and assign circuit 2
7 to add and accumulate in the image memory. Image formation is performed using the image memory 26, but the image storage is outputted to the image display section 35 and the image recording section 36 via the external image storage section 34 for monitoring and recording. Note that address generation for the image readout circuit 31 and the image initialization circuit 32 is performed by an image initialization address generation section. Further, the entire control of this device is performed by a control section 20.
本実施例によれば、長い径路の映像化処理を連続して実
行することが可能になり丑た最大限超音波が照射されて
いる領域の画像メモリ保有するだけで上記連続的な映像
形成が実行できる。映像化処理回路は一系統で済むとい
う利点もある。According to this embodiment, it is possible to continuously execute the imaging process for a long path, and the continuous image formation described above can be performed simply by storing the image memory of the area where the maximum ultrasonic waves are irradiated. Can be executed. Another advantage is that only one system of imaging processing circuit is required.
本発明によれば、有限な大きさの画像メモリを循環的に
使用することにより、長い径路に沿った被検体の連続的
な映像化を実現でき、映像化処理時間の短縮化が実現で
きるという効果がある。According to the present invention, by cyclically using a finite size image memory, it is possible to realize continuous imaging of a subject along a long path, and to shorten the imaging processing time. effective.
第1図は開口合成法による映像形成の原理図、第2図は
映像形成のモデル、第3図は長い径路に沿った映像形成
のモデル、第4図は画像メモリの領域分割と使用法、第
5図は装置の構成ブロック図である。
21・・・超音波送受信部、26・・・画像メモリ、3
1・・・画像読み出し回路、32・・・画像初期化回路
、34・・・外部画像記憶部。
第 1霞
活2El
鵠 、5S
/7
箔4目
63Fig. 1 is a diagram of the principle of image formation using the aperture synthesis method, Fig. 2 is a model of image formation, Fig. 3 is a model of image formation along a long path, and Fig. 4 is a method of dividing and using image memory. FIG. 5 is a block diagram of the configuration of the device. 21... Ultrasonic transmitter/receiver unit, 26... Image memory, 3
1... Image reading circuit, 32... Image initialization circuit, 34... External image storage section. 1st Kasumi Katsu 2El Mouse, 5S /7 Foil 4 stitches 63
Claims (1)
断面像や平面像を表示する超音波映像化装置において、
画像データの蓄えられた1つ以上の画像メモリのうち、
演算が終了した領域の画像メモリの画像データを外部に
出力し、その後初期化して、他の領域の画像メモリとし
て用いることを特徴とした超音波映像化装置。 2、特許請求の範囲第1項において、外部に出力された
画像メモリの画像データを記録する画像記録部を有する
ことを特徴とする超音波映像化装置。 3゜特許請求の範囲第1項において、受信データを初期
化された領域にも割当てる機能を有することを特徴とす
る超音波映像化装置。[Scope of Claims] An ultrasound imaging device that transmits and receives 1° ultrasound and displays a cross-sectional image or a planar image of a subject using the received data,
Among one or more image memories storing image data,
An ultrasound imaging device characterized in that image data of an image memory of an area where calculation has been completed is outputted to the outside, and then initialized and used as an image memory of another area. 2. An ultrasound imaging apparatus according to claim 1, comprising an image recording section for recording image data of an image memory outputted to the outside. 3. The ultrasound imaging apparatus according to claim 1, characterized in that it has a function of allocating received data to an initialized area as well.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18507083A JPS6078346A (en) | 1983-10-05 | 1983-10-05 | Ultrasonic imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18507083A JPS6078346A (en) | 1983-10-05 | 1983-10-05 | Ultrasonic imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6078346A true JPS6078346A (en) | 1985-05-04 |
Family
ID=16164279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18507083A Pending JPS6078346A (en) | 1983-10-05 | 1983-10-05 | Ultrasonic imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6078346A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2616916A1 (en) * | 1987-06-17 | 1988-12-23 | Bruss Polt I | METHOD FOR NON-DESTRUCTIVE CONTROL OF THE QUALITY OF MATERIALS AND VIDEO CONTROL DEVICE IMPLEMENTING SAID METHOD |
-
1983
- 1983-10-05 JP JP18507083A patent/JPS6078346A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2616916A1 (en) * | 1987-06-17 | 1988-12-23 | Bruss Polt I | METHOD FOR NON-DESTRUCTIVE CONTROL OF THE QUALITY OF MATERIALS AND VIDEO CONTROL DEVICE IMPLEMENTING SAID METHOD |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5419330A (en) | Ultrasonic diagnostic equipment | |
EP0155280A4 (en) | Body imaging using vectorial addition of acoustic reflections to achieve effect of scanning beam continuously focused in range. | |
JPH1170110A (en) | Ultrasonic three-dimensional image converting method using intersecting array and its device | |
CA1240786A (en) | Ultrasonic imaging device | |
KR101627821B1 (en) | Method for synthetic focusing ultrasound field based on virtual source and ultrasonic apparatus using the method | |
JP4464354B2 (en) | Ultrasound Doppler blood flow measurement device | |
JPS6048736A (en) | Ultrasonic diagnostic apparatus | |
JPS6078346A (en) | Ultrasonic imaging device | |
JPH0364831B2 (en) | ||
JP2772647B2 (en) | Ultrasound imaging device | |
JPH08201569A (en) | Ultrasonic inspection equipment | |
JPS6219711B2 (en) | ||
JPH0527080A (en) | Ultrasonic wave signal processing device | |
JPH02147052A (en) | Electronic scanning type ultrasonic diagnosing device | |
JPS5977839A (en) | Ultrasonic tomographic apparatus | |
JP4154043B2 (en) | Ultrasonic imaging device | |
JPH0244394B2 (en) | ||
JPH03267052A (en) | Ultrasonic diagnostic apparatus | |
JPS59137040A (en) | Opening synthesis method ultrasonic diagnostic apparatus | |
JPS6221537B2 (en) | ||
KR100543736B1 (en) | Ultrasonic imaging method | |
JPH01318951A (en) | Body imaging apparatus using ultrasonic wave or electromagnetic wave | |
JPS59138953A (en) | Ultrasonic picture device for repetitive input integration | |
CN117405780A (en) | Dual-pixel ultrasonic full focusing system based on FPGA and implementation method | |
JP4418491B2 (en) | Ultrasonic imaging device |