JPS6077911A - Method for distinguishing burden in blast furnace - Google Patents

Method for distinguishing burden in blast furnace

Info

Publication number
JPS6077911A
JPS6077911A JP18582783A JP18582783A JPS6077911A JP S6077911 A JPS6077911 A JP S6077911A JP 18582783 A JP18582783 A JP 18582783A JP 18582783 A JP18582783 A JP 18582783A JP S6077911 A JPS6077911 A JP S6077911A
Authority
JP
Japan
Prior art keywords
ore
furnace
coke
blast furnace
electromagnetic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18582783A
Other languages
Japanese (ja)
Inventor
Hirokichi Hashimoto
橋本 紘吉
Takashi Kobayashi
隆 小林
Sumiyuki Kishimoto
岸本 純幸
Hiromi Nakamura
博巳 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18582783A priority Critical patent/JPS6077911A/en
Publication of JPS6077911A publication Critical patent/JPS6077911A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Abstract

PURPOSE:To distinguish the kind of a burden at an arbitrary position in a blast furnace by irradiating electromagnetic waves havning a beam diameter corresponding to the grain size of ore in the furnace from the side of the furnace and by processing the resulting reflection intensity distribution. CONSTITUTION:Electromagnetic waves are emitted from a laser oscillator 10 from two upper and lower positions on the side of a blast furnace at a smaller interval than the thickness of a layer of ore or coke in the furnace. The waves are irradiated on an object 12 in the furnace through a collimator 11 as a electromagnetic waves having a beam diameter corresponding to the grain size of ore in the furnace. The reflection intensity distribution of the magnetic waves reflected from the object 12 is detected with a photodetector 13, and the information is sent to a processing circuit 14. In the circuit 14, the reflection intensity distribution detected with the photodetector 13 is processed to distinguish the kind of the burden.

Description

【発明の詳細な説明】 本発明は高炉内装入物の種類を判別するための高炉内装
入物の判別法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the type of blast furnace contents.

従来、高炉内装入物の種類を判別する方法としては、第
1図に示す磁気式センサが開発されている。
Conventionally, as a method for determining the type of materials contained in a blast furnace, a magnetic sensor shown in FIG. 1 has been developed.

第1図において、磁気式センサはコア1、マグネット2
、検出回路3、増幅回路4及び記録計5よシ構成されて
、この磁気式センサが高炉耐火物6の内部に埋めこまれ
ている。鉱石7はキューリ一点(約850℃)以下では
強磁性体であり、コークス8との透磁率の差は顕著であ
る。この鉱石7とコークス8の透磁率の差を磁気式セン
サで検知して、鉱石7とコークス8の分布を識別してい
る。
In Figure 1, the magnetic sensor has core 1 and magnet 2.
, a detection circuit 3, an amplifier circuit 4, and a recorder 5, this magnetic sensor is embedded inside the blast furnace refractory 6. The ore 7 is a ferromagnetic material below the curie point (approximately 850° C.), and the difference in magnetic permeability from the coke 8 is significant. The difference in magnetic permeability between ore 7 and coke 8 is detected by a magnetic sensor to identify the distribution of ore 7 and coke 8.

第2図に鉱石7、コークス8が交互に磁気センサを埋め
込んだ部分を通過した時の磁気センサのクス8の分布、
(ロ)は磁気センサの磁束 分布、0つは磁気センサの
出力を示す。コークス8が下部に617鉱石7が上部に
ある場合に、コークス8と鉱石7の境界が磁気センサに
近接したとき(a)、コークス8の層が磁気センサに近
接したとき(b)、鉱石7が下部にありコークス8が上
部にある場合に、鉱石7とコークス8の境界が磁気セン
サに近接したとき(e)の各々の磁気センサの磁束?及
び出力分布を示す。
Figure 2 shows the distribution of coke 8 in the magnetic sensor when ore 7 and coke 8 alternately pass through the part where the magnetic sensor is embedded.
(b) indicates the magnetic flux distribution of the magnetic sensor, and 0 indicates the output of the magnetic sensor. When coke 8 is on the bottom and 617 ore 7 is on the top, when the boundary between coke 8 and ore 7 comes close to the magnetic sensor (a), when the layer of coke 8 comes close to the magnetic sensor (b), when ore 7 is at the bottom and coke 8 is at the top, and when the boundary between ore 7 and coke 8 approaches the magnetic sensor, what is the magnetic flux of each magnetic sensor in (e)? and output distribution.

第2図(ロ)の(a)、(b)に示すよう妃、鉱石7と
コークス8の透磁率の差から鉱石7とコークス8の境界
が磁気センサに近接した場合の磁束9は磁気センサの上
側と下側で差を生じ、この差を検知して出力すると、第
2図0うの如き分布となり、この出力分布の最大、最小
点が各々コークス8−鉱石7及び鉱石7−コークス8の
境界に相当し、第2図C→に示す出力分布から、鉱石7
とコークス8の分布を判別することができる。
As shown in (a) and (b) of Figure 2 (b), due to the difference in magnetic permeability between ore 7 and coke 8, when the boundary between ore 7 and coke 8 is close to the magnetic sensor, the magnetic flux 9 is A difference occurs between the upper side and the lower side, and when this difference is detected and output, it becomes a distribution as shown in Figure 2, and the maximum and minimum points of this output distribution are coke 8 - ore 7 and ore 7 - coke 8, respectively. From the output distribution shown in Figure 2 C →, ore 7
and the distribution of coke 8 can be determined.

さらに、磁気センサを一定間隔離して、上下2個所に設
置すれば荷下り速度も検知することができる。
Furthermore, by separating magnetic sensors for a certain period of time and installing them at two locations, one above the other, it is also possible to detect the unloading speed.

しかし、磁気センサを使用した場合は、鉱石の強磁性に
依存するため、鉱石がキューり点以上になシ磁性を失な
うと磁気センサの磁束の変化が生じなくなシ検出が不可
能となる。一方高炉では通常、荷の装入線よ多数m下で
温度は850℃をこえるためシャフト部、炉下部で荷下
り速度を測定することは不可能である。
However, when using a magnetic sensor, it depends on the ferromagnetism of the ore, so if the ore loses its magnetism beyond the cue point, the magnetic flux of the magnetic sensor will not change and detection will become impossible. . On the other hand, in a blast furnace, the temperature usually exceeds 850°C many meters below the loading line, so it is impossible to measure the unloading speed at the shaft and lower part of the furnace.

しかるに高炉操業上、炉内の任意の位置での鉱石及びコ
ークスの層厚を検出することが強く望まれているが、磁
気センサを使用した場合では、前記理由によりその要求
に応じることができ々かった。
However, when operating a blast furnace, it is strongly desired to detect the layer thickness of ore and coke at any position within the furnace, but when using a magnetic sensor, it is not possible to meet this request for the reasons mentioned above. won.

本発明は上記要求を満足するため、炉内での装入物の性
状変化によらず、炉内の任胎位置における装入物の種類
を判別することができる高炉内装入物の判別法を提(B
することを目的とするものである。
In order to satisfy the above requirements, the present invention provides a method for identifying charges in a blast furnace that can determine the type of charge at its placement position in the furnace, regardless of changes in the properties of the charge in the furnace. Proposal (B
The purpose is to

本発明の高炉内装入物の判別法は炉内の鉱石、コークス
の粒径の差に着目し、高炉側面から高炉内に鉱石の粒径
に対応したビーム径の電磁波を照射し、照射した電磁波
の反射強度分布が粒径により異なることを利用して、電
磁波の反射強度分布から鉱石とコークスを識別すること
を特徴とするものである。
The present invention's method for identifying the contents in a blast furnace focuses on the difference in particle size between ore and coke in the furnace, and irradiates electromagnetic waves with a beam diameter corresponding to the particle size of the ore from the side of the blast furnace into the blast furnace. The feature is that ore and coke can be distinguished from the reflection intensity distribution of electromagnetic waves by utilizing the fact that the reflection intensity distribution of electromagnetic waves differs depending on the particle size.

さらに炉内の鉱石、コークス層厚より小さい距離を隔て
た高炉側面の上下2個σ「から高炉内に鉱石の粒径に対
応したビーム径の電磁波を照射し、照射した電磁波の各
々の反射強度分布から装入物の荷下シ速度を検出し、ま
たは前記各々の反射強度分布から装入物の荷下I)連関
及び鉱石とコークス属の層厚判定時間を測定し、この荷
下り速度と判定時間より鉱石及びコークス層厚をめるこ
とを特徴としたものである。
Furthermore, electromagnetic waves with a beam diameter corresponding to the grain size of the ore are irradiated into the blast furnace from the upper and lower sides of the blast furnace side, separated by a distance smaller than the ore and coke layer thickness, into the blast furnace, and the reflection intensity of each of the irradiated electromagnetic waves is measured. Detect the unloading speed of the charge from the distribution, or measure the unloading speed of the charge from each of the above-mentioned reflection intensity distributions. This method is characterized by increasing the thickness of the ore and coke layers from the determination time.

次に本発明を実施例に基いて説明する。Next, the present invention will be explained based on examples.

第3図に本発明実施例に使用するセンサの構成を示す。FIG. 3 shows the configuration of a sensor used in an embodiment of the present invention.

図において10はレーザを射出するレーザ発振器、11
はレーザ発振器10から射出したレーザのビーム径を設
定して、対象物12に照射するフリメータ、16は対象
物12で反射したレーザの反射強度分布を検出するホト
デテクタ、14はホトデテクタ16で検出した反射強度
分布を処理する処理回路である。
In the figure, 10 is a laser oscillator that emits laser; 11
16 is a photodetector that detects the reflection intensity distribution of the laser reflected by the object 12; 14 is a reflection detected by the photodetector 16; This is a processing circuit that processes intensity distribution.

一般に高炉内で鉱石は還元粉化現象が生じ、シャフト部
における平均粒径は数mm程度である。一方、塊コーク
スは装入時は平均50〜60B程度の径であシ、炉内降
下に対応して小さくなるが、炉下部でも60〜40Bで
あシ、鉱石の平均粒径より大きな粒径である。
Generally, ore undergoes a reduction and powdering phenomenon in a blast furnace, and the average particle size in the shaft portion is approximately several mm. On the other hand, lump coke has an average diameter of about 50 to 60 B at the time of charging, and although it becomes smaller as it descends in the furnace, it is still 60 to 40 B in the lower part of the furnace, and the particle size is larger than the average particle diameter of ore. It is.

第4 図(a) Fiレーザ・ビーム径を鉱石7の粒径
に対応した径としたレーザ・ビームを鉱石7に照射した
ときの反射光の散乱状態を、(b)はレーザ・ビームを
コークス8に照射したときの反射光の散乱状態を示す。
Figure 4 (a) shows the scattering state of reflected light when ore 7 is irradiated with a laser beam whose Fi laser beam diameter corresponds to the particle size of ore 7, and (b) shows the scattering state of reflected light when the ore 7 is irradiated with a Fi laser beam whose diameter corresponds to the particle size of ore 7. 8 shows the scattering state of reflected light when irradiated with light.

鉱石7の粒径がコークス8の粒径よシ小のため鉱石7か
らの反射光の角度が大きくなる。
Since the particle size of the ore 7 is smaller than the particle size of the coke 8, the angle of the reflected light from the ore 7 becomes large.

第5図(a)に鉱石7からの反射強度分布を、(b)に
コークス8からの反射強度分布を示す。鉱石7からの反
射光の角度が大であるだめ、鉱石7からの反射強度分布
がコークス8からの反射強度分布より広く分布する。
FIG. 5(a) shows the reflection intensity distribution from the ore 7, and FIG. 5(b) shows the reflection intensity distribution from the coke 8. Since the angle of the reflected light from the ore 7 is large, the reflection intensity distribution from the ore 7 is wider than the reflection intensity distribution from the coke 8.

従って、正反射位置と乱尺Mt1位置での光量を各々I
plIr とし、識別関数fを f==Ir/Ip ・・・・・・・・・・・・(1)と
すると、この識別1ν]数fの値から鉱石とコークスを
識別することができる。
Therefore, the light intensity at the specular reflection position and the irregular scale Mt1 position is I
plIr and the discrimination function f is f==Ir/Ip (1), ore and coke can be discriminated from the value of this discrimination 1v] number f.

第6図に本発明実施例の概要を示す。FIG. 6 shows an outline of an embodiment of the present invention.

ゾンデ15の内部に琴光糸、受光系を入れて、高炉面1
火物6より炉内に挿入する。レーザ発振器10よシ射出
したレーザ・ビームはコリメータ11により径を調整さ
れ、接眼レンズ16を介して装入物12に照射される。
Insert the Kotoko thread and light receiving system inside the sonde 15, and place the blast furnace surface 1.
Insert the fire into the furnace through the fire 6. A laser beam emitted from a laser oscillator 10 has its diameter adjusted by a collimator 11 and is irradiated onto a charge 12 through an eyepiece 16.

その反射光はフォトデテクタ16を介して強度分布が測
定され、処理回路14にて識別関数fを引算して鉱石と
コークスを判別する。
The intensity distribution of the reflected light is measured via a photodetector 16, and a processing circuit 14 subtracts a discrimination function f to discriminate between ore and coke.

第7図に本発明の他の実り例不、−示す。Another embodiment of the present invention is shown in FIG.

第6図に示し゛たセンサ17,18を高炉耐火物の上下
2個所に設(2):するセンサ17及びセンサ18間の
距離りは炉内の鉱石7及びコークス80層厚よりも小さ
く設定する。センサ17及びセンサ18の出力信号の一
例を第8図に示す。第8図において実線はセンサ17、
点線はセンサ1Bの出力信号を示す。鉱石の識別関数f
、は(1)式及び第5図から明らかなように、コークス
の識別関数fcよυ大となる。コークス8と鉱石7の境
界がセンサ17をyjV 3tの後、センサ18を通過
するまでの時間△tよシ、荷下り速度Vは v=L/ ・・・・・・・・・・・・(2)△t でめられる。
The sensors 17 and 18 shown in Fig. 6 are installed at the top and bottom of the blast furnace refractory (2): The distance between the sensors 17 and 18 is set to be smaller than the thickness of the ore 7 and coke 80 layers in the furnace. do. An example of the output signals of the sensor 17 and the sensor 18 is shown in FIG. In FIG. 8, the solid line is the sensor 17,
The dotted line indicates the output signal of sensor 1B. Discrimination function f of ore
As is clear from equation (1) and FIG. 5, , is larger than the coke discrimination function fc. The time Δt until the boundary between coke 8 and ore 7 passes sensor 18 after yjV 3t passes sensor 17, unloading speed V is v=L/... (2) Determined by △t.

また鉱石7、コークス8の層厚を各々Lo+ Lcとし
、センサ17又はセンサ18を鉱石7の層が通過する時
間すなわち層厚判定時間へTo+コークス8の層厚判定
時間△Tcよシ、各々の層厚Lo。
Also, let the layer thicknesses of ore 7 and coke 8 be Lo + Lc, and the time for the layer of ore 7 to pass through sensor 17 or sensor 18, that is, the layer thickness determination time, To + the layer thickness determination time of coke 8 ΔTc, respectively. Layer thickness Lo.

LCは で測定することがてきる。LC is It can be measured with

上記の実施例では信号源としてレーザを用いたが、本判
別法の原理からマイクロ波、超音波零を使用することも
可能である。
Although a laser was used as a signal source in the above embodiment, it is also possible to use microwaves or ultrasonic waves based on the principle of this discrimination method.

以上の説明から明らかなように、本発明は鉱石とコーク
スの粒+1(差から両者を識別するが、この粒度歿は鉱
石の溶融以前においては十分大きいため、鉱石が溶融す
る位L6よシも上部の高炉の任意の位1首で装入物の分
布を検出することができ、高炉操業上の効果が大である
As is clear from the above explanation, the present invention distinguishes between ore and coke grains by 1 (the difference between the two), but since this grain size is sufficiently large before the ore melts, it is even larger than L6 until the ore melts. The distribution of the charge can be detected at any point in the upper blast furnace, which has a great effect on blast furnace operation.

【図面の簡単な説明】[Brief explanation of drawings]

第11ツ1は従来の磁気式センサを使用した場合の41
11定法の構成図、第2図は磁気式センサの出力分布図
で、(イ)Il−1′鉱石−コークスの分布図、(ロ)
は磁気センサの磁束分布図、(I→け磁気センサの出力
分布図、rj’+ 3図&、l、本発明実施例に使用し
たセンサの構成図、第4図はレーザ・ビームの反射光の
散乱状態図で、(a)kJ鉱鉱石反射した場合の散乱状
態図、(b) uコークスで反射した場合の散乱状態図
、第5図(a)は鉱石の反射強度分布図、(b)i−L
コークスの反射強度分布図、第6図は本発明実施例の構
成図、第7図はA<発明他の実施例の構成図、第8図は
第7図に示した実施例の出カイ11月を示す図である。 1・・・コア、2・・・マグネット、6・・・検出回路
、4・・・増幅回路、5・・・記何4116・・・篩炉
舶火物、7・・・鉱石、8・・・コークス、9・・・?
u−CTtj−+ 10・・・レーザ発振器、11・・
・コリメータ、12・・・対象物、16・・・ホトデテ
クタ、14・・・ダLJ4jj回r;1.15・・・ゾ
ンデ、1600.接眼レアズ、17.IO・・・センサ
。 代理人 5P埋土 木 利 三 朗 II!I! 第2図 第3図 1ス (0) 第4図 (b) 財5 因 (al (b1
The 11th part 1 is 41 when using a conventional magnetic sensor.
Figure 2 is the output distribution diagram of the magnetic sensor, (a) Il-1' ore-coke distribution diagram, (b)
Figure 4 shows the magnetic flux distribution diagram of the magnetic sensor, (I → output distribution diagram of the magnetic sensor, rj'+ Figure 3 & l, the configuration diagram of the sensor used in the embodiment of the present invention, and Figure 4 shows the reflected light of the laser beam. (a) Scattering state diagram when reflected by kJ ore, (b) Scattering state diagram when reflected by u coke, Figure 5 (a) is reflection intensity distribution diagram of ore, (b )i-L
A reflection intensity distribution diagram of coke, FIG. 6 is a configuration diagram of an embodiment of the present invention, FIG. 7 is a configuration diagram of another embodiment of the invention, and FIG. 8 is an output 11 of the embodiment shown in FIG. 7. It is a diagram showing the moon. DESCRIPTION OF SYMBOLS 1...Core, 2...Magnet, 6...Detection circuit, 4...Amplification circuit, 5...Note 4116...Sieve furnace marine fireworks, 7...Ore, 8... ...Coke, 9...?
u-CTtj-+ 10...Laser oscillator, 11...
・Collimator, 12...Object, 16...Photodetector, 14...DALJ4jj timesr; 1.15...Sonde, 1600. Eyepiece Rares, 17. IO...Sensor. Agent 5P buried soil Ki Toshizo II! I! Figure 2 Figure 3 1st (0) Figure 4 (b) Goods 5 Cause (al (b1

Claims (1)

【特許請求の範囲】 1、高炉側面から高炉内に鉱石の粒径に対応したビーム
径の電磁波を照射し、この照射した電磁波の反射強度分
布から鉱石とコークスを識別することを特徴とする焉炉
内装入物の判別法。 2、炉内の鉱石、コークス層厚より小さい距離を隔てた
高炉側面の上下2個所から高炉内に鉱石の粒径に対応し
たビーム径の電磁波を各々照射し、この照射した電磁波
の各々の反射強度分布から装入物の荷下ル速度を検出す
ることを特徴とする高炉内装入物の判別法。 6、炉内の鉱石、コークス層厚より小さい距離を隔てた
高炉側面の上下2個所から高炉内に鉱石の′ 粒径に対
応したビーム径の電磁波を各々照射し、この照射した電
磁波の各々の反射強度分布から装入物の荷下シ速度及び
鉱石とコークスの各々の要時間よシ鉱石及びコークスの
層厚をめることを特徴とする高炉内装入物の判別法。
[Claims] 1. A blast furnace characterized by irradiating electromagnetic waves with a beam diameter corresponding to the grain size of ore from the side of the blast furnace, and identifying ore and coke from the reflection intensity distribution of the irradiated electromagnetic waves. Method for determining furnace contents. 2. Electromagnetic waves with a beam diameter corresponding to the grain size of the ore are irradiated into the blast furnace from two locations above and below the side of the blast furnace, separated by a distance smaller than the thickness of the ore and coke layer in the furnace, and each of the irradiated electromagnetic waves is reflected. A method for identifying charges in a blast furnace characterized by detecting the unloading speed of the charges from the intensity distribution. 6. Electromagnetic waves with a beam diameter corresponding to the grain size of the ore are irradiated into the blast furnace from two locations above and below the side of the blast furnace, separated by a distance smaller than the thickness of the ore and coke layer in the furnace. A method for determining the contents in a blast furnace, which is characterized by calculating the layer thickness of ore and coke based on the unloading speed of the charge and the time required for each of ore and coke from the reflection intensity distribution.
JP18582783A 1983-10-06 1983-10-06 Method for distinguishing burden in blast furnace Pending JPS6077911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18582783A JPS6077911A (en) 1983-10-06 1983-10-06 Method for distinguishing burden in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18582783A JPS6077911A (en) 1983-10-06 1983-10-06 Method for distinguishing burden in blast furnace

Publications (1)

Publication Number Publication Date
JPS6077911A true JPS6077911A (en) 1985-05-02

Family

ID=16177563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18582783A Pending JPS6077911A (en) 1983-10-06 1983-10-06 Method for distinguishing burden in blast furnace

Country Status (1)

Country Link
JP (1) JPS6077911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0420851A1 (en) * 1988-02-03 1991-04-10 Broken Hill Pty Co Ltd Measurement of blast furnace raceway parameters.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0420851A1 (en) * 1988-02-03 1991-04-10 Broken Hill Pty Co Ltd Measurement of blast furnace raceway parameters.

Similar Documents

Publication Publication Date Title
GB2069692A (en) Photometric method and photometric apparatus for determining courses of reactions
JPS6453139A (en) Surface nature measuring apparatus and method
EP0064842A1 (en) Material sorting
US4501146A (en) Detection of free liquid in containers of solidified radioactive waste
EP0065325A2 (en) Method and apparatus for detecting flaws in tubular metallic members
US4881031A (en) Eddy current method and apparatus for determining structural defects in a metal object without removing surface films or coatings
KR101914689B1 (en) The apparatus for identifying metallic foreign components
JPS6077911A (en) Method for distinguishing burden in blast furnace
US6320375B1 (en) Method for detection of rare earth metal oxide inclusions in titanium and other non-magnetic or metal alloy castings
US20070247145A1 (en) Device for detecting defects on metals
WO1992009056A1 (en) Coin discrimination apparatus with optical sensor
JP2002277440A (en) Identification apparatus for metal piece comprising a plurality of materials
JPS58213248A (en) Method and apparatus for discriminating defect by ultrasonic wave
JPH08212416A (en) Coin discriminating device
JPS585240Y2 (en) Vacuum degree determination device for sealed containers
JPS5983004A (en) Method for measuring thickness of wall of refractories for fused metal container
RU2095804C1 (en) Device for magnetic flaw detection
JPS6056005A (en) Method for deciding kind of raw material charged into blast furnace
SU1028387A1 (en) Apparatus for x=ray rado radiometric sorting of ores
JPH11218495A (en) Method for deciding cracked grain and apparatus for selecting cracked grain
JPH0469860A (en) Exchangeable disk classification discriminating method
JPS61150092A (en) Coin diameter identification processing
JPH11216551A (en) Method and device to measure continuous casting molten metal level
JP2002279474A (en) Abrasion resisting material and coin discriminating sensor in coin conveying passage
JPH0598324A (en) Method for counting charging time of raw material in bell-less blast furnace charging device