JPS60778B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS60778B2
JPS60778B2 JP13944083A JP13944083A JPS60778B2 JP S60778 B2 JPS60778 B2 JP S60778B2 JP 13944083 A JP13944083 A JP 13944083A JP 13944083 A JP13944083 A JP 13944083A JP S60778 B2 JPS60778 B2 JP S60778B2
Authority
JP
Japan
Prior art keywords
emitter
manufacturing
impurity diffusion
insulating film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13944083A
Other languages
Japanese (ja)
Other versions
JPS5951532A (en
Inventor
孝晃 森
敬二郎 上原
雄久 新田
道夫 鈴木
勝己 荻上
昭夫 安斉
裕之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13944083A priority Critical patent/JPS60778B2/en
Publication of JPS5951532A publication Critical patent/JPS5951532A/en
Publication of JPS60778B2 publication Critical patent/JPS60778B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、特に高速スイッ
チング用トランジスタを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a high-speed switching transistor.

この発明は、予め半導体基体の表面に2層より成る表面
安定化膿を形成すると共に上記被膜を不純物選択拡散マ
スクとして不純物拡散処理を真空封管拡散法(アンプル
拡散法)にて行なうことにより「半導体素子の表面を安
定化すると共に、不純物拡散処理後のゥオツシュド工程
を不要とし、すぐに電極付けを行い得る、半導体装置の
製造方法を提供することを目的とする。
In this invention, a two-layered surface-stabilized suppuration is formed on the surface of a semiconductor substrate in advance, and an impurity diffusion process is performed using a vacuum sealed tube diffusion method (ampule diffusion method) using the film as an impurity selective diffusion mask. It is an object of the present invention to provide a method for manufacturing a semiconductor device, which can stabilize the surface of an element, eliminate the need for a washing process after impurity diffusion treatment, and allow electrode attachment to be performed immediately.

一般に、高速スイッチング用トランジスタにおいては、
スイッチングスピードを速くするため、ベース・ェミッ
タの占有面積を小にすることが行われている。
Generally, in high-speed switching transistors,
In order to increase the switching speed, efforts are being made to reduce the area occupied by the base and emitter.

この場合、ホトマスクを使用してのホトレジスト技術で
は、ホトマスク精度の制約,露光時の回折光の影響等に
より、ェミツタ寸法を数r程度以下にすることが困難で
あった。このため、この技術的問題点に対する1つの対
策として、ェミツタ・コンタクト用の絶縁膜穴あげ作業
を簡略化したウオッシュド・ェミッタ方式が提案された
。ウオッシュド・ェミツ夕方式は、半導体基体中に拡散
された不純物が基体中で縦方向のみならず横方向にも拡
散するため、基体表面における不純物拡散領域が不純物
拡散穴よりも大となるという現象に着目したものである
In this case, in the photoresist technique using a photomask, it is difficult to reduce the emitter size to about several r or less due to limitations in photomask accuracy, the influence of diffracted light during exposure, and the like. Therefore, as a solution to this technical problem, a washed emitter method has been proposed, which simplifies the process of drilling holes in the insulating film for emitter contacts. The washed emitter type is a phenomenon in which impurities diffused into a semiconductor substrate diffuse not only vertically but also horizontally within the substrate, resulting in the impurity diffusion region on the substrate surface being larger than the impurity diffusion hole. The focus is on

この方式の特徴はェミッタ不純物を拡散する過程で、ェ
ミッタ領域表面に形成された薄い絶縁膜をエッチング液
で完全に洗い落し、前工程で形成したェミッタ不純物拡
散用の穴をそのままェミッタ・コンタクト用の穴として
利用するようにした点にある。従ってウオッシュド・ェ
ミツタ方式ではベース・コンタクト用の穴あげだけをホ
トェッチング技術で行えばよいため、極めて微小寸法の
ェミツタを有するトランジスタを容易に形成できるとい
う利点を有する。しかしながら、従来の此種の方式いお
いては他の通常のトランジスタと同様に半導体基体の表
面に最初に形成された絶縁性被膜を不純物拡散用のマス
クとして利用し、且つこれを最終的なトランZジスタの
表面安定化保護膜として用いていたため、次に述べるよ
うな欠点を残していた。
The feature of this method is that in the process of diffusing emitter impurities, the thin insulating film formed on the surface of the emitter region is completely washed away with an etching solution, and the emitter impurity diffusion holes formed in the previous process are directly connected to the emitter contact. The point is that it is used as a hole. Therefore, the washed emitter method has the advantage that it is possible to easily form a transistor having an extremely small emitter, since it is only necessary to make a hole for the base contact using photoetching technology. However, in this type of conventional method, as with other ordinary transistors, an insulating film initially formed on the surface of a semiconductor substrate is used as a mask for impurity diffusion, and this is used as a mask for the final transistor. Since it was used as a surface stabilizing protective film for Z-distor, it had the following drawbacks.

例えばNPN型のシリコントランジスタを得る場合、ェ
ミッタ形成不純物としてリン(P)を用いるのが普通で
あるが、よく知られているように表面にシリコン酸化膜
(Si02)を有する基体中にリンを拡散すると、リン
は上記シリコン酸化膜と化合し、シリコン酸化膜表面に
リンガラスを形成する。このリンガラス層はトランジス
タの表面安定化に極めて有効な作用をするため、そのま
ま残存させておくことが望ましい。しかし、従来の方法
では上記の有効なりソガラス層は、ェミッタ不純物拡散
後のウオツシュド工程により除去されてしまい、せっか
くの表面安定化効果を失うという欠点を有していた。こ
のため、更に上記欠点を除去する方法として、特公昭4
7一40993により、ベース不純物拡散処理を終えた
後に基体表面に残存するマスク被膜を除去し、これに代
えて新たに気相成長法にてリンガラス(PSG)ーシリ
コン酸化膜(Si02)から成る2層の絶縁性被膜を形
成し、この後該絶縁性被膜をマスクとしてェミッタ不純
物拡散を行う方法が提案された。
For example, when obtaining an NPN type silicon transistor, it is common to use phosphorus (P) as an emitter forming impurity, but as is well known, phosphorus is diffused into a substrate having a silicon oxide film (Si02) on the surface. Then, phosphorus combines with the silicon oxide film to form phosphorus glass on the surface of the silicon oxide film. Since this phosphorus glass layer has an extremely effective effect on stabilizing the surface of the transistor, it is desirable to leave it as it is. However, in the conventional method, the above-mentioned effective glass layer is removed in the washing step after the emitter impurity diffusion, and the surface stabilizing effect is lost. Therefore, as a method to further eliminate the above-mentioned drawbacks,
7-40993, after completing the base impurity diffusion treatment, the mask film remaining on the substrate surface is removed, and in its place, a new phosphorus glass (PSG)-silicon oxide film (Si02) is grown using the vapor phase growth method. A method has been proposed in which an insulating film is formed as a layer, and then emitter impurities are diffused using the insulating film as a mask.

しかし、この場合、ェミッ夕不純物拡散処理後に行われ
るウオッシュド工程により、上記絶縁性被膜の上層部の
りンガラス層がエッチングされ除去されてしまうおそれ
がある。
However, in this case, there is a risk that the upper phosphor glass layer of the insulating coating may be etched and removed by the washing step performed after the emitter impurity diffusion treatment.

このため、上記方法では上記リンガラス層のリン濃度を
小にしなければならず、従って表面安定化効果を高める
ことが困難であるという欠点を有するものであった。本
発明は上記各欠点を除去したものであり、以下図面と共
にその1実施例につき説明する。第1図〜第6図は夫々
本発明の製造方法を使用してNPNトランジスタを製造
する際の各製造工程を説明するための製造途中の半導体
素子の断面図である。ベース不純物拡散処理後において
、第1図に示す如く、N型のシリコン基板1中にはベー
ス領域2が形成され、又該ベース領域2および上記シリ
コン基板1の表面にはシリコン酸化膜3が形成されてい
る。
For this reason, the method described above has the drawback that the phosphorus concentration in the phosphorus glass layer must be reduced, making it difficult to enhance the surface stabilizing effect. The present invention eliminates each of the above-mentioned drawbacks, and one embodiment thereof will be described below with reference to the drawings. FIGS. 1 to 6 are cross-sectional views of a semiconductor device in the process of being manufactured, respectively, for explaining each manufacturing process when manufacturing an NPN transistor using the manufacturing method of the present invention. After the base impurity diffusion treatment, as shown in FIG. 1, a base region 2 is formed in the N-type silicon substrate 1, and a silicon oxide film 3 is formed on the base region 2 and the surface of the silicon substrate 1. has been done.

この様な状態にある半導体基体を、先ずフツ酸等でエッ
チング処理して、上記シリコン酸化膜3を除去する。こ
の結果、第2図に示す如く、上記シリコン基板1および
ベース領域2の各表面が露出する状態となる。しかる後
、第3図に示す如く、上記露出面に、従来の如く、リン
ガラス(PSG)4ーシリコン酸化膜(S02)5から
成る2層の絶縁性被膜6を化学気相成長法により形成す
る。
The semiconductor substrate in such a state is first etched with hydrofluoric acid or the like to remove the silicon oxide film 3. As a result, as shown in FIG. 2, the surfaces of the silicon substrate 1 and base region 2 are exposed. Thereafter, as shown in FIG. 3, a two-layer insulating film 6 consisting of phosphorus glass (PSG) 4 and silicon oxide film (S02) 5 is formed on the exposed surface by chemical vapor deposition as in the conventional method. .

次に、第4図に示す如く、上記絶縁性被膜6の一部をホ
トェッチング技術により穿って、ヱミッタ不純物拡散用
穴7をベース領域2上に形成する。この時、同時にコレ
クタ・コンタクト穴(図示せず)を形成し「後述するェ
ミッタ不純物拡散処理により「IC等で広く行われてい
るN+領域をも形成することができる。続いて、ェミッ
タ不純物拡散処理を行うのであるが、この拡散処理方法
としては真空封管拡散法(アンプル拡散法)を、且つ又
ェミッタ不純物としては上記ガラス層4に含まれる導電
性不純物と同じリン(P)を用いて行う。
Next, as shown in FIG. 4, a part of the insulating film 6 is bored by photoetching to form an emitter impurity diffusion hole 7 on the base region 2. At this time, a collector contact hole (not shown) is formed at the same time, and an N+ region, which is widely used in ICs, can also be formed by emitter impurity diffusion treatment, which will be described later.Next, emitter impurity diffusion treatment This diffusion process is carried out using a vacuum sealed tube diffusion method (ampule diffusion method), and phosphorus (P), which is the same as the conductive impurity contained in the glass layer 4, is used as the emitter impurity. .

すなわち、第5図に示す如く、ェミッタ不純物拡散用穴
あげ工程(第4図)を終えた半導体基体8を先ず石英管
9中の載直台10上に載層する。上記石英管9の一端9
aは閉じられており、又その内部には上記ェミツタ不純
物の拡散源である高濃度にリンをドープしたドープドシ
リコンあるいは赤リン11が石英ボート12内に予め設
置されている。続いて、上記石英管9の内部を真空に引
き、該石英管の内部が所定の真空度約1×10‐6To
mに達した状態で上記石英管の関口端9bを封止する。
この後、石英管9を電気炉に入れ、所望の温度例えば9
00〜95び040〜80分に加熱する。これにより、
上記拡散源11からリン(P)が拡散され半導体基体8
中に、第6図に示す如くェミッタ領域13が形成される
。この時、上記石英管9の内部は酸化性雰囲気でないた
め、ェミッタ領域13の表面に酸化膜が形成されること
がない。このため、上記ヱミッタ不純物拡散処理後にお
いて、従来では必要としたウオツシュド工程をする必要
はなく、ベース・コンタクト穴を形成した後すぐに電極
付けをすることができる。なお、上記ェミツタ領域13
の形成はイオン打ち込みにて行うこともできるが、この
場合、不純物打ち込み後熱処理(アニール)することに
より、不純物領域を拡大させシリコン酸化膜5下方にま
わりこませる様にしなければならない。
That is, as shown in FIG. 5, the semiconductor substrate 8 which has undergone the emitter impurity diffusion hole drilling step (FIG. 4) is first placed on a mounting table 10 in a quartz tube 9. As shown in FIG. One end 9 of the quartz tube 9
a is closed, and doped silicon or red phosphorus 11 doped with a high concentration of phosphorus, which is a diffusion source of the emitter impurities, is previously placed in a quartz boat 12. Subsequently, the inside of the quartz tube 9 is evacuated to a predetermined degree of vacuum of approximately 1×10-6 To
In the state in which the quartz tube reaches m, the entrance end 9b of the quartz tube is sealed.
After this, the quartz tube 9 is placed in an electric furnace to a desired temperature, e.g.
Heat for 0.00-95 and 0.40-80 minutes. This results in
Phosphorus (P) is diffused from the diffusion source 11 into the semiconductor substrate 8.
An emitter region 13 is formed therein as shown in FIG. At this time, since there is no oxidizing atmosphere inside the quartz tube 9, no oxide film is formed on the surface of the emitter region 13. Therefore, after the emitter impurity diffusion process, there is no need to perform a wash process, which was required in the past, and electrodes can be attached immediately after forming the base contact hole. Note that the emitter region 13
The formation can also be performed by ion implantation, but in this case, the impurity region must be expanded and wrapped under the silicon oxide film 5 by heat treatment (annealing) after implanting the impurity.

又PNPトランジスタ等の場合には、ェミツタ不純物と
してボロン(B)を使用し、又表面安定化膜としてポロ
ンシリケートガラス(BSG)を形成することができる
。更に、ベース不純物拡散処理後、シリコン酸化膜3を
除去することなく、該酸化膜3上に導電性不純物を含ん
だガラス層を形成することもできる。
In the case of a PNP transistor, boron (B) can be used as an emitter impurity, and poron silicate glass (BSG) can be formed as a surface stabilizing film. Furthermore, after the base impurity diffusion treatment, a glass layer containing conductive impurities can be formed on the silicon oxide film 3 without removing the silicon oxide film 3.

又本発明はダイオード,トランジスタ,IC,LSI等
広範囲に応用できること勿論である。
It goes without saying that the present invention can be applied to a wide range of applications such as diodes, transistors, ICs, and LSIs.

上述の如く「本発明になる半導体装置の製造方法によれ
ば「ベース不純物拡散処理を終えた後に基体表面に残存
するマスク被膜を除去し、これに代えて新たに2層より
成る表面安定化膿を形成する様にしているため、半導体
素子を安定化し得、又上記表面安定化膜の上層部のガラ
ス層に含まれている導電性不純物とェミツタ不純物とを
同一にしているため、ェミッタ不純物拡散プロフィール
を安定化し得、更にェミッタ不純物処理を真空封管拡散
法にて行う様にしているため、該処理時ェミツタ領域の
表面に酸化膜が形成されることなく、従って従来のウオ
ツシュド工程を不要とし、そのまますぐに電極付けを行
い得る等の特長を有するものである。
As mentioned above, "According to the method of manufacturing a semiconductor device according to the present invention," after completing the base impurity diffusion treatment, the mask film remaining on the substrate surface is removed, and in its place, a new surface-stabilized pus consisting of two layers is added. Since the conductive impurities contained in the upper glass layer of the surface stabilizing film and the emitter impurities are the same, the emitter impurity diffusion profile is Furthermore, since the emitter impurity treatment is performed using the vacuum sealed tube diffusion method, no oxide film is formed on the surface of the emitter region during this treatment, thus eliminating the need for the conventional washing process. It has the advantage that electrodes can be attached immediately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は夫々本発明半導体装置の製造方法の1
実施例により半導体装置を製造する際の各製造工程にお
ける半導体素子の断面図である。 1・・・シリコン基板、2・・・ベース領域、3・・・
シリコン酸化膜、4・・・リンガラス、5・・・シリコ
ン酸化膜、6・・・絶縁性被膜、7・・・ェミッタ不純
物拡散用穴、8・・・半導体基体、9叫石英管、11・
・・不純物拡散源、13・・・ェミッタ領域。 第1図 第2図 第3図 第4図 第5図 第6図
FIGS. 1 to 6 each show a method of manufacturing a semiconductor device of the present invention.
FIG. 3 is a cross-sectional view of a semiconductor element in each manufacturing process when manufacturing a semiconductor device according to an example. 1... Silicon substrate, 2... Base region, 3...
Silicon oxide film, 4... Phosphorous glass, 5... Silicon oxide film, 6... Insulating film, 7... Emitter impurity diffusion hole, 8... Semiconductor base, 9 Screaming quartz tube, 11・
... Impurity diffusion source, 13... emitter region. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体表面に所定の導電性不純物を含んだガラ
ス層を上層部に有する絶縁性被膜を形成する工程と、該
絶縁性被膜をマスクとして導電性決定不純物をイオン打
込みによって酸化性雰囲気を用いることなく半導体基体
に導入する工程と、上記イオン打込み用穴をコンタクト
穴として電極を接続する工程とから成り、上記絶縁性被
膜を素子の表面安定化膜として残すことを特徴とする半
導体装置の製造方法。
1. Forming an insulating film on the surface of a semiconductor substrate, the upper layer of which is a glass layer containing a predetermined conductive impurity, and using the insulating film as a mask to implant conductivity-determining impurities by ion implantation using an oxidizing atmosphere. a step of introducing the ion implantation hole into a semiconductor substrate, and a step of connecting an electrode by using the ion implantation hole as a contact hole, and the method of manufacturing a semiconductor device is characterized in that the insulating film remains as a surface stabilizing film of the element. .
JP13944083A 1983-08-01 1983-08-01 Manufacturing method of semiconductor device Expired JPS60778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13944083A JPS60778B2 (en) 1983-08-01 1983-08-01 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13944083A JPS60778B2 (en) 1983-08-01 1983-08-01 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2708473A Division JPS5751262B2 (en) 1973-03-09 1973-03-09

Publications (2)

Publication Number Publication Date
JPS5951532A JPS5951532A (en) 1984-03-26
JPS60778B2 true JPS60778B2 (en) 1985-01-10

Family

ID=15245243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13944083A Expired JPS60778B2 (en) 1983-08-01 1983-08-01 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6176817B2 (en) * 2011-10-17 2017-08-09 ローム株式会社 Chip diode and diode package

Also Published As

Publication number Publication date
JPS5951532A (en) 1984-03-26

Similar Documents

Publication Publication Date Title
US3632438A (en) Method for increasing the stability of semiconductor devices
US5488002A (en) Method for manufacturing self-aligned bipolar transistors using double diffusion
US3825451A (en) Method for fabricating polycrystalline structures for integrated circuits
JP2783410B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JPS60778B2 (en) Manufacturing method of semiconductor device
US4213807A (en) Method of fabricating semiconductor devices
US3615940A (en) Method of forming a silicon nitride diffusion mask
JPS6161268B2 (en)
JPS60175417A (en) Manufacture of semiconductor device
JPS6220711B2 (en)
JPS641063B2 (en)
JPS6010748A (en) Manufacture of semiconductor device
US3676126A (en) Planar technique for producing semiconductor microcomponents
KR970003735B1 (en) Bipolar integrated circuit manufacturing method
JPS5850411B2 (en) Impurity diffusion method
JPH01189159A (en) Manufacture of semiconductor integrated circuit device
JPH0562922A (en) Manufacture of semiconductor integrated circuit device
JPS59177965A (en) Manufacture of semiconductor device
JPH10199856A (en) Manufacture of single-crystal components
JPS61219150A (en) Manufacture of semiconductor device
JPS6225251B2 (en)
JPH02159035A (en) Integrated circuit device
JPS61147550A (en) Manufacture of semiconductor device
JPH0140502B2 (en)
JPS6058581B2 (en) Manufacturing method of semiconductor device