JPS6077612A - Controlling method of electric railcar - Google Patents

Controlling method of electric railcar

Info

Publication number
JPS6077612A
JPS6077612A JP58186227A JP18622783A JPS6077612A JP S6077612 A JPS6077612 A JP S6077612A JP 58186227 A JP58186227 A JP 58186227A JP 18622783 A JP18622783 A JP 18622783A JP S6077612 A JPS6077612 A JP S6077612A
Authority
JP
Japan
Prior art keywords
frequency
inverter
induction motor
value
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58186227A
Other languages
Japanese (ja)
Inventor
Shiroji Yamamoto
城二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58186227A priority Critical patent/JPS6077612A/en
Publication of JPS6077612A publication Critical patent/JPS6077612A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor And Converter Starters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To enable to rapidly start an electric railcar from the state of stopping time and zigzag time irrespective of the route state by setting the slip frequency from the start to an ordinary reference slip frequency. CONSTITUTION:When an inverter start command signal 10 is inputted, a switch 4 is shifted from ''0'' side to ''1'' side. Thus, the value FXP produced by adding a reference slip frequency to the rotating frequency of an induction motor is outputted as an inverter frequency 18. When the inverter is started, the output V of the inverter is raised from 0 voltage to the value corresponding to the inverter frequency FXP at that time. If the induction motor current value IM becomes equal to the current limit value IP of the target current value of the induction motor, the output of a comparator 3 becomes ''1'', a constant current control 20 is started, and further shifted to V/F constant pattern operation.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、可変電圧可変周波数インバータ(以下VVV
Fインバータと略す)で制御される誘導電動機により駆
動される電気車制御方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a variable voltage variable frequency inverter (hereinafter referred to as VVV
The present invention relates to a method for controlling an electric vehicle driven by an induction motor controlled by an F-inverter.

[発明の技術的背景とその問題点コ 第1図はVVVFインバータにより誘導電動心を制御し
て電気車を起動する場合のカ行時における従来の制御フ
ローチャートである。また、第2図はこの場合の時刻t
に対する各周波数の関係を示す。
[Technical background of the invention and its problems] FIG. 1 is a conventional control flowchart at the time of starting an electric vehicle by controlling an induction motor core using a VVVF inverter. Also, FIG. 2 shows the time t in this case.
The relationship of each frequency to is shown.

従来は、インバータ起動指令信@10が入るど、起動時
の誘導電動機回転周波vI(FR)11に起動時すべり
周波数12を加算した値がスイッチ13の切換え直前に
、サンプリングホールド回路14に入力される。そして
スイッチ13 h(” 1 ”側に切換わるとサンプリ
ングホールド回路14との間で閉ループが形成されるこ
とにより、起動時インバータ周波数(FIPl)15は
そのボールド値に基づいて一定に保たれる。
Conventionally, when the inverter start command signal @10 is input, the value obtained by adding the start-up slip frequency 12 to the induction motor rotation frequency vI (FR) 11 at start-up is input to the sampling and hold circuit 14 immediately before the switch 13 is switched. Ru. When the switch 13h is switched to the "1" side, a closed loop is formed with the sampling and hold circuit 14, so that the startup inverter frequency (FIPl) 15 is kept constant based on its bold value.

インバータ出力電圧Vとインバータ出力周波数Fとの比
V/Fを一定にすると定1−ルク制御となる。この定ト
ルクの制御を′行なう場合、誘導電動機の2次側電流I
Rとずベリ周波数FSは比例関係にあり、この比例関係
を示す限流値パターンから基準すべり周波数16をFS
lとして定めることができる。
When the ratio V/F between the inverter output voltage V and the inverter output frequency F is kept constant, constant 1-lux control is achieved. When performing this constant torque control, the secondary current I of the induction motor
The R and Zuberry frequency FS are in a proportional relationship, and the reference slip frequency 16 is set to FS from the current limit value pattern showing this proportional relationship.
It can be defined as l.

第2図では、起動してから時間tまでの間はすべり周波
数FSはFS=FIP1−FRとなる。
In FIG. 2, the slip frequency FS is FS=FIP1-FR from startup to time t.

起動から時刻11間では、インバータ出力電圧Vによっ
て定電流制御となる。従って、この間のトルクTは、T
=K (IR)2 /FS (Kは定数)となるから、
起動時の誘導電動機回転周波数FRが小で、すべり周波
数FSが大きい時にはトルクTは小さく、FRが徐々に
増してくるにつれて王も徐々に大きくなり、電気車をソ
フ[・スタートをすることができる。ざらに、起動後の
誘導電動機回転周波数FRと基準すべり周波数FSIと
の加算値FXPであるFXP=F’R+FS1の値を比
較器17によって、起動時インバータ周波数FIP1と
比較する。比較してFXP>FIPIとなるとこの時点
でスイッチ19が′b るのでインバータ周波数18はFIPIからFXPの値
に切換わり、すべり周波数による定電流制御20を開始
し、V/F一定パターン運転21へと移る。
From startup to time 11, constant current control is performed using the inverter output voltage V. Therefore, the torque T during this period is T
=K (IR)2 /FS (K is a constant), so
When the induction motor rotation frequency FR at startup is small and the slip frequency FS is large, the torque T is small, and as FR gradually increases, the torque gradually increases, allowing the electric car to be soft-started. . Roughly speaking, the comparator 17 compares the value FXP=F'R+FS1, which is the sum value FXP of the induction motor rotation frequency FR after startup and the reference slip frequency FSI, with the inverter frequency FIP1 at startup. Comparatively, if FXP>FIPI, the switch 19 turns on at this point, so the inverter frequency 18 switches from FIPI to the value of FXP, starts constant current control 20 based on the slip frequency, and shifts to V/F constant pattern operation 21. and move on.

この制御によると、路線条件が平坦、あるいは下り勾配
においては、電気車のラフ1〜スタートが効果を奏して
非常に滑らかな加速かできる。しかし上り勾配における
起動などでは、起動時に電動機の高トルクが必要とされ
、上述した制御では、トルクが低すぎ、路線の勾配によ
っては電気車がまったく動き出せないことも起こり得た
。また、電気車が動き出したとしても、非常にゆるやか
な加速となり、インバータのパルス幅変調制御などで起
動特高周波数のパルスを用いている場合には、起動する
だめの時間が長くなり、インバータのスイッチング素子
に対する熱的条件が厳しい状態となる。
According to this control, when the route conditions are flat or on a downhill slope, a rough 1-start of the electric vehicle is effective, and very smooth acceleration can be achieved. However, starting on an uphill slope requires high torque from the electric motor at startup, and with the above-mentioned control, the torque was too low, and depending on the slope of the route, the electric car could not start moving at all. Furthermore, even if the electric car starts moving, it will accelerate very slowly, and if a pulse with an extra high frequency is used for starting, such as in inverter pulse width modulation control, it will take a long time to start, and the inverter will Thermal conditions for the switching element become severe.

このように、インバータ起動時にインバータ出力周波数
を一定に保って、誘導電動機回転周波数の上昇を待構え
ていると、上り勾配など、高1−ルクを必要とする起動
時には上記のような問題点があった。
In this way, if you keep the inverter output frequency constant and wait for the induction motor rotation frequency to rise when starting the inverter, the above problems will occur when starting up on an uphill slope that requires a high 1-lux. there were.

[発明の目的] 本発明の目的はVVVFインバータで制御される誘導電
動機により駆動される電気車を、路線状況に関係なく停
止時及び蛇行時の状態からすみやかに起動することが可
能な電気車の制御方法を提供しようとするものである。
[Object of the Invention] The object of the present invention is to provide an electric vehicle that is capable of quickly starting an electric vehicle driven by an induction motor controlled by a VVVF inverter from a stopped state or meandering state regardless of route conditions. It is intended to provide a control method.

[発明の概要] 本発明による電気車制御方法は誘導電動機のすべり周波
数を、インバータ起動時から定常の基準すべり周波数と
し、かつ、インバータ出力電圧により誘導電動機の入力
電流を電気車の重量によって決まる限流値にまで立ち上
げる制御を行なうことにより、電気車のソフトスタート
を維持すると共に、インバータ起動後、すみやかに電気
車を加速あるいは減速させることを特徴としている。
[Summary of the Invention] The electric vehicle control method according to the present invention sets the slip frequency of the induction motor to a steady reference slip frequency from the time of starting the inverter, and sets the input current of the induction motor to a limit determined by the weight of the electric vehicle using the inverter output voltage. By controlling the electric vehicle to start up to the current value, the soft start of the electric vehicle is maintained, and the electric vehicle is quickly accelerated or decelerated after the inverter is activated.

[発明の実施例] 以下本発明を図面に示す一実施例をもとに説明する。第
3図において、インバータ起動指令信号10が入るとス
イッチ4がb に切換ねる。これにより、誘導電動機回転周波数(FR
)11に基準すべり周波数(FSI)16を加算した値
FXP=FR十FS1がインバータ周波数18として出
力される。また、同時にインバータが起動されると、イ
ンバータ出力電圧■は0ボルトからその時のインバータ
周波数FXPに相当する値に向かって上昇していく。イ
ンバータ出力電圧Vが上昇するにつれて、誘導電動機電
流値(IM)2も上昇を始め、誘導電動掘の目標電流値
である限流値(IP>1と等しくなると、比較器3の出
力は′1″となり、アンド回路5の出力は1″となって
定電流制御20を開始し、ざらにV/F一定パターン運
転へと移っていく。
[Embodiment of the Invention] The present invention will be described below based on an embodiment shown in the drawings. In FIG. 3, when the inverter start command signal 10 is input, the switch 4 is switched to b. As a result, the induction motor rotation frequency (FR
)11 and the reference slip frequency (FSI) 16, FXP=FR+FS1, is output as the inverter frequency 18. Furthermore, when the inverter is started at the same time, the inverter output voltage (2) increases from 0 volts toward a value corresponding to the inverter frequency FXP at that time. As the inverter output voltage V rises, the induction motor current value (IM) 2 also begins to rise, and when it becomes equal to the current limit value (IP>1, which is the target current value of the induction motor drive), the output of the comparator 3 becomes '1 '', the output of the AND circuit 5 becomes 1'', the constant current control 20 is started, and the operation gradually shifts to a constant V/F pattern operation.

第4図は本発明による起動時の時刻tと各周波数Fとの
関係を示す。
FIG. 4 shows the relationship between time t at startup and each frequency F according to the present invention.

インバータが起動すると、インバータ出ツノ電圧Vは定
められたV/F値に達するまで上昇してくる。この間及
びこれ以降の誘導電動機のすベリ周波数FSは基準すべ
り周波数FSIと等しく、FS=FS1と一定である。
When the inverter starts, the inverter output voltage V increases until it reaches a predetermined V/F value. During this time and thereafter, the slip frequency FS of the induction motor is equal to the reference slip frequency FSI, and is constant as FS=FS1.

誘導電動機のトルクTはKを定数とシテ、T−K (V
/FXP)2 ・FSであるから、インバータが起動し
てから時刻t1までの間はトルクTはV/FXPの値の
2乗に比例して上がっていく。t=t1以降、V/F一
定パターンかつ定電流運転に入ると定トルクとなり、一
定加速度で速度が上昇する。
The torque T of an induction motor is expressed as follows, where K is a constant and T-K (V
/FXP)2 - Since it is FS, the torque T increases in proportion to the square of the value of V/FXP from the time the inverter starts until time t1. After t=t1, when the V/F constant pattern and constant current operation starts, the torque becomes constant and the speed increases with constant acceleration.

このように本発明方法によれば、起動後誘導電動機の回
転周波数が上昇しなくても、すべり周波数を始めから定
常の基準すべり周波数としているので、電流が立ちあが
ると、すぐ定格トルクを出せるという利点がある。した
がって、電気車を路線状況に関係なく停止時及び惰行の
状態から速やかに起動することが可能となる。また、0
〈[〈tlの領域のインバータ周波数■の立ち上げ方に
より、ソフトスタートも可能となる。
As described above, according to the method of the present invention, even if the rotational frequency of the induction motor does not increase after startup, the slip frequency is set to the steady reference slip frequency from the beginning, so the advantage is that the rated torque can be produced immediately when the current starts up. There is. Therefore, it is possible to quickly start the electric vehicle from a stopped or coasting state regardless of route conditions. Also, 0
〈[〈Soft start is also possible depending on how the inverter frequency ■ is raised in the tl region.

以上はすべて力行時におけるインバータの起動方法につ
いて説明してきたが、回生時におけるインバータ起動方
法についても同じことがいえる。
The above has all explained the method of starting the inverter during power running, but the same can be said about the method of starting the inverter during regeneration.

ただし、回生時の場合には周波数の関係は誘導電動機の
回転周波数FRから基準すべり周波数FS1を減紳した
FXP−FR−FSlをインバータ周波数として出力さ
せればよい。
However, in the case of regeneration, the frequency relationship may be such that FXP-FR-FSl, which is obtained by reducing the reference slip frequency FS1 from the rotational frequency FR of the induction motor, is output as the inverter frequency.

[発明の効果] 以上述べたように本発明によれば、インバータ起動後、
カ行時上り坂などで誘導電動様回転周波数の上昇−率が
極めて遅い場合でも、ソフトスタートを保ちながら、か
つ、必要なトルクを速やかに出すことができる。これに
よって、特にパルス幅変調制御によるVVVFインバー
タなとにおいては、スイッチング周波数が高く、スイッ
チング素子に対する熱的条件が厳しい低速領域で、かつ
昇り勾配であっても、電気車を短時間で速やかに加速す
ることが可能となる電気車制御方法を提供できる。
[Effects of the Invention] As described above, according to the present invention, after starting the inverter,
Even when the rate of increase in the rotational frequency of the induction motor is extremely slow, such as when traveling uphill, it is possible to maintain a soft start and quickly generate the necessary torque. This makes it possible to quickly accelerate electric vehicles in a short time, especially in VVVF inverters using pulse width modulation control, even in low-speed regions where the switching frequency is high and the thermal conditions for the switching elements are severe, and even on uphill slopes. It is possible to provide an electric vehicle control method that makes it possible to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は可変電圧可変周波数インバータによる、誘導電
動機駆動電気車起動時の従来の制御方法を説明するため
のフローチャート的なブロック図、第2図は第1図にお
ける制御の時刻と各周波数の関係を示す図、第3図は本
発明による電気車制御方法を説明するための一実施例を
70−ヂヤー1〜的に示すブロック図、第4図は第3図
における制御の時刻に対する周波数の関係及びインバー
タ電圧対周波数の比の関係を示す図である。 1・・・限流値、2・・・誘導電動機電流値、4.13
゜14.19・・・スイッチ、5・・・アンド回路、1
0・・・インバータ起動指令、11・・・誘導電動数回
転周波数、12・・・起動時すべり周波数、15・・・
起動時インバータ周波数、16・・・基準すべり周波数
、3゜17・・・比較器、18・・・インバータ周波数
、20・・・定電流制御、21・・・V/F一定パター
ン運転。 出願人代理人 弁理士 鈴江武彦 第2図 Q tl β−トジリ を 第4図
Figure 1 is a flowchart-like block diagram to explain the conventional control method when starting an induction motor-driven electric vehicle using a variable voltage variable frequency inverter, and Figure 2 is the relationship between the control time and each frequency in Figure 1. FIG. 3 is a block diagram showing an embodiment of the electric vehicle control method according to the present invention in terms of 70-gear 1, and FIG. 4 is a diagram showing the relationship between frequency and control time in FIG. 3. and FIG. 6 is a diagram showing the relationship between the ratio of inverter voltage and frequency. 1... Current limit value, 2... Induction motor current value, 4.13
゜14.19...Switch, 5...AND circuit, 1
0...Inverter start command, 11...Induction motor number rotation frequency, 12...Slip frequency at startup, 15...
Inverter frequency at startup, 16... Reference slip frequency, 3° 17... Comparator, 18... Inverter frequency, 20... Constant current control, 21... V/F constant pattern operation. Applicant's representative Patent attorney Takehiko Suzue Figure 2 Q tl β-Tojiri Figure 4

Claims (1)

【特許請求の範囲】[Claims] 可変電圧可変周波数インバータで制御される誘導電動機
により駆動される電気車において、前記誘導電動様を起
動する場合、前記誘導電動様の回転周波数に基準すべり
周波数をカ行時は加算し、回生時は減算した値を、起動
時より前記可変電圧可変周波数インバータの出力周波数
とし、且つ起動時前記誘導電動機の入力電流の値が電気
車の重量によって決まる限流値の値に立ち上がるまでは
前記可変電圧可変周波数インバータの出力電圧によって
制御することを特徴とする電気車制御方法。
In an electric vehicle driven by an induction motor controlled by a variable voltage variable frequency inverter, when starting the induction motor, a reference slip frequency is added to the rotational frequency of the induction motor when traveling, and when regenerating. The subtracted value is used as the output frequency of the variable voltage variable frequency inverter from the time of startup, and the value of the variable voltage is set as the output frequency of the variable voltage variable frequency inverter at the time of startup, and the value of the variable voltage is set as the output frequency of the variable voltage variable frequency inverter at the time of startup until the value of the input current of the induction motor rises to the current limit value determined by the weight of the electric vehicle. An electric vehicle control method characterized in that control is performed using an output voltage of a frequency inverter.
JP58186227A 1983-10-05 1983-10-05 Controlling method of electric railcar Pending JPS6077612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186227A JPS6077612A (en) 1983-10-05 1983-10-05 Controlling method of electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186227A JPS6077612A (en) 1983-10-05 1983-10-05 Controlling method of electric railcar

Publications (1)

Publication Number Publication Date
JPS6077612A true JPS6077612A (en) 1985-05-02

Family

ID=16184579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186227A Pending JPS6077612A (en) 1983-10-05 1983-10-05 Controlling method of electric railcar

Country Status (1)

Country Link
JP (1) JPS6077612A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145014A (en) * 1977-05-23 1978-12-16 Hitachi Ltd Motor drive inverter control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145014A (en) * 1977-05-23 1978-12-16 Hitachi Ltd Motor drive inverter control system

Similar Documents

Publication Publication Date Title
JPH0789750B2 (en) Crane V / F inverter control method
US4375603A (en) Shunt-wound control for on-road vehicle
JPS6077612A (en) Controlling method of electric railcar
JP3554798B2 (en) Electric car control device
JP3070318B2 (en) AC motor acceleration / deceleration control method
JPS6154802A (en) Controlling method of electric rolling stock
JP3678781B2 (en) AC motor control device
JPS6059840B2 (en) Electric motor drive device
JPS5947901A (en) Controlling method for electric rolling stock
JP2884776B2 (en) AC motor commercial / inverter operation switching control method
JPS607474B2 (en) Frequency switching type motor operation control device
JP2549166B2 (en) Electric car control device
JP4057753B2 (en) Electric motor drive
JPS6336239B2 (en)
JPH0150282B2 (en)
JP2000166293A (en) Method for driving synchronous motor
JP4051646B2 (en) Control device for AC motor of electric car
JP2513732B2 (en) Electric vehicle control device
JPS6227034Y2 (en)
JPS6127963B2 (en)
SU838985A1 (en) Device for recuperative-dynamic braking of motor in asynchronous-power diode cascade
KR100198496B1 (en) Regenerated braking system with zero speed control of an electric vehicle
JPH0365002A (en) Train operation control system
JPS59136007A (en) Controller for electric rolling stock
JPH0435962B2 (en)