JPS6077119A - Production of halogenated silane or monosilane having low halogenation degree - Google Patents

Production of halogenated silane or monosilane having low halogenation degree

Info

Publication number
JPS6077119A
JPS6077119A JP18061083A JP18061083A JPS6077119A JP S6077119 A JPS6077119 A JP S6077119A JP 18061083 A JP18061083 A JP 18061083A JP 18061083 A JP18061083 A JP 18061083A JP S6077119 A JPS6077119 A JP S6077119A
Authority
JP
Japan
Prior art keywords
monosilane
mercaptan
containing compound
organic sulfur
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18061083A
Other languages
Japanese (ja)
Inventor
Yasumichi Ozaki
尾崎 康陸
Takeyuki Hirashima
平島 偉行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP18061083A priority Critical patent/JPS6077119A/en
Publication of JPS6077119A publication Critical patent/JPS6077119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To produce the titled product economically in high efficiency, from a halogenosilane, by contacting the halogenosilane with an S-containing organic compound. CONSTITUTION:A halogenated silane or monosilane having low halogenation degree can be produced easily, by contacting a halogenosilane with an S-containing organic compound composed of C, H and S atoms. The S-containing organic compound composed of C, H and S atoms and used in the above process is preferably an compound having one or more SH groups, for example the mercaptan represented by the general formula RSH wherein R is 1-20C saturated or unsaturated alkyl, or 6-26C phenyl or benzyl.

Description

【発明の詳細な説明】 本発明はハロゲンシランから低ハロゲン化シランまたは
モノシランを製造する方法に関し、詳しくはハロゲンシ
ランを有機含硫黄化合物と接触させることにより、安価
にかつ容製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing low-halogenated silane or monosilane from halogenated silane, and more particularly, relates to a method for producing low-halogenated silane or monosilane at low cost and in a volume by bringing halogenated silane into contact with an organic sulfur-containing compound.

特にモノシランは高純度の中心体シリコンあるいは大腸
電池用アモルファスシリコンの原料として、またエピタ
キシャル用原料としても有用な物質であり、今後さらに
需要の拡大が見込まれる。従って、より安価なかつ効率
的なモノシランの製造が望まれる。
In particular, monosilane is a useful substance as a raw material for high-purity central body silicon or amorphous silicon for colon batteries, and also as a raw material for epitaxial materials, and demand is expected to further expand in the future. Therefore, cheaper and more efficient monosilane production is desired.

従来、モノシランのf[方法としては、例えば、 (11マグネシウムシリサイドと希塩酸を作用させる方
法 (2) テトンクロルシランを溶融塩中でLiHと反応
さぜる方法 (3)トリクμルシフンを第3級アミ7基または落4級
7ンモニウム塩基を含む陰イオン文挨樹脂と不均化反応
させる方法 (4)金属シリコンに水素ガスを高温9編圧の条件下に
Ni微粉末を用いて反応させる方法 しかしながら、上記(1)は原料の調製が煩雑、副生ず
る高次シランの再利用などを考慮すると設備費が高くな
る。(2)はモノシランの収率が良好であるが、L +
 Hが極めて高価、溶融塩を用いるためエネルギー消費
及び腐食の点に開運がある。(3)はエネルギーコスト
及び大量生産の点で優れているが、イオン交換樹脂の熱
安定性に問題が残る。(4)は^温、高圧下の反応であ
るため設備費が高くなり、また高次シランの副生を伴う
欠点がある。
Conventionally, monosilane f[methods include (2) a method of reacting 11 magnesium silicide with dilute hydrochloric acid, (3) a method of reacting tetonchlorosilane with LiH in a molten salt, and (3) a method of reacting trichlorsilane with tertiary A method of causing a disproportionation reaction with an anionic powder resin containing an amine 7 group or a quaternary 7 ammonium base (4) A method of reacting hydrogen gas with metallic silicon using fine Ni powder under conditions of high temperature and 9 knitting pressure. However, in (1) above, the preparation of raw materials is complicated, and the equipment cost increases when considering the reuse of by-product high-order silane.In (2), the yield of monosilane is good, but L +
H is extremely expensive, and since molten salt is used, there are disadvantages in terms of energy consumption and corrosion. Although (3) is superior in terms of energy cost and mass production, there remains a problem with the thermal stability of the ion exchange resin. Since (4) is a reaction at high temperature and high pressure, the equipment cost is high and there is also the drawback that high-order silane is produced as a by-product.

未発明石らは、L記した如き特にモノシランの製造方法
における問題に鑑み、安価にかつ効率よ(モノシランな
主たる目的として製造する方法について鋭意研究した3
、その結果ハロゲンシランな炭素、水素及び硫黄原子か
ら成る有機含硫黄化合物と接触させることにより、該ハ
ロゲンシランより低ハpグン化シランまたはモノシラン
が容易に得られることを見出して、本ff=BAを提供
するに至ったものである。
In view of the problems in the production method of monosilane as described in L, we have conducted intensive research on a method for producing monosilane at low cost and efficiency (3).
As a result, they discovered that a low-hap silane or monosilane can be easily obtained from a halogen silane by contacting it with an organic sulfur-containing compound consisting of carbon, hydrogen, and sulfur atoms, and the present ff=BA This is what we have come to offer.

本発明の原料であるハロゲンシランとしては、一般式5
iHX8+5iH8X、+SiH,X(X : 〕・ロ
グン)で表わされ、例えばトリクルルシラン、′/クロ
ルシラン、モノクロルシランが適用されるが、そのほか
同様にブロムシラン、フルオルシラン、ヨードシランモ
使用可能である。従って、本発明によれば、上記ハロゲ
ンシランが低ノ・ログン化されて、それぞれS i H
X Bからは5iH2X、+5iH8X+S iH4を
、SiH,、X、からはS i H8X 、 SiH。
As the halogen silane which is a raw material of the present invention, general formula 5
It is represented by iHX8+5iH8X, +SiH, Therefore, according to the present invention, the above-mentioned halogen silane is converted into a low-density compound, and S i H
From XB, 5iH2X, +5iH8X+S iH4, from SiH,,X, SiH8X, SiH.

を、またS IT(B XからはS r I44 をそ
れぞれ目的物に応じて2!’iすることが出来るが、特
にStH,X、、からS t H4を好適に得ることが
出来る。
, and from S IT (B

また、本発明に用いられる炭素、水素及び硫黄原子より
成る有機含硫黄化合物としては一般に1以上のS H基
を有する有機化合物が好ましい。例えば、−叡゛式RS
 Hで表わされるメルカプタン類で、式中のRはC1〜
C2゜の飽和または不飽和アルキル基IC6〜C116
のフェニル基またはベンジル基などであり、具体的には
メチルメルカプタン、エチルメルカプタン、プロピルメ
ルカプタン、7リルメルカブタン、ブチルメルカプタン
、オクチルメルカプタン、ドデシルメルカプタン、フェ
ニルメルカプタン、ペンジノνメルカブタンなどが挙げ
られる。また、2個以上のSH基を結合した有機含硫黄
化合物として、例えばエチレンメルカプタン、プロピレ
ンメルカプタン、ブチレンメルカプタンなどが挙げられ
る。
Further, as the organic sulfur-containing compound composed of carbon, hydrogen and sulfur atoms used in the present invention, an organic compound having one or more S 2 H groups is generally preferred. For example, -formula RS
Mercaptans represented by H, where R is C1-
C2° saturated or unsaturated alkyl group IC6 to C116
phenyl or benzyl groups, and specific examples include methyl mercaptan, ethyl mercaptan, propyl mercaptan, 7lyl mercaptan, butyl mercaptan, octyl mercaptan, dodecyl mercaptan, phenyl mercaptan, and pendino mercaptan. Furthermore, examples of organic sulfur-containing compounds having two or more SH groups bonded to them include ethylene mercaptan, propylene mercaptan, butylene mercaptan, and the like.

さらに、上記した如き有(n含硫黄化合物を例えばスチ
レン−ジビニルベンゼンなどの袈橋した高分子体に結合
しても用いることが出来る。
Furthermore, the above-mentioned sulfur-containing compound can also be used by bonding it to a bridged polymer such as styrene-divinylbenzene.

本発明の原料である〕・ロゲンシランは、一般に気体ま
たは液体として用いられ、また触媒とする有機含硫黄化
合物も種類により、液体、固体のいずれの形態でも使用
可能である。
Logensilane, which is the raw material of the present invention, is generally used in gas or liquid form, and the organic sulfur-containing compound used as a catalyst can also be used in either liquid or solid form, depending on the type.

従って、本発明の反応形態は極めて柔軟性に富み、必要
に応じて有利な形態を選択できるが、特に液相反応が好
ましい。例えば、反応系にizqゲンシラン及び有機含
硫黄化合物をいずれも液体として供し、液相一液相の接
触形態を措成する場合には、気相−固相の接触形態など
と比較して容量的に小さくなるため反応装置をコンパク
トに出来るばかりでなく液体である有機含硫黄化合物の
連続的な補充及び制御が容易になり、良好な反応状態を
長時間維持することが出来る。従って、液体の有機含硫
黄化合物が好ましく用いられるが、該液状の有機含硫黄
化合物を例えば活性炭。
Therefore, the reaction mode of the present invention is extremely flexible and an advantageous mode can be selected as required, but liquid phase reaction is particularly preferred. For example, when both izqgensilane and the organic sulfur-containing compound are provided as liquids to the reaction system and a liquid phase-liquid phase contact mode is established, the capacitance is lower than that of a gas phase-solid phase contact mode. Since the reactor is small in size, not only can the reaction apparatus be made compact, but also the continuous replenishment and control of the liquid organic sulfur-containing compound becomes easy, and a good reaction state can be maintained for a long time. Therefore, a liquid organic sulfur-containing compound is preferably used, and the liquid organic sulfur-containing compound is, for example, activated carbon.

アルミナ、シリカ−アルミナなどの担体に担持する態様
も、触媒としての最適量をコントロールするために適宜
採用される。
A mode in which the catalyst is supported on a carrier such as alumina or silica-alumina is also appropriately adopted in order to control the optimum amount as a catalyst.

本発明における有機含硫黄化合物の使用量。Amount of organic sulfur-containing compound used in the present invention.

反応温度、接触時間などの条件は・、用いる有機含硫黄
化合物の種類2反応形態などによって異なり一概に決定
できない。一般に有機含硫黄化合物はハロゲンシランに
対して11500〜1 / 2000 (重量)の割合
で用いればよい。
Conditions such as reaction temperature and contact time vary depending on the type of organic sulfur-containing compound used, the reaction mode, etc., and cannot be determined unconditionally. Generally, the organic sulfur-containing compound may be used in a ratio of 11500 to 1/2000 (by weight) to the halogen silane.

反応温度は一般に25〜350℃、特に50〜120℃
が反応性及びエネルギー経済性の面から好ましい。また
、接触時間は一般に01〜60秒、特に1〜20秒でも
十分である。
The reaction temperature is generally 25-350°C, especially 50-120°C.
is preferable from the viewpoint of reactivity and energy economy. Further, a contact time of 01 to 60 seconds, particularly 1 to 20 seconds is sufficient.

本発明により得られる反応生成物から目的とする低ハロ
ゲン化シランまたはモノシランの分離、一般に冷却器な
どを使用して他の反応生成物を適宜リフラックスさせる
ことにより、他の反応生成物、未反応生成物及びポリア
ミン化合物の沸点差を利用し、蒸留などの好条件下で容
易に達成できる。
The target low-halogenated silane or monosilane is separated from the reaction product obtained by the present invention, and other reaction products and unreacted products are generally separated by appropriately refluxing the other reaction products using a cooler or the like. This can be easily achieved under favorable conditions such as distillation by utilizing the difference in boiling point between the product and the polyamine compound.

以下、実施例を示すが、本発明はこれらに限定されるも
のではない。
Examples will be shown below, but the present invention is not limited thereto.

実施例 1 ブチルメルカプタン10.8gを塩化メチレンに溶解し
た浴液に活性炭30Iを浸漬した後、減圧蒸留して塩化
メチレンを除去した。
Example 1 Activated carbon 30I was immersed in a bath liquid in which 10.8 g of butyl mercaptan was dissolved in methylene chloride, and then the methylene chloride was removed by distillation under reduced pressure.

次いで、ステンレス製の反応容器に上記の処理した活性
炭を充填し、反応温度を60’Cに保持した後、ジクロ
ルシランを1.817m1nの流量で流した。その結果
、モノシラン23.9mo1%及びモノクロルシラン1
7.8mo1%の生成物を得た。
Next, a stainless steel reaction vessel was filled with the above treated activated carbon, and after the reaction temperature was maintained at 60'C, dichlorosilane was flowed in at a flow rate of 1.817 ml. As a result, 23.9 mo1% of monosilane and 1 mole of monochlorosilane
7.8 mo1% product was obtained.

実施例 2 実施例1におけるジクロルシランの代りにトリクロルシ
ラ/を1.3517m1nで流した以外は、実施例1と
同様に実施した。その結果モノシラン11.3mo1%
tモノクロルシラン19.3mo1%、及びジクロルシ
ラン21.6mo1%の生成物を得た。
Example 2 The same procedure as in Example 1 was carried out except that trichlorosilane/1.3517 mL was flowed in place of dichlorosilane in Example 1. As a result, monosilane 11.3 mo1%
A product containing 19.3 mo1% of t-monochlorosilane and 21.6 mo1% of dichlorosilane was obtained.

実施例 3 実施例1におけるブチルメルカプタンの代りに1エチレ
ンメルカプタンを用いた以外は実施例1と同様に実施し
た。その結果、モノシラン21.3mo1%及びモノク
ロルシラン16.5mo1%の生成物を得た。
Example 3 The same procedure as in Example 1 was carried out except that 1 ethylene mercaptan was used instead of butyl mercaptan in Example 1. As a result, a product containing 21.3 mo1% of monosilane and 16.5 mo1% of monochlorosilane was obtained.

実施例 4 実施例1におけるブチルメルカプタンの代りに、ポリス
チレンにジビニルベンゼンで架橋した共重合体の高分子
床台にメチルメルカプタンを結合させた樹脂を用いた以
外は、実施例1と同様に実施した。その結果、モノシラ
722.5mo1%及びモノクロルシラン19.6mo
1%の生成物を得た。
Example 4 The same procedure as in Example 1 was carried out, except that instead of butyl mercaptan in Example 1, a resin in which methyl mercaptan was bonded to a polymer bed made of a copolymer of polystyrene crosslinked with divinylbenzene was used. . As a result, monosilane 722.5 mo1% and monochlorosilane 19.6 mo
1% product was obtained.

特許出願人 徳山¥:f達株式会社patent applicant Tokuyama ¥: ftatsu Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)ハロゲンシランな炭素、水素及び硫黄原子から成
る有機含硫黄化合物と接触させることを特徴とする低へ
lffグン化シランまたはモノシランの製造方法
(1) A method for producing a low lff gunned silane or monosilane, which comprises bringing it into contact with an organic sulfur-containing compound consisting of carbon, hydrogen, and sulfur atoms, which is a halogen silane.
(2) 有機含硫黄化合物がメルカプタン類である特許
請求の範凹第1項記載の製造方法
(2) The manufacturing method according to claim 1, wherein the organic sulfur-containing compound is a mercaptan.
(3) 有機含硫黄化合物がメルカプタン類から選ばれ
る特許請求の軛l!!l第1項記載の方法
(3) The yoke of a patent in which the organic sulfur-containing compound is selected from mercaptans! ! lThe method described in paragraph 1
JP18061083A 1983-09-30 1983-09-30 Production of halogenated silane or monosilane having low halogenation degree Pending JPS6077119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18061083A JPS6077119A (en) 1983-09-30 1983-09-30 Production of halogenated silane or monosilane having low halogenation degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18061083A JPS6077119A (en) 1983-09-30 1983-09-30 Production of halogenated silane or monosilane having low halogenation degree

Publications (1)

Publication Number Publication Date
JPS6077119A true JPS6077119A (en) 1985-05-01

Family

ID=16086247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18061083A Pending JPS6077119A (en) 1983-09-30 1983-09-30 Production of halogenated silane or monosilane having low halogenation degree

Country Status (1)

Country Link
JP (1) JPS6077119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206676B2 (en) 2009-04-15 2012-06-26 Air Products And Chemicals, Inc. Method for making a chlorosilane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206676B2 (en) 2009-04-15 2012-06-26 Air Products And Chemicals, Inc. Method for making a chlorosilane

Similar Documents

Publication Publication Date Title
US4610858A (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
JPS5988492A (en) Continuous manufacture of monomer or oligomer alkoxysilane
JPH026465A (en) Production of organic disulfide and polysulfide
EP0206621B1 (en) Process for disproportionating silanes
JP2021520335A (en) Methods for producing halosilane compounds
JPS6077119A (en) Production of halogenated silane or monosilane having low halogenation degree
KR900008117B1 (en) Method for conductiong a chemical process in a packed multi-tubular reactor
JPS6060915A (en) Manufacture of slightly halogenated silane or monosilane
JPS6060917A (en) Manufacture of monosilane
JPS6060916A (en) Manufacture of slightly halogenated silane or monosilane
JPS6060918A (en) Manufacture of slightly halogenated silane or monosilane
JPH049793B2 (en)
JPH01317114A (en) Simple process for production of monosilane
JPS6060919A (en) Manufacture of slightly halogenated silane
JPS6071513A (en) Manufacture of slightly halogenated silane or monosilane
JPS59121110A (en) Continuous preparation of silane compound
EP0213215B2 (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
JPS616116A (en) Manufacture of silane
JP2001019418A (en) Production of monosilane and tetraalkoxysilane
JPS60212231A (en) Chlorosilane disproportionation catalyst and disproportionation method
JPS59156907A (en) Manufacture of silane
CA1254716A (en) Chlorosilane dispropotionation catalyst and method for producing a silane compound by means of the catalyst
JPH0341405B2 (en)
JPH01313315A (en) Production of trichlorosilane
JPS6056988A (en) Preparation of monosilane