JPS6076626A - Apparatus for measuring adaptation luminance of fovea centralis - Google Patents
Apparatus for measuring adaptation luminance of fovea centralisInfo
- Publication number
- JPS6076626A JPS6076626A JP18535283A JP18535283A JPS6076626A JP S6076626 A JPS6076626 A JP S6076626A JP 18535283 A JP18535283 A JP 18535283A JP 18535283 A JP18535283 A JP 18535283A JP S6076626 A JPS6076626 A JP S6076626A
- Authority
- JP
- Japan
- Prior art keywords
- observer
- visual
- brightness
- luminance
- fovea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/113—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/11—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
- A61B3/112—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring diameter of pupils
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
- F02D41/1456—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Human Computer Interaction (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は照明視環境や映像機器の設計・評価に必要な人
間の感する明るさ”を計測する装置に関するものである
。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for measuring "brightness perceived by humans" which is necessary for the design and evaluation of lighting visual environments and video equipment.
従来例の構成とその問題点
近年、視対象物の”明るさ”を計測する装置が照明施設
・映像機器の設計・評価を適切に行なううえで必要とさ
れている。視覚工学的には、観測者がある視対象物を見
たときに感する明るさ′。Conventional configurations and their problems In recent years, devices that measure the "brightness" of visible objects have become necessary for the appropriate design and evaluation of lighting facilities and video equipment. In terms of visual engineering, the brightness ′ that an observer perceives when looking at a certain visual object.
は(1)視対象物の輝度、(2)観測者の眼球内散乱に
よる先幕、(3)観測者の中心窩順応輝度の三つで決ま
ることが明らかにされておシ、視対象物の明るさ”を計
測するためには、これら(1)(2X3)をそれぞれ実
用上問題のない精度で測定する必要がある。It has been shown that the brightness of the visual object is determined by (1) the brightness of the visual object, (2) the front curtain due to scattering within the observer's eyeball, and (3) the brightness of the observer's foveal adaptation. In order to measure "brightness", it is necessary to measure each of these (1) and (2×3) with an accuracy that is acceptable for practical use.
これらのうち(1)の視対象物の輝度は従来から用いら
れている輝度計によって測定でき、(2)の観測者の眼
球内散乱による先幕の測定に関しては従来からいくつか
の優れた方式・装置が提案されている。(6)の観測者
の中心窩順応輝度の測定に関しては、次の二つの観測状
態に分けて考えられている。Among these, (1) the brightness of the visual object can be measured with a conventionally used luminance meter, and (2) the measurement of the front curtain by scattering within the observer's eyeballs has been performed using several excellent methods.・A device is proposed. Regarding the measurement of the observer's foveal adaptation brightness in (6), the following two observation states are considered.
! 観測者の中心窩が視対象物に十分順応している状態
。! A state in which the observer's fovea is fully adapted to the visual object.
11 観測者の視線が視作業空間内を平均的に移動して
いる状態。11 A state in which the observer's line of sight moves on average within the visual workspace.
1の状態については、視対象物の輝度を測定して中心窩
順応輝度とすることができる。ところが、11の状態で
の中心窩順応輝度の測定に関しては、有用な装置はなか
った。Regarding state 1, the brightness of the visual object can be measured and taken as the foveal adaptation brightness. However, there has been no useful device for measuring foveal adaptation brightness in the 11 conditions.
以下に11の状態における従来の中心窩順応輝度の計測
装置について説明する。A conventional foveal adaptation luminance measuring device in eleven states will be described below.
第1図は従来の中心窩順応輝度計測装置の構成図である
。第1図において、1は視対象物群で、01.02、・
・・、○i%”’、0n(1≦i≦n)はそれぞれ輝度
L1、L2、・・・、Li、・・・、Ln(1≦i≦n
)をもつ視対象物、2は観測者、3は視線運動追跡部、
4は視対象物輝度測定部、5はメモリ部、6は視物質濃
度演算部、7は中心窩順応輝度演算部である。FIG. 1 is a block diagram of a conventional foveal adaptation brightness measuring device. In Fig. 1, 1 is a group of visual objects, 01.02, ·
..., ○i%"', 0n (1≦i≦n) are the luminance L1, L2, ..., Li, ..., Ln (1≦i≦n), respectively.
), 2 is the observer, 3 is the gaze movement tracking unit,
4 is a visual object brightness measuring section, 5 is a memory section, 6 is a visual substance concentration calculating section, and 7 is a foveal adaptation brightness calculating section.
以上のように構成された従来の中心窩順応輝度計測装置
について、以下、その動作を説明する。The operation of the conventional foveal adaptation brightness measuring device configured as described above will be described below.
視線運動追跡部3は観測者2の視線運動を追跡し、観測
者2の視線方向に対応する信号を出力する。視対象物輝
度測定部4は、視線運動追跡部3からの出力信号から観
測者2の注視している視対象物の位置の情報を得、一定
のサンプリング間隔て視対象物01の輝度り、(1≦l
≦n)に対応した信号を出力する。視対象物輝度測定部
4からの出力信号は、順次、メモリ部5に視対象物輝度
の測定時点とともに記憶する。視物質一度演算部6では
、メモリ部5に記憶された複数個の視対象物輝度の値と
それらの測定時点と中心窩の視物質の光化学反応の時定
数とから、視物質の濃度Sを算出する。中心窩順応輝度
演算部7では、視物質の濃度Sをもとに中心窩順応輝度
Lfを算出する。The line-of-sight movement tracking unit 3 tracks the line-of-sight movement of the observer 2 and outputs a signal corresponding to the direction of the line-of-sight of the observer 2 . The visual object brightness measurement unit 4 obtains information on the position of the visual target that the observer 2 is gazing at from the output signal from the eye movement tracking unit 3, and measures the brightness of the visual target 01 at fixed sampling intervals. (1≦l
≦n). The output signals from the visual object brightness measuring section 4 are sequentially stored in the memory section 5 together with the measurement time points of the visual object brightness. The visual substance calculation unit 6 calculates the concentration S of the visual substance from the plurality of visual object brightness values stored in the memory unit 5, their measurement times, and the time constants of photochemical reactions of the visual substance in the fovea. calculate. The foveal adaptation brightness calculation unit 7 calculates the foveal adaptation brightness Lf based on the concentration S of the visual substance.
なお、人間の眼球運動が停止する時間は0.5秒以内で
あるから、視対象物輝度測定部4のサンプリング間隔は
0.5秒以内に設定する。さらに、視物質濃度の算出に
は、10分以内の視対象物輝度変化に対応する複数個の
データが必要であることは既に知られている。Note that, since the time for human eyeball movement to stop is within 0.5 seconds, the sampling interval of the visual object brightness measuring section 4 is set to within 0.5 seconds. Furthermore, it is already known that calculation of visual substance concentration requires a plurality of pieces of data corresponding to changes in visual object brightness within 10 minutes.
しかしながら上記のような構成では、観測者の瞳孔面積
がとらえられていないため、観測者の中心窩に投射され
た網膜照度が正確にはわからなかった。このため、どれ
だけの量の視物質が光化学反応によって変化しているか
が正確にはわからず、それゆえ計測された中心窩順応輝
度の精度が低いという問題点を有していた。However, with the above configuration, the area of the observer's pupil is not captured, so the retinal illuminance projected onto the observer's fovea cannot be accurately determined. For this reason, it is not known exactly how much of the visual substance is being changed by the photochemical reaction, and therefore there is a problem in that the accuracy of the measured foveal adaptation brightness is low.
発明の目的
本発明は上記従来の問題点を解消するもので、中心窩順
応輝度を精度よくめる計測装置を提供するものである。OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides a measuring device that can accurately measure foveal adaptation brightness.
発明の構成
本発明は、観測者の視線の履歴を追跡する視線運動追跡
部と、この視線運動追跡部からの信号を入力し観測者が
注視した視対象物の輝度を0.5秒以内のサンプリング
時間間隔で測定する視対象物輝度測定部と、観測者の眼
の瞳孔面積を測定する瞳孔面積測定部と、この瞳孔面積
測定部からの信−号と前記視対象物輝度測定部からの信
号とを入力し観測者の網膜中心窩における網膜照度を算
出する網膜照度演算部と、この網膜照度演算部からの信
号をデータとして記憶するメモリ部と、このメモリ部に
記憶された10分以内の網膜照度の変化に対応する複数
個のデータと網膜の視物質の光化箪
学反応の時定数とから中心窩の貴物質濃度を算出する視
物質濃度演算部と、この視物質濃度演算部からの信号を
入力し中心窩順応輝度を算出する中心窩順応輝度演算部
とからなるものであり、網膜照度を正確に算出すること
により、中心窩順応輝度を精度よく計測することができ
るものである。Structure of the Invention The present invention includes a gaze movement tracking unit that tracks the history of the observer's line of sight, and a signal from the gaze movement tracking unit that inputs a signal from the gaze movement tracking unit to measure the brightness of a visual object gazed at by the observer within 0.5 seconds. A visual object brightness measuring section that measures the brightness of the visual object at sampling time intervals, a pupil area measuring section that measures the pupil area of the observer's eye, and a signal from the pupil area measuring section and a signal from the visual object brightness measuring section. a retinal illuminance calculation unit that inputs the signal and calculates the retinal illuminance at the fovea of the retina of the observer; a memory unit that stores the signal from the retinal illuminance calculation unit as data; a visual substance concentration calculation unit that calculates the noble substance concentration in the fovea from a plurality of pieces of data corresponding to changes in retinal illuminance and a time constant of a photochromic reaction of visual substances in the retina, and this visual substance concentration calculation unit. It consists of a foveal adaptation brightness calculation unit that inputs signals from the retina and calculates the foveal adaptation brightness, and by accurately calculating the retinal illuminance, it is possible to accurately measure the foveal adaptation brightness. be.
実施例の説明
第2図は、本発明の実施例における中心窩順応輝度計測
装置の構成図である。第2図において、8は視対象物群
で、ol、02、・・・、O8、・・・、on(1≦i
≦n)はそれぞれ輝度L1、L2、・・・、Li1・・
・、Ln(1≦i≦n)をもつ視対象物、9は観測者、
1oは瞳孔面積測定部、11は視線運動追跡部、12は
視対象物輝度測定部、13は網膜照度演算部、14はメ
モリ部、15は視物質濃度演算部、16は中心窩順応輝
度演算部である。以上のよう忙構成された中心窩順応輝
度計測装置について、以下その動作を説明する。DESCRIPTION OF THE EMBODIMENTS FIG. 2 is a configuration diagram of a foveal adaptation brightness measuring device in an embodiment of the present invention. In FIG. 2, 8 is a group of visual objects, ol, 02, ..., O8, ..., on (1≦i
≦n) are the luminance L1, L2, ..., Li1, ...
・, visual object with Ln (1≦i≦n), 9 is the observer,
1o is a pupil area measurement unit, 11 is an eye movement tracking unit, 12 is a visual object brightness measurement unit, 13 is a retinal illumination calculation unit, 14 is a memory unit, 15 is a visual substance concentration calculation unit, and 16 is a foveal adaptation brightness calculation unit. Department. The operation of the foveal adaptation brightness measuring device configured as described above will be described below.
視線運動追跡部11は観測者9の視線運動を追跡し、観
測者9の視線方向に対応する信号を出力する。視対象物
輝度測定部12は、視線運動追跡部11からの出力信号
から観測者9の注視している視対象物の位置の情報を得
、0.6秒以内の一定のサンプリング間隔て視対象物0
.の輝度L1(1≦i≦n)に対応した信号を出力する
。瞳孔面積測定部10ば、観測者9の瞳孔面積に対応す
る信号を出力する。網膜照度演算部13は、視対象物輝
度測定部12からの出力信号と瞳孔面積測定部10から
の出力信号を入力し、観測者の網膜中心窩における網膜
照度に対応する信号を出力する。網膜照度E(単位:
td)は、次式に示すように、視対象物輝度Li(単位
;cd/n?)と瞳孔面積A(単位ニー)の積としてめ
られる、・E、=L−A 、・・・・・・・・・ (1
)網膜照度演算部13からの出力信号は、順次、メモリ
部14に視対象物輝度の測定時点とともに記憶される。The line-of-sight movement tracking unit 11 tracks the line-of-sight movement of the observer 9 and outputs a signal corresponding to the direction of the line-of-sight of the observer 9 . The visual object brightness measurement unit 12 obtains information on the position of the visual target that the observer 9 is gazing at from the output signal from the eye movement tracking unit 11, and detects the visual target at fixed sampling intervals within 0.6 seconds. 0 things
.. A signal corresponding to the luminance L1 (1≦i≦n) is output. The pupil area measurement unit 10 outputs a signal corresponding to the pupil area of the observer 9. The retinal illuminance calculation section 13 receives the output signal from the visual object brightness measuring section 12 and the output signal from the pupil area measuring section 10, and outputs a signal corresponding to the retinal illuminance at the fovea of the retina of the observer. Retinal illuminance E (unit:
td) is determined as the product of the visual object brightness Li (unit: cd/n?) and pupil area A (unit: knee), as shown in the following formula: ・E,=L−A,...・・・・・・ (1
) The output signals from the retinal illumination calculation unit 13 are sequentially stored in the memory unit 14 together with the measurement time points of the visual object brightness.
視物質濃度演算部15では、メモリ部14に記憶された
複数個の網膜照度の値とそれらの測定時点と中心窩の視
物質の光化学反応の時定数とから、視物質の濃度Sを算
出する。任意の時刻tj+1 における視物質濃度Sj
+1 は次式で表わされる。The visual substance concentration calculation unit 15 calculates the visual substance concentration S from the plurality of retinal illuminance values stored in the memory unit 14, their measurement time points, and the time constant of the photochemical reaction of the visual substance in the fovea. . Visual substance concentration Sj at arbitrary time tj+1
+1 is expressed by the following formula.
””j+1=〔K2−(K1EI十に2)SJ〕τ+s
、・・・ (2)ただし、K およびに2は光化学的に
もとめられま
た定数であり、τはサンプリング間隔、E、は時刻t
における網膜照度の値、S、は時刻1.に】 J
おける視物質濃度である。""j+1=[K2-(K1EI 10 to 2)SJ]τ+s
,... (2) However, K and 2 are determined photochemically and are constants, τ is the sampling interval, and E is the time t.
The value of retinal illuminance, S, at time 1. ] is the visual substance concentration at J.
中心窩順応輝度演算部16では、視物質濃度演算部15
からの信号を入力し、第3図に示すような視物質濃度S
と中心窩順応輝度Lafの関係にしたがって、中心窩順
応輝度”afを算出する。In the foveal adaptation luminance calculation section 16, the visual substance concentration calculation section 15
The visual material concentration S is input as shown in Fig. 3.
Foveal adaptation brightness ``af'' is calculated according to the relationship between and foveal adaptation brightness Laf.
以上のように本発明による中心窩順応輝度測定装置では
観測者の瞳孔面積が測定されるため観測者の網膜照度を
正確に算出できるので中心窩順応輝度を正確にめること
ができる。第4図に本発明の中心窩順応輝度計測装置に
よる測定値と従来の中心窩順応輝度測定装置による測定
値との比較例を示す。第4図において、横軸は均一視野
に順応している観測者の眼について計算によってめた中
心窩順応輝度の理論値を、縦軸は同様の視野に対する本
発明および従来例の中心窩順応輝度測定装置による中心
窩順応輝度のそれぞれの測定値と理論値との差を示す。As described above, in the foveal adaptation brightness measuring device according to the present invention, since the pupil area of the observer is measured, the observer's retinal illuminance can be accurately calculated, so that the foveal adaptation brightness can be accurately determined. FIG. 4 shows an example of comparison between the measured values by the foveal adaptation brightness measuring device of the present invention and the measured values by the conventional foveal adaptive brightness measuring device. In FIG. 4, the horizontal axis represents the theoretical value of the foveal adaptation brightness calculated for the observer's eye adapted to a uniform visual field, and the vertical axis represents the foveal adaptation brightness of the present invention and the conventional example for a similar visual field. The difference between each measured value of the foveal adaptation brightness by the measuring device and the theoretical value is shown.
第4図から従来例の装置による測定値は視野の輝度が低
い場合と高い場合の両方の輝度領域で大きな誤差を生ず
るが、本発明の中心窩順応輝度測定装置による測定値は
理論値と一致する。すなわち本発明の中心窩順応輝度測
定装置では正確に中心窩1願応輝度を測定できることが
わかる。As shown in Figure 4, the measured values by the conventional device have large errors in both the low and high brightness regions of the visual field, but the measured values by the foveal adaptation brightness measurement device of the present invention agree with the theoretical values. do. That is, it can be seen that the foveal adaptation luminance measuring device of the present invention can accurately measure the foveal adaptation luminance.
以上のように、本発明によれば、瞳孔面積測定部を設け
ることにより、網膜照度が正確にめることができ、中心
窩順応輝度を精度よく計測することができる。As described above, according to the present invention, by providing the pupil area measuring section, the retinal illuminance can be accurately measured, and the foveal adaptation brightness can be measured with high accuracy.
発明の効果
本発明の中心窩順応輝度計測装置は、観測者の眼の瞳孔
面積を測定する瞳孔面積測定部を設けることにより、中
心窩順応輝度を精度よく計測することができ、その実用
的効果は大きい。Effects of the Invention The foveal adaptation luminance measuring device of the present invention is capable of accurately measuring foveal adaptation luminance by providing a pupil area measuring section for measuring the pupil area of the observer's eye, and has practical effects. is big.
第1図は、従来の中心窩順応輝度計測装置のブロック図
、第2図は、本発明の実施例における中心窩順応輝度計
測装置のブロック図、第3図は、視物質濃度と中心窩順
応輝度の関係を示す特性図、第4図は、中心窩順応輝度
演算部置による測定値と中心窩順応輝度の真値との差を
示す特性図である。
10・・・・・・瞳孔面積測定部、11・・・・視線運
動追跡部、12・・・・・・視対象物輝度測定部、13
・・・・・・網膜照度演算部、14・・・・・・メモリ
部、15・・・・・視物質濃度演算部、16・・・・・
・中心窩順応輝度演算部。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名手続
補正書
昭和5f′年/ 月/9日
2発明の名称
中心窩順応輝度計測装置
3補正をする者
事件との関係 特 許 出 願 人
住 所 大阪府門真市大字門真1006番地名 称 (
582)松下電器産業株式会社代表者 山 下 俊 彦
4代理人 〒571
住 所 大阪府門真市大字門真1006番地松下電器産
業株式会社内
6、補正の内容
明細書第4ページ第16行中の[中心窩順応輝度Lf
Jを「中心窩順応輝度LafJK補正します。FIG. 1 is a block diagram of a conventional foveal adaptation luminance measuring device, FIG. 2 is a block diagram of a foveal adaptation luminance measuring device in an embodiment of the present invention, and FIG. 3 is a diagram showing visual substance concentration and foveal adaptation. FIG. 4 is a characteristic diagram showing the relationship between brightness, and is a characteristic diagram showing the difference between the measured value by the foveal adaptation brightness calculation unit and the true value of the foveal adaptation brightness. 10...Pupillary area measuring unit, 11... Eye movement tracking unit, 12...Visual object brightness measuring unit, 13
. . . Retinal illumination calculation section, 14 . . . Memory section, 15 . . . Visual substance concentration calculation section, 16 . . .
-Foveal adaptation brightness calculation unit. Name of agent: Patent attorney Toshio Nakao and one other person Procedural amendment dated 9th/Mon/1959 2 Name of invention Foveal adaptation luminance measurement device 3 Person making the correction Relationship to the case Patent application Residence Address: 1006 Kadoma, Kadoma City, Osaka Prefecture Name (
582) Matsushita Electric Industrial Co., Ltd. Representative Toshihiko Yamashita 4 Agent 571 Address 6, Matsushita Electric Industrial Co., Ltd., 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture [ Foveal adaptation brightness Lf
J to "foveal adaptation brightness LafJK correction.
Claims (1)
視線運動追跡部からの信号を入力し観測者が注視した視
対象物の輝度を0.5秒以内のサンプリング時間間隔で
測定する視対象物輝度測定部と、観測者の眼の瞳孔面積
を測定する瞳孔面積測定部と、この瞳孔面積測定部から
の信号と前記視対象物輝度測定部からの信号とを入力し
観測者の網膜中心窩における網膜照度を算出する網膜照
度演算部と、この網膜照度演算部からの信号をデータと
して記憶するメモリ部と、このメモリ部に記憶された1
0分以内の網膜照度の変化に対応する複数個のデータと
網膜の視物質の光化学反応の時定数とから中心窩の視物
質濃度を算出する視物質濃度演算部と、この視物質濃度
演算部からの信号を入力し中心窩順応輝度を算出する中
心窩順応輝磨襠首就μ端、ζ憔虚セ判今山、1ゝ5智1
晒爾帽l十相11壮置0A gaze movement tracking unit that tracks the history of the observer's line of sight, and an eye movement tracking unit that inputs signals from this gaze movement tracking unit and measures the brightness of the visual object that the observer gazed at at sampling time intervals of 0.5 seconds or less. An object brightness measurement section, a pupil area measurement section that measures the pupil area of the observer's eye, and a signal from the pupil area measurement section and a signal from the visual object brightness measurement section are input to the observer's retina. A retinal illuminance calculation unit that calculates the retinal illuminance at the fovea, a memory unit that stores the signal from the retinal illuminance calculation unit as data, and a
a visual substance concentration calculation unit that calculates the visual substance concentration in the fovea from a plurality of data corresponding to changes in retinal illuminance within 0 minutes and a time constant of a photochemical reaction of visual substances in the retina, and this visual substance concentration calculation unit The foveal adaptation luminance is calculated by inputting the signal from the foveal adaptation luminance.
11 features 0
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18535283A JPS6076626A (en) | 1983-10-04 | 1983-10-04 | Apparatus for measuring adaptation luminance of fovea centralis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18535283A JPS6076626A (en) | 1983-10-04 | 1983-10-04 | Apparatus for measuring adaptation luminance of fovea centralis |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6076626A true JPS6076626A (en) | 1985-05-01 |
Family
ID=16169282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18535283A Pending JPS6076626A (en) | 1983-10-04 | 1983-10-04 | Apparatus for measuring adaptation luminance of fovea centralis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6076626A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111735536A (en) * | 2020-06-03 | 2020-10-02 | 杭州三泰检测技术有限公司 | Detection system and method for simulating human eye perception brightness |
-
1983
- 1983-10-04 JP JP18535283A patent/JPS6076626A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111735536A (en) * | 2020-06-03 | 2020-10-02 | 杭州三泰检测技术有限公司 | Detection system and method for simulating human eye perception brightness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vanni et al. | Differential diagnosis of vertigo in the emergency department: a prospective validation study of the STANDING algorithm | |
Snegireva et al. | Eye tracking technology in sports-related concussion: a systematic review and meta-analysis | |
US20220301669A1 (en) | Systems and methods for a web platform hosting one or more assessments of human visual performance | |
JP7280876B2 (en) | Digital qualitative biomarkers for cognitive and behavioral diseases or disorders | |
Stanney et al. | Aftereffects and sense of presence in virtual environments: Formulation of a research and development agenda | |
US8668337B2 (en) | System for the physiological evaluation of brain function | |
Holmes et al. | When mirrors lie:“Visual capture” of arm position impairs reaching performance | |
Lewis et al. | Human factors consideration in clinical applications of virtual reality | |
Ross et al. | Compression of visual space before saccades | |
Karmali et al. | Visual and vestibular perceptual thresholds each demonstrate better precision at specific frequencies and also exhibit optimal integration | |
Fontenot et al. | Vision rehabilitation preferred practice pattern® | |
Canon | Directed attention and maladaptive" adaptation" to displacement of the visual field. | |
Roller et al. | Effects of normal aging on visuo-motor plasticity | |
Roditi et al. | Suprathreshold asymmetries in human motion perception | |
US20170258397A1 (en) | Vestibular-Ocular Reflex Test and Training System | |
JPS6076626A (en) | Apparatus for measuring adaptation luminance of fovea centralis | |
Lawrynczyk | Exploring virtual reality flight training as a viable alternative to traditional simulator flight training | |
Hung et al. | Sensitivity analysis of relative accommodation and vergence | |
Owens et al. | Lateral phoria at distance: contributions of accommodation. | |
Demer et al. | Predictors of functional success in telescopic spectacle use by low vision patients. | |
Bayle et al. | Interocular conflict from a monocular augmented reality display: Impact of visual characteristics on performance | |
Penko et al. | Quantification of dual-task performance in healthy young adults suitable for military use | |
Schnider et al. | Accommodation dynamics in divergence excess exotropia. | |
JPS6076628A (en) | Apparatus for measuring adaptation luminance of fovea centralis | |
Sayah et al. | Myopes show greater visually induced postural responses than emmetropes |