JPS607629B2 - Method for producing r-pyrone derivative - Google Patents

Method for producing r-pyrone derivative

Info

Publication number
JPS607629B2
JPS607629B2 JP52011448A JP1144877A JPS607629B2 JP S607629 B2 JPS607629 B2 JP S607629B2 JP 52011448 A JP52011448 A JP 52011448A JP 1144877 A JP1144877 A JP 1144877A JP S607629 B2 JPS607629 B2 JP S607629B2
Authority
JP
Japan
Prior art keywords
formula
methyl
acid
hydrogen atom
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52011448A
Other languages
Japanese (ja)
Other versions
JPS5398918A (en
Inventor
正直 松井
智也 小川
信夫 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP52011448A priority Critical patent/JPS607629B2/en
Publication of JPS5398918A publication Critical patent/JPS5398918A/en
Publication of JPS607629B2 publication Critical patent/JPS607629B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Pyrane Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はy−ピロン誘導体の新規な製造方法、特には一
般式(式中のR4は水素原子または炭素原子数1〜3の
アルキル基を表わす)で示されるyーピロン誘導体の新
規かつ改良された製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel method for producing y-pyrone derivatives, particularly y-pyrone derivatives represented by the general formula (in which R4 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms). This invention relates to a new and improved method for producing derivatives.

上記(1)式で示されるyーピロン誘導体は一般に香料
成分として有用な物質であるが、特にR4が水素原子で
ある3ーオキシ−2ーメチル−y−ピロンおよびR4が
メチル基である3ーオキシー2ーエチル−y−ピロンは
、それぞれマルトールまたはエチルマルトールの名称で
知られる重要な香料物質である。これらのyーピロン誘
導体はそれらを含有する天然物から抽出することによっ
ても得ることができるが、近年においては各種のへキソ
ースを原料として合成的方法によって製造することが試
みられている。
The y-pyrone derivative represented by the above formula (1) is generally a substance useful as a fragrance ingredient, but especially 3-oxy-2-methyl-y-pyrone where R4 is a hydrogen atom and 3-oxy-2-ethyl where R4 is a methyl group. -y-pyrone is an important flavoring substance known under the names maltol or ethylmaltol, respectively. These y-pyrone derivatives can also be obtained by extraction from natural products containing them, but in recent years attempts have been made to produce them by synthetic methods using various hexoses as raw materials.

たとえばマルトールの製造については、特公昭45一2
9181号公報に開示されているように、一般式(式中
のR5はエーテル残基またはリン酸ヱステル残基を、R
6、R7はそれぞれ水素原子、ェステル残基または共同
してケタール残基を、R8は水素原子、メチル基または
ェステル化されたヒドロキシメチル基を表わす)で示さ
れるへキソース誘導体、特にはR8がメチル基である誘
導体を酸またはアルカリと加熱する方法が知られている
For example, regarding the production of maltol,
As disclosed in Publication No. 9181, R5 represents an ether residue or a phosphoric acid residue, and
6, R7 each represents a hydrogen atom, an ester residue or jointly a ketal residue, and R8 represents a hydrogen atom, a methyl group or an esterified hydroxymethyl group), especially when R8 is methyl A method is known in which a group derivative is heated with an acid or an alkali.

しかしながら、この方法には目的とするマルトールの収
率が低いという欠点のほか、中間原料となる上記へキソ
ース誘導体をグルコースなどの始発原料から合成する際
の反応収率が低く、したがって製品が高価になるという
問題があった。さらにはこの方法によってはエチルマル
トールが得られないという問題点もあった。本発明者ら
は上記の従来方法における問題点を解決して安価な中間
原料を用いて前記(1)式で示されるy−ピロン誘導体
を好収率で容易に合成できる有利な方法について鋭意研
究の結果本発明を完成したものであって、これは一般式
(式中のR1、R2、R3はそれぞれ炭素原子数1〜4
のアルキル基、R4は水素原子または炭素原子数1〜3
のァルキル基を表わす)で示される6−デオキシ−へキ
ソース−4ーウロース(6ーデオキシ−4−ケトーアル
ドヘキソース)またはその誘導体を酸の存在下において
加熱することを特徴とする一般式(式中のR4は前記と
同様)で示されるッーピロン誘導体の製造方法、特には
R4が水素原子であるマルトールおよびR4がメチル基
であるエチルマルトールの製造方法に関するものである
However, this method has the disadvantage of a low yield of the target maltol, as well as a low reaction yield when synthesizing the above-mentioned hexose derivatives, which serve as intermediate raw materials, from starting materials such as glucose, making the product expensive. There was a problem. Furthermore, there was a problem that ethyl maltol could not be obtained by this method. The present inventors have conducted extensive research into an advantageous method that solves the problems of the conventional methods described above and can easily synthesize the y-pyrone derivative represented by the formula (1) above in good yield using inexpensive intermediate raw materials. As a result, the present invention was completed, which is based on the general formula (in which R1, R2, and R3 each have 1 to 4 carbon atoms).
an alkyl group, R4 is a hydrogen atom or has 1 to 3 carbon atoms
6-deoxy-hexose-4-ulose (6-deoxy-4-ketoaldohexose) or a derivative thereof represented by the general formula (representing an alkyl group of The present invention relates to a method for producing a pyrone derivative represented by (R4 is the same as above), particularly a method for producing maltol in which R4 is a hydrogen atom and ethylmaltol in which R4 is a methyl group.

以下「本発明の方法をさらに詳細に説明する。The method of the present invention will be explained in more detail below.

原料とされる一般式(ロ)で示される、6−デオキシ−
へキソース−4−ウロースまたはその誘導体はグルコー
スやマンノースなどの安価なへキソースを始発原料とし
て従来公知の方法により容易に合成されるものであるが
、R1、R2、R3がいずれもエーテル残基、特には炭
素原子数1〜4のアルキル基であるため、これらがェス
テル残基である場合に比べて6倍の還元反応あるいはァ
ルキル化反応を行う際の保護効果が大きく、したがって
合成収率がよいので、著しく安価に得られるという特徴
をもっている。前記したように、R1、R2、R3はい
ずれも炭素原子数1〜4のアルキル基、すなわちメチル
基、エチル基、プロピル基およびプチル基から選択され
る基であるが、これは合成の難易の点においてはいずれ
もメチル基であることが好ましく、炭素原子数5以上の
長鎖アルキル、あるいはその他の置換ァルキル基として
も合成上の困難を増すばかりで格別の効果は得られない
6-deoxy- represented by the general formula (b) used as a raw material
Hexose-4-ulose or its derivatives can be easily synthesized by conventionally known methods using inexpensive hexoses such as glucose or mannose as starting materials, but R1, R2, and R3 are all ether residues, In particular, since it is an alkyl group having 1 to 4 carbon atoms, it has a 6 times greater protective effect during reduction or alkylation reactions than when it is an ester residue, and therefore has a high synthesis yield. Therefore, it has the characteristic that it can be obtained at an extremely low cost. As mentioned above, R1, R2, and R3 are all alkyl groups having 1 to 4 carbon atoms, that is, groups selected from methyl, ethyl, propyl, and butyl groups, but this is difficult to synthesize. In this respect, a methyl group is preferable, and long-chain alkyl groups having 5 or more carbon atoms or other substituted alkyl groups will only increase the difficulty in synthesis and no particular effect will be obtained.

次にーR4は目的物の種類に応じて水素原子または炭素
原子数1〜3の低級アルキル基から選ばれるが、いずれ
も場合もほぼ同様の反応条件で目的物を与えることがで
きる。
Next, -R4 is selected from a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms depending on the type of the target product, but in either case, the target product can be provided under almost the same reaction conditions.

特にこれが水素原子または〆・チル基の場合は生成物が
マルトールまたはエチルマルトールとなって工業的な価
値が高いことは前記したとおりである。以上に説明した
本発明方法の原料はいずれも熱水に対しては比較的大き
い溶解度をもっているから、これらを触媒としての酸を
含有する水中に添加して溶解させ、加熱を継続すること
によって容易に目的物を得ることができる。
As mentioned above, especially when this is a hydrogen atom or a ethyl group, the product becomes maltol or ethylmaltol, which has high industrial value. All of the raw materials for the method of the present invention explained above have a relatively high solubility in hot water, so they can be easily added to water containing an acid as a catalyst, dissolved, and continued heating. can get the desired object.

この場合使用される酸は硫酸、塩酸、リン酸、過塩素酸
などの無機酸であってもトリフルオロ酢酸、クロル酢酸
、トルェンスルホン酸、メタンスルホン酸などの比較的
水溶性の大きい有機酸であってもよく、その他、強酸性
または弱酸性イオン交予期樹脂を用いることもできる。
酸の使用量は使用する酸の種類、原料の種類、所望の反
応速度などの条件によって適宜調節すべきではあるが、
一般には水溶性の酸にあっては反応液中の濃度を1〜2
の重量%、イオン交f製闇脂の場合は反応液中の原料の
モル数に対して0.2〜0.3当量の範囲とすればよい
。反応液中の原料物質の濃度はできるだけ大きい方が製
造の能率上好ましいが、これはそれぞれの原料物質の水
中への溶解度によって制限されるので、それぞれの場合
の反応温度における溶解度を考慮して決定すればよい。
反応温度について述べると、本発明方法の反応は室温に
おいても進行するけれども充分な反応速度と充分な原料
濃度を得る目的においては加熱することが望ましく、加
熱速度はおおむね20000まで、好ましくは80〜1
20COの範囲とされ、たとえば還流加熱を行うことが
便利である。
The acids used in this case are inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and perchloric acid, as well as relatively highly water-soluble organic acids such as trifluoroacetic acid, chloroacetic acid, toluenesulfonic acid, and methanesulfonic acid. In addition, strongly acidic or weakly acidic ion exchange resins may also be used.
The amount of acid used should be adjusted as appropriate depending on conditions such as the type of acid used, the type of raw materials, and the desired reaction rate.
Generally, for water-soluble acids, the concentration in the reaction solution is 1 to 2.
In the case of ion-exchanged dark fat, it may be in the range of 0.2 to 0.3 equivalents based on the number of moles of raw materials in the reaction solution. It is preferable for the concentration of the raw materials in the reaction solution to be as high as possible in terms of production efficiency, but this is limited by the solubility of each raw material in water, so it is determined by considering the solubility at the reaction temperature in each case. do it.
Regarding the reaction temperature, although the reaction in the method of the present invention proceeds even at room temperature, it is desirable to heat it for the purpose of obtaining a sufficient reaction rate and sufficient raw material concentration.
20 CO, for example by heating under reflux.

上記の温度範囲以上の温度においては副反応の増加のた
めに収率はかえって低下する。反応時間は上記した各条
件によって異なるが、おおむね0.5〜1畑寺間で充分
であり、反応終了後の溶液を単に冷却するのみでも目的
物を晶出させることができるが、これはまたクロロホル
ムなどの有機溶媒で抽出を行った後、溶媒を蒸発除去す
ることによって目的物を析出させてもよく、90%以上
の粗収率を達成することも困難ではない。
At temperatures above the above-mentioned temperature range, the yield actually decreases due to an increase in side reactions. Although the reaction time varies depending on the conditions described above, approximately 0.5 to 1 Hatadera is sufficient, and the target product can be crystallized by simply cooling the solution after the reaction is completed. After extraction with an organic solvent such as, the target product may be precipitated by evaporating the solvent, and it is not difficult to achieve a crude yield of 90% or more.

ここに得られた粗生成物は要すれば水溶液からの再結晶
を繰り返すことによって純品とすることができ、純品に
ついて元素分析、赤外線吸収スペクトル分析、NMR分
析などを行うことにより目的物を確認することができる
。つぎに、本発明の実施例をあげる。
The crude product obtained here can be made into a pure product by repeating recrystallization from an aqueous solution if necessary, and the target product can be identified by performing elemental analysis, infrared absorption spectrum analysis, NMR analysis, etc. on the pure product. It can be confirmed. Next, examples of the present invention will be given.

実施例 1 メチル 6ーデオキシー2・3ージ−0ーメチルーは一
D−キシローヘキソス−4−ウロピラ/シド(me仇y
1 6一deo桝一2・3−di−0一methyl
− Q − ○ − xylo − hexos −
4 −山opyranoside)(式(m)tRI=
R2=R3=メチル基、R4=H)8.00夕を5%硫
酸水溶液100の‘に添加し、90午0に加熱して溶解
させた後、同温度で6時間加熱かくはんを継続した。
Example 1 Methyl 6-deoxy-2,3-di-0-methyl-1D-xylohexos-4-uropyra/side
1 61 deo Masuichi 2・3-di-01 methyl
- Q - ○ - xylo - hexos -
4 - mountain opyranoside) (formula (m) tRI=
R2 = R3 = methyl group, R4 = H) 8.00 g was added to 100 m of a 5% sulfuric acid aqueous solution, heated to dissolve at 90 p.m., and heated and stirred at the same temperature for 6 hours.

クロロホルムを用いて反応液から生成物を抽出し、得ら
れたクロロホルム溶液を食塩水で洗浄、脱水した後、ク
ロロホルムを蒸発させて白色針状晶約4.54夕を得た
。このものを再結晶によって精製したものについてNM
Rスペクトルを標準品と比較したところ、マルトールで
あることが確認された。なお、上記の粗収量は理論量に
対して約90%に相当する。実施例 2メチル 6ーデ
オキシー2・3−ジー0−メチル一Q−D−リキソ−へ
キソス−4ーウロピラノシド(me比y1 6−deo
柵−2・3一di−0一methyl − Q − D
− lyxo − hexos − 4 −叫opy
ranoside)6.00夕と、アンバーライトIR
−12雌(酸型、ローム・ァンド・ハース社製強酸性イ
オン交モ期間脂 商品名)約60の‘を純水100凧【
中に添加し、加熱して上記マンノピラノシド誘導体を溶
解させた後、かくはんしながら6時間遠硫加熱を行った
The product was extracted from the reaction solution using chloroform, and the obtained chloroform solution was washed with brine and dehydrated, and then the chloroform was evaporated to obtain about 4.54 cm of white needle-like crystals. Regarding this product purified by recrystallization, NM
When the R spectrum was compared with a standard product, it was confirmed that it was maltol. Note that the above crude yield corresponds to about 90% of the theoretical amount. Example 2 Methyl 6-deoxy-2,3-di0-methyl-Q-D-lyxo-hexos-4-uropyranoside (me ratio y1 6-deo
Fence-2・31di-01methyl-Q-D
- lyxo - hexos - 4 - shout opy
ranoside) 6.00 evening and Amberlight IR
- 12 females (acid type, strongly acidic ion exchange fat manufactured by Rohm and Haas, trade name) about 60' in pure water 100 kites [
After heating to dissolve the mannopyranoside derivative, heating was performed for 6 hours with stirring.

次にイオン交灘樹脂をろ過して取除いてから実施例1と
同様にクロロホルムによる抽出分離操作を行って粗生成
物3.18夕を得た。このものもまたマルトールである
ことが確認され、前記粗収量は理論値の約86%に相当
した。実施例 3メチル 6−デオキシ−2・3−ジー
○−メチル−6−Cーメチル−Q−○ーキシロ−へキソ
スー4−ウロピラノシド6.00夕をトリフルオロ酢酸
の5%水溶液100の‘に加熱し、かくはんしながら還
流加熱を4時間行った。
Next, the ion exchange resin was removed by filtration, and extraction and separation using chloroform was performed in the same manner as in Example 1 to obtain 3.18 g of a crude product. This was also confirmed to be maltol, and the crude yield corresponded to about 86% of the theoretical value. Example 3 Methyl 6-deoxy-2,3-di○-methyl-6-C-methyl-Q-○-xylo-hexos-4-uropyranoside was heated to 100 ml of a 5% aqueous solution of trifluoroacetic acid. The mixture was heated under reflux for 4 hours while stirring.

Claims (1)

【特許請求の範囲】 1 一般式 ▲数式、化学式、表等があります▼ (式中のR^1、R^2、R^3はそれぞれ炭素原子数
1〜4のアルキル基、R^4は水素原子または炭素原子
数1〜3のアルキル基を表わす)で示される6−デオキ
シ−ヘキソース−4−ウロースまたはその誘導体を酸の
存在下において加熱することを特徴とする一般式▲数式
、化学式、表等があります▼ (式中のR^4は前記と同様)で示されるγ−ピロン誘
導体の製造方法。 2 R^1、R^2、R^3がいずれもメチル基である
特許請求の範囲第1項記載の製造方法。 3 R^4が水素原子である特許請求の範囲第1項また
は第2項記載の製造方法。 4 R^4がメチル基である特許請求の範囲第1項また
は第2項記載の製造方法。
[Claims] 1 General formula▲ Numerical formula, chemical formula, table, etc.▼ (In the formula, R^1, R^2, R^3 are each an alkyl group having 1 to 4 carbon atoms, and R^4 is A general formula characterized by heating 6-deoxy-hexose-4-ulose (representing a hydrogen atom or an alkyl group having 1 to 3 carbon atoms) or a derivative thereof in the presence of an acid ▲Mathematical formula, chemical formula, There are tables, etc. ▼ Method for producing a γ-pyrone derivative represented by (R^4 in the formula is the same as above). 2. The manufacturing method according to claim 1, wherein R^1, R^2, and R^3 are all methyl groups. 3. The manufacturing method according to claim 1 or 2, wherein R^4 is a hydrogen atom. 4. The manufacturing method according to claim 1 or 2, wherein R^4 is a methyl group.
JP52011448A 1977-02-04 1977-02-04 Method for producing r-pyrone derivative Expired JPS607629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52011448A JPS607629B2 (en) 1977-02-04 1977-02-04 Method for producing r-pyrone derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52011448A JPS607629B2 (en) 1977-02-04 1977-02-04 Method for producing r-pyrone derivative

Publications (2)

Publication Number Publication Date
JPS5398918A JPS5398918A (en) 1978-08-29
JPS607629B2 true JPS607629B2 (en) 1985-02-26

Family

ID=11778365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52011448A Expired JPS607629B2 (en) 1977-02-04 1977-02-04 Method for producing r-pyrone derivative

Country Status (1)

Country Link
JP (1) JPS607629B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914400A (en) * 1982-07-14 1984-01-25 Mitsubishi Electric Corp Automatic voltage regulator for generator
JPS5953100A (en) * 1982-09-17 1984-03-27 Mitsubishi Electric Corp Automatic voltage regulator

Also Published As

Publication number Publication date
JPS5398918A (en) 1978-08-29

Similar Documents

Publication Publication Date Title
SU902666A3 (en) Method of preparing pleuromutiline glycoside derivatives
DE2425983C3 (en) Sulphonic acid salts of acylcholines, processes for their preparation and pharmaceutical compositions containing them
EP0418925B1 (en) Method of producing (S)-4-hydroxymethyl-gamma-lactone
US2868786A (en) Esters of phenyl acetic acids and a process of making same
KR930011283B1 (en) Process for the synthesis of 3'-azido-3'-dexythymidine and the like
EP0080819B1 (en) 11-0-alkylerythromycin a derivatives
JPS5857439B2 (en) Shinki Kagobutsuruitohouhou
JPS607629B2 (en) Method for producing r-pyrone derivative
JP2515568B2 (en) Novel thiazolidine derivative
JPS6112658A (en) Manufacture of azetidine and intermediate therefor
KR950005737B1 (en) Separating method of component from gingkolide complex
CN110669031B (en) Total synthesis method of natural product isoperidone J
SU608799A1 (en) Method of obtaining hydrochloride of iminodipropionic acid dimethyl ester
KR20010070672A (en) Process for preparing a crystal 3-0-alkyl ascorbic acid
SU595312A1 (en) Method of preparing pyrimidine 2,4,6-substituted perchlorates
IL46789A (en) 3,5-bis-ethylenedioxy-13beta-alkyl-4,5-seco-delta9,11gonadien-17-ones
JPS61118348A (en) Manufacture of hydroxymethylenealkoxyacetic acid ester
CN114195762A (en) Curcumin analogue and synthesis method thereof
US2517496A (en) Preparation of symmetrical monoaminodihydroxytoluene
DE907299C (en) Process for the production of chloramphenicol
CN1033163C (en) Process for preparation of lifumycin of isobuty piperazine
JP2791572B2 (en) Macrocyclic compound and method for producing the same
CN115611737A (en) Method for preparing benzoic acid intermediate and intermediate thereof
JPH02282376A (en) Production of cis-7-decen-4-olide
JPS6242920B2 (en)