JPS607532B2 - Quench distributor and cooling method inside the reaction tower - Google Patents

Quench distributor and cooling method inside the reaction tower

Info

Publication number
JPS607532B2
JPS607532B2 JP15945777A JP15945777A JPS607532B2 JP S607532 B2 JPS607532 B2 JP S607532B2 JP 15945777 A JP15945777 A JP 15945777A JP 15945777 A JP15945777 A JP 15945777A JP S607532 B2 JPS607532 B2 JP S607532B2
Authority
JP
Japan
Prior art keywords
quench
reaction
branch pipes
header
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15945777A
Other languages
Japanese (ja)
Other versions
JPS5492578A (en
Inventor
郁夫 能村
治房 末
督章 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP15945777A priority Critical patent/JPS607532B2/en
Publication of JPS5492578A publication Critical patent/JPS5492578A/en
Publication of JPS607532B2 publication Critical patent/JPS607532B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00327Controlling the temperature by direct heat exchange
    • B01J2208/00336Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
    • B01J2208/00353Non-cryogenic fluids
    • B01J2208/00371Non-cryogenic fluids gaseous

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明はクェンチディストリビュー夕−および反応塔内
の冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quench distributor and a cooling method within a reaction column.

従釆、石油類の水素化脱硫、水素化精製においては、触
媒層の温度差を一定範囲に保ち触媒寿命、水添効果など
を向上させるため、反応塔内の数個所にクェンチパィプ
を設置し、該パイプからディストリビューターを通して
冷却用ガスを吹込むことが行なわれている。
In the hydrodesulfurization and hydrorefining of petroleum products, quench pipes are installed at several locations within the reaction tower in order to maintain the temperature difference in the catalyst layer within a certain range and improve the catalyst life and hydrogenation effect. Cooling gas is blown from the pipe through a distributor.

クエンチデイストリビューターの構造については、従来
より種々検討されているが、既存のものは大型であるに
もか)わらず冷却効果が十分でなく、また塔内液と冷却
用ガスとの接触・分散も悪く、いずれも満足しうるもの
ではなかった。本発明の目的は、上述のような欠点を解
消したクェンチディストリビューターおよび該クェンチ
ディストリビューターを用いる反応塔内の冷却方法を提
供することである。
Various quench distributor structures have been studied in the past, but although existing ones are large in size, they do not have sufficient cooling effects, and they also lack contact between the liquid in the tower and the cooling gas. The dispersion was also poor, and neither was satisfactory. An object of the present invention is to provide a quench distributor that eliminates the above-mentioned drawbacks and a method for cooling a reaction tower using the quench distributor.

本発明を図面により説明する。The present invention will be explained with reference to the drawings.

第1図は本発明のクェンチディストリビューターを取付
けた反応塔の一部省略断面図であり、第2図は第1図A
−A線断面図である。クェンチデイストリビューターは
反応塔本体1の中心部に設けたクェンチヘッダー2と該
へッダーから略水平かつ放射状に配設した複数本の支管
3から成っている。クェンチへッダー2はクェンチパィ
プ主管4と接続しており、冷却用ガスは該主管4を経て
クェンチヘッダ−2に供給される。該へッダーに供給さ
れた冷却用ガスは該へッダーより放射状に配設された支
管3に設けたガス噴射用小孔より噴射される。ガス噴射
用小孔は適宜の位置に穿設しうるが、たとえば支管3の
中心軸を含む水平断面より下方に穿設したり、該水平断
面の上方と下方に交互に配設することができる。さらに
、小孔は同一水準、すなわち平行に設けたり、千鳥状に
設けたりすることができる。また、小孔の穿設に際して
は支管のクェンチヘッダー取付部から外方に向って密に
なるように、換言するならば反応塔中心部から反応塔内
壁に向って密になるように配設することが好ましい。小
孔の孔径「数等については適宜選定すればよい。前述の
ように、支管3はクェンチヘッダー2に略水平かつ放射
状に配設するが、反応塔開放時に該へッダ−に対し取外
しや取付けが容易にできる構造(たとえば、ねじ込み等
)とすることが好ましい。
FIG. 1 is a partially omitted cross-sectional view of a reaction tower equipped with the quench distributor of the present invention, and FIG.
-A cross-sectional view. The quench distributor consists of a quench header 2 provided at the center of the reaction column main body 1 and a plurality of branch pipes 3 arranged approximately horizontally and radially from the header. The quench header 2 is connected to a main quench pipe 4, and cooling gas is supplied to the quench header 2 through the main pipe 4. The cooling gas supplied to the header is injected from small gas injection holes provided in branch pipes 3 radially arranged from the header. The small holes for gas injection can be bored in any suitable position, but for example, they can be bored below the horizontal section including the central axis of the branch pipe 3, or they can be arranged alternately above and below the horizontal section. . Furthermore, the small holes can be provided on the same level, ie, in parallel, or in a staggered manner. In addition, when drilling small holes, the holes should be arranged so that they become denser outward from the quench header attachment part of the branch pipe, or in other words, they become denser from the center of the reaction tower toward the inner wall of the reaction tower. It is preferable to do so. The diameter and number of the small holes can be selected as appropriate.As mentioned above, the branch pipes 3 are arranged approximately horizontally and radially in the quench header 2, but when the reaction tower is opened, the branch pipes 3 can be removed from the header. It is preferable to use a structure that allows for easy installation (for example, screwing).

また、支管の配設数、管径などは反応塔の径、プロセス
の特性等を考慮して適宜決定する。通常、支管は等間隔
で4〜32本程度配設する。上記のようなクェンチデイ
ストリビューターを用いる反応塔の冷却は該ディストリ
ビュータ−を反応塔内の空間部において反応液体に浸潰
させて行なう。そのための具体的手段としては、たとえ
ば第1図および第2図に例示した液滞留堰5を反応塔内
の適当な空間、たとえば図示したように触媒層6aと触
媒層6bの間に設け、該堰に貯えられた反応液体中にク
ェンチデイストリビューターが浸債するように構成する
。クェンチパィプと反応塔本体の材質が異なる場合には
、それぞれの熱膨張率が異なるため見かけ上、クェンチ
パィプが上下動する。したがって、該パイプ上下運動に
か)わらず支管が常時、液滞留堰内の液中に浸潰してい
るように堰の高さを設定することが必要である。反応塔
内経と液滞留堰の直径、クェンチディストリビューター
の直径の比は反応液の性状等により適宜決定する。
Further, the number of branch pipes to be provided, the pipe diameter, etc. are appropriately determined in consideration of the diameter of the reaction tower, the characteristics of the process, etc. Usually, about 4 to 32 branch pipes are arranged at equal intervals. Cooling of the reaction tower using the quench distributor as described above is carried out by submerging the distributor in the reaction liquid in a space within the reaction tower. As a specific means for this purpose, for example, the liquid retention weir 5 illustrated in FIGS. The quench distributor is configured to be immersed in the reaction liquid stored in the weir. When the quench pipe and the reaction tower body are made of different materials, the quench pipe appears to move up and down because their coefficients of thermal expansion are different. Therefore, it is necessary to set the height of the weir so that the branch pipe is always submerged in the liquid in the liquid retention weir, regardless of the vertical movement of the pipe. The ratio of the internal diameter of the reaction tower, the diameter of the liquid retention weir, and the diameter of the quench distributor is appropriately determined depending on the properties of the reaction liquid, etc.

通常、液滞留堰の直径/反応塔内径=0.40〜0.6
0、好ましくは0.45〜0.55、クェンチヂィスト
リピューターの直径/反応塔内径=0.35〜0.55
好まし〈は0.40〜0.50である。さらに、反応液
体を上記堰内に集めるために、反応塔内の該堰よりもや
)上方の位置に円環板のごとき集液板7を反応塔内壁に
固設することが好ましい。また、堰に所定時間滞留した
反応液体を下方の触媒層6bにムラなく分散させるため
、堰の下方に分散板8を設けることが望ましい。なお、
図中9は触媒支持板である。本発明のクェンチディスト
リビューターによれば、冷却用ガスはクェンチヘッダー
から外方に向って放射状に伸びる支管の小孔から噴射さ
れ、液滞留堰において反応液体と接触するため、クェソ
チディストリビューターの直蓬ノ反応塔の内径の比が非
常に小さし、にもか)わらず、冷却用ガスの分散ならび
に反応液体との接触がきわめて効率よく行なわれる。
Usually, diameter of liquid retention weir/inner diameter of reaction tower = 0.40 to 0.6
0, preferably 0.45 to 0.55, diameter of quench distributor/inner diameter of reaction column = 0.35 to 0.55
Preferably 〈 is 0.40 to 0.50. Further, in order to collect the reaction liquid in the weir, it is preferable to fix a liquid collecting plate 7 such as an annular plate to the inner wall of the reaction tower at a position above the weir in the reaction tower. Further, in order to evenly disperse the reaction liquid that has stayed in the weir for a predetermined time into the catalyst layer 6b below, it is desirable to provide a dispersion plate 8 below the weir. In addition,
9 in the figure is a catalyst support plate. According to the quench distributor of the present invention, the cooling gas is injected from the small holes of the branch pipes extending radially outward from the quench header and comes into contact with the reaction liquid at the liquid retention weir. Although the ratio of the internal diameters of the direct-flowing reaction tower is very small, the dispersion of the cooling gas and the contact with the reaction liquid are carried out very efficiently.

したがって、反応塔内における冷却効果が向上し、塔内
の温度差を小さくすることができる。その結果、製品の
性状や収率が向上し、かつ触媒寿令も長くなる。しかも
、上記の如く構成したことにより反応塔の温度調節が容
易であることも本発明の特色としてあげることができる
。それ故、本発明の装置と該装置を用いる反応塔内の冷
却方法は石油精製工業、石油化学工業の分野においてき
わめて有利に適用することができる。次に、本発明の実
施例を示す。
Therefore, the cooling effect within the reaction tower is improved, and the temperature difference within the tower can be reduced. As a result, product properties and yields are improved, and the catalyst life is also extended. Furthermore, one of the features of the present invention is that the temperature of the reaction tower can be easily controlled by virtue of the above-described structure. Therefore, the apparatus of the present invention and the method for cooling the inside of a reaction tower using the apparatus can be very advantageously applied in the fields of petroleum refining industry and petrochemical industry. Next, examples of the present invention will be shown.

実施例 ニッケル・タングステン系触媒を充てんした直径2.4
肌の水素化精製塔内に直径1.1肌の液滞留堰を設置し
、クェンチパィプ支管16本を有する直径1.0舵のク
ェンチデイストリピューターを取付けた。
Example diameter 2.4 filled with nickel-tungsten catalyst
A liquid retention weir with a diameter of 1.1 mm was installed in the hydrorefining tower, and a quench distributor with a diameter of 1.0 mm and having 16 quench pipe branches was installed.

反応温度を40000に設定し、減圧軽油を1700を
上/日で通油した。反応塔上部入口から導入された液状
の油とガスは1段目触媒層で反応し、温度上昇を伴いな
がら下部のインターナルに入る。
The reaction temperature was set at 40,000 ℃, and vacuum gas oil was passed through the reactor at a rate of 1,700 ℃/day. Liquid oil and gas introduced from the upper entrance of the reaction tower react in the first stage catalyst layer, and enter the lower internal while being accompanied by a temperature rise.

反応した油は集液板によって中心部の液滞留堰内に一た
ん集められ、クェンチパィプ支管の小孔から噴射される
水素ガスにより冷却されると同時に混合縄拝され、均一
な1段目反応生成物となる。次いで、液瀦留堰からオー
バーフローした均一な反応生成油は下部の分散板を流下
して2段目触媒層に入る。以下、上記と同様にして反応
が進行する。3段目以下の触媒層に至る場合も同様に行
なわれる。
The reacted oil is once collected in the central liquid retention weir by a liquid collection plate, cooled by hydrogen gas injected from the small hole of the quench pipe branch, and mixed at the same time to produce a uniform first-stage reaction. Become a thing. Next, the homogeneous reaction product oil overflowing from the liquid retention weir flows down the lower dispersion plate and enters the second stage catalyst bed. Thereafter, the reaction proceeds in the same manner as above. The same procedure is applied to the third and subsequent catalyst layers.

その結果、反応塔の水平方向における温度差は0〜io
As a result, the temperature difference in the horizontal direction of the reaction tower is 0 to io
.

0となった。It became 0.

また、従来法と比較すると、触媒寿命は約1.3倍延長
し、目的とする製品組成は均一であり、しかもその収率
は1.5%増加した。比較例 第3図および第4図に示した従来のクェンチディストリ
ビューターを用いて実施例と同様の反応を行なった。
Furthermore, compared to the conventional method, the catalyst life was extended by about 1.3 times, the desired product composition was uniform, and the yield was increased by 1.5%. Comparative Example A reaction similar to that of the Example was carried out using the conventional quench distributor shown in FIGS. 3 and 4.

その結果、反応塔における水平方向の温度差は10〜3
000であった。
As a result, the horizontal temperature difference in the reaction tower is 10-3
It was 000.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクェンチディストリビュータ一を取付
けた反応塔の一部省略断面図、第2図は第1図A−A線
断面図である。 第3図は従来のクェンチデイストリビューターを取付け
た反応塔の一部省略断面図、第4図は第3図A−A線断
面図である。1・・・・・・反応塔本体、2・・…・ク
ェンチヘツダー、3・・・・・・支管、4・…・・クェ
ンチパィプ主管、5・…・・液滞留堰、6,6a,6b
・・・・・・触媒層、7・・・・・・集液板、8・・・
・・・分散板、9・・・・・・触媒支持板。 第1図第2図 第3図 第4図
FIG. 1 is a partially omitted cross-sectional view of a reaction tower equipped with a quench distributor of the present invention, and FIG. 2 is a cross-sectional view taken along the line A--A in FIG. FIG. 3 is a partially omitted cross-sectional view of a reaction tower equipped with a conventional quench distributor, and FIG. 4 is a cross-sectional view taken along the line A--A in FIG. 1... Reaction tower main body, 2... Quench header, 3... Branch pipe, 4... Main quench pipe, 5... Liquid retention weir, 6, 6a, 6b.
... Catalyst layer, 7 ... Liquid collection plate, 8 ...
. . . Dispersion plate, 9 . . . Catalyst support plate. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 反応塔中心部に設けたクエンチヘツダーと該ヘツダ
ーから略水平かつ放射状に配設された支管であって該支
管のクエンチヘツダー取付部から外方に向って密になる
ように穿設したガス噴射用小孔を有する複数本の支管か
らなるクエンチデイストリビユーター。 2 ガス噴射用小孔が支管の中心軸を含む水平断面より
下方に配設されている特許請求の範囲第1項記載のクエ
ンチデイストリビユーター。 3 ガス噴射用小孔が支管の中心軸を含む水平断面の上
方と下方に交互に配設されている特許請求の範囲第1項
記載のクエンチデイストリビユーター。 4 液滞留堰の直径/反応塔内径=0.40〜0.60
であり、クエンチデイストリビユーターの直径/反応塔
内径=0.35〜0.55である特許請求の範囲第1項
記載のクエンチデイストリビユーター。 5 反応塔中心部に設けたクエンチヘツダーと該ヘツダ
ーから略水平かつ放射状に配設された支管であって、該
支管のクエンチヘツダー取付部から外方に向って密にな
るように穿設したガス噴射用小孔を有する複数本の支管
からなるクエンチデイストリビユーターを、反応塔内の
空間部に設置した液滞留堰内の反応液体中に浸漬して冷
却用ガスを噴射することを特徴とする反応塔内の冷却方
法。
[Scope of Claims] 1. A quench header provided at the center of the reaction column, and branch pipes disposed approximately horizontally and radially from the header, the branch pipes being densely perforated outward from the quench header attachment portion of the branch pipes. A quench distributor consisting of multiple branch pipes with small holes for gas injection. 2. The quench distributor according to claim 1, wherein the gas injection small holes are arranged below a horizontal cross section including the central axis of the branch pipe. 3. The quench distributor according to claim 1, wherein the gas injection small holes are arranged alternately above and below a horizontal section including the central axis of the branch pipe. 4 Diameter of liquid retention weir/inner diameter of reaction tower = 0.40 to 0.60
The quench distributor according to claim 1, wherein the diameter of the quench distributor/inner diameter of the reaction column is 0.35 to 0.55. 5. A quench header installed in the center of the reaction tower and branch pipes arranged approximately horizontally and radially from the header, which are for gas injection and are perforated outward from the quench header attachment part of the branch pipes so as to be densely arranged. A reaction characterized by injecting cooling gas by immersing a quench distributor consisting of a plurality of branch pipes with small holes into the reaction liquid in a liquid retention weir installed in a space within the reaction tower. Cooling method inside the tower.
JP15945777A 1977-12-29 1977-12-29 Quench distributor and cooling method inside the reaction tower Expired JPS607532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15945777A JPS607532B2 (en) 1977-12-29 1977-12-29 Quench distributor and cooling method inside the reaction tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15945777A JPS607532B2 (en) 1977-12-29 1977-12-29 Quench distributor and cooling method inside the reaction tower

Publications (2)

Publication Number Publication Date
JPS5492578A JPS5492578A (en) 1979-07-21
JPS607532B2 true JPS607532B2 (en) 1985-02-25

Family

ID=15694173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15945777A Expired JPS607532B2 (en) 1977-12-29 1977-12-29 Quench distributor and cooling method inside the reaction tower

Country Status (1)

Country Link
JP (1) JPS607532B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332138B2 (en) * 2002-07-26 2008-02-19 Exxonmobil Research And Engineering Company Jet mixing of process fluids in fixed bed reactor

Also Published As

Publication number Publication date
JPS5492578A (en) 1979-07-21

Similar Documents

Publication Publication Date Title
US3824080A (en) Vertical reactor
US4374094A (en) Method and apparatus for uniform flow through radial reactor centerpipes
US3425810A (en) Hydrotreating apparatus
US4478707A (en) Process for the hydrotreatment of hydrocarbons in an expanded or ebullated catalyst bed
US3723072A (en) Fluid contacting apparatus
US3541000A (en) Method and means for treating mixed phase vapor and liquid reactants under exothermic reaction conditions and temperature control
US3598541A (en) Fluid contacting apparatus for fluid-solid contacting chambers
US4374095A (en) Method and apparatus for restraining radial flow catalytic reactor centerpipes
NZ212224A (en) Vertical tube reactor for carrying out non-isothermal reactions
US4392943A (en) Process and device for withdrawing solid particles and introducing a liquid charge at the lower portion of a contact zone
DE3012476A1 (en) CHEMICAL PROCESS AND REACTION TUBE FOR IMPLEMENTING THE SAME
DE2222562B2 (en) Reaction tower with several annular reaction chambers with radial flow one after the other
US4444653A (en) Process and device for withdrawing solid particles and introducing a liquid charge at the lower part of a contact zone
US4421723A (en) Method and apparatus for supporting radial reactor centerpipes to accommodate thermal cycling
US2512562A (en) Catalytic reaction apparatus
US2475855A (en) Catalytic reaction apparatus
DE2250036C2 (en) Reactor for exothermic catalytic gas phase reactions
US3598542A (en) Fluid contacting apparatus for fluid-solid contacting chambers
US3652450A (en) Fluid distribution for fluid-solids contacting chambers
DE2848086C2 (en) Tubular reactor for catalytic processes
SU735157A3 (en) Apparatus with moving catalyst bed
CA1156439A (en) Moving catalyst bed reactor treating hydrocarbons
US5603904A (en) Apparatus for catalyst replacement
US2884372A (en) Spherical reactor for the conversion of hydrocarbons
JPS607532B2 (en) Quench distributor and cooling method inside the reaction tower