JPS6075319A - Purification of gas containing bromine and/or iodine - Google Patents

Purification of gas containing bromine and/or iodine

Info

Publication number
JPS6075319A
JPS6075319A JP58180618A JP18061883A JPS6075319A JP S6075319 A JPS6075319 A JP S6075319A JP 58180618 A JP58180618 A JP 58180618A JP 18061883 A JP18061883 A JP 18061883A JP S6075319 A JPS6075319 A JP S6075319A
Authority
JP
Japan
Prior art keywords
iodine
bromine
gas
cyclodextrin
cyclodextrine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58180618A
Other languages
Japanese (ja)
Inventor
Akiyoshi Baba
昭好 馬場
Tomio Kawashima
川島 富男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP58180618A priority Critical patent/JPS6075319A/en
Publication of JPS6075319A publication Critical patent/JPS6075319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To purify gas contg. bromine and/or iodine by allowing the gas to contact with beta-cyclodextrine and to include bromine and/or iodine in the gas. CONSTITUTION:Gas contg. bromine and/or iodine, for example, the gaseous chlorine contg. bromine and iodine produced in soda industry is passed through an absorption apparatus contg. soln. of beta-cyclodextrine. Bromine and iodine in the gaseous chlorine are included in the beta-cyclodextrine, thus, chlorine is purified. The amt. to be included in the beta-cyclodextrine is 1mol bromine or iodine per 1mol beta-cyclodextrine. The beta-cyclodextrine which has included bromine and/ or iodine is regenerated by the irradiation with supersonic wave or by heating, and is usable repeatedly.

Description

【発明の詳細な説明】 本発明は臭素及び/又は沃素を微量含有するガスの精製
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying gas containing trace amounts of bromine and/or iodine.

従来、例えばツーダニ業において一般に塩素は食塩の電
気分解によつ゛〔得られるが、この塩素ガスには一部不
純物が含まれる。
Conventionally, chlorine is generally obtained by electrolysis of common salt, for example in the chlorine industry, but this chlorine gas contains some impurities.

特に不純物中の臭素及び/又はヨウ素は単体及法、吸収
媒体を使用する方法があるが前者は加圧冷凍方式であり
、大きな設備を必要とし、圧縮冷凍するため多くのエネ
ルギーを消費する。後者の方法では、媒体として四塩化
炭素等の溶剤に塩素ガスを吸収させて、不純物ガスと分
離したのち、蒸留操作などにより、塩素を精製する方法
であるが、塩素中に溶剤が混入する恐れがあり、爆発な
どの危険性もある。更に臭素及び/又はヨウ素は塩素と
同じハロゲン元素であるため従来方式では分離しにくい
欠点がある。
In particular, for impurities such as bromine and/or iodine, there are two methods: a single method and a method using an absorption medium, but the former method requires a pressure freezing method, which requires large equipment and consumes a lot of energy due to compression freezing. In the latter method, chlorine gas is absorbed into a solvent such as carbon tetrachloride as a medium, separated from impurity gases, and then purified by distillation, etc. However, there is a risk that the solvent may mix into the chlorine. There is also a risk of explosion. Furthermore, since bromine and/or iodine are halogen elements like chlorine, they have the disadvantage that they are difficult to separate using conventional methods.

本発明者らは従来のこれらの欠点に鑑み、倹約した結果
本発明を完成した。
In view of these conventional drawbacks, the present inventors completed the present invention as a result of economizing.

即ち本発明は臭素及び/又は沃素を含有するガスをβ−
サイクロデキストリンに接触させ、該ガスより臭素及び
/又は沃素を包接することを特徴とする臭素及び/又は
沃素を含有するガスの精製方法であり、微量の臭素及び
/又は沃素をβ−サイクロデキストリンに包接させるこ
とによりガスの精製を行なうものである。
That is, the present invention converts gas containing bromine and/or iodine into β-
This is a method for purifying a gas containing bromine and/or iodine, which is characterized by bringing it into contact with cyclodextrin and including bromine and/or iodine from the gas. Gas is purified by inclusion.

本発明で用いるβ−サイクロデキストリンは。The β-cyclodextrin used in the present invention is.

デンプンをアルカリアミラーゼの作用によって分解した
時に生産されるグルコビラノーズの環状オリゴマーであ
る。一般にサイクロデキストリンは各種の有機化合物、
希ガス、ハロゲン、若干の無機化合物と包接化合物を形
成することが知られているが、α−サイクロデキストリ
ンの溶液釦塩素ガスを吹込むと包接化合物を形成するの
に対し、β−サイクロデキス) IJンは塩素とは包接
化合物を形成せず、臭素及び沃素と包接化合物を形成す
るので、本発明ではこの特性を利用して臭素及び/又は
沃素を微量含有するガスの精製を行なうのである。
It is a cyclic oligomer of glucobylanose produced when starch is degraded by the action of alkaline amylase. Generally, cyclodextrins are various organic compounds,
It is known that clathrate compounds are formed with noble gases, halogens, and some inorganic compounds; however, when chlorine gas is blown into a solution of α-cyclodextrin, clathrate compounds are formed, whereas β-cyclodextrin forms clathrate compounds. ) Since IJ does not form an clathrate compound with chlorine, but does form an clathrate compound with bromine and iodine, in the present invention, this property is utilized to purify a gas containing trace amounts of bromine and/or iodine. It is.

本発明において対象となる臭素及び/又は沃素を含有す
るガスとしては、水に溶解しにくいガス又は分子の径が
β−サイクロデギス) IJンの内径より少し小さいガ
スが好ましく特に好適な具体例として塩素ガスがあげら
れる。また含有する臭素及び/又は沃素の濃度は、数十
ppmから数百ppmさらに具体的には50〜200 
ppm程度が適当である。
The bromine and/or iodine-containing gas targeted in the present invention is preferably a gas that is difficult to dissolve in water or a gas whose molecular diameter is slightly smaller than the inner diameter of IJ (β-cyclodegis), and a particularly preferred example is chlorine. I can give you gas. The concentration of bromine and/or iodine contained is from several tens of ppm to several hundred ppm, more specifically from 50 to 200 ppm.
Approximately ppm is appropriate.

次に本発明の精製手段について述べる。Next, the purification means of the present invention will be described.

β−サイクロデキストリンを水に溶かし飽和水溶液を調
製するか又はβ−サイクロデキストリンと水のスラリー
を調製し、これに臭素及び/又は沃素を微量含有するガ
ス例えば食塩の電気分解によって得られた塩素ガスを所
定の温度、流速で通ずることにより、塩素ガスとβ−サ
イクロデキストリンを接触させ、塩素ガス中の臭素及び
/又は沃素なβ−サイクロデキストリンに包接させるこ
とによって行なわれる。
Dissolve β-cyclodextrin in water to prepare a saturated aqueous solution, or prepare a slurry of β-cyclodextrin and water, and add a gas containing trace amounts of bromine and/or iodine, such as chlorine gas obtained by electrolysis of common salt. The chlorine gas and β-cyclodextrin are brought into contact with each other at a predetermined temperature and flow rate, and the bromine and/or iodine in the chlorine gas is included in the β-cyclodextrin.

β−サイクロデキストリンの溶媒としては水が好ましく
、メタノール、アセトン等の有機溶媒は臭素及び/又は
沃素を包接せず不適当である。
Water is preferred as a solvent for β-cyclodextrin, and organic solvents such as methanol and acetone are unsuitable because they do not include bromine and/or iodine.

β−サイクロデキストリン水溶液の容量V(1)K対す
る臭素及び/又は沃素を微量含有するガスの供給速度S
 (/ / Hr)即ち空洞速度前は60(Hr’)以
下が好ましく、!30 (Hr’ )前後がさらに好ま
しい。60 (Hr″)を越えると、ガスの速度が大き
くなりすぎ臭素及び/又は沃素がβ−サイクロデキスト
リンに包接されにくくなる。
Supply rate S of gas containing a trace amount of bromine and/or iodine to the volume V(1)K of β-cyclodextrin aqueous solution
(/ / Hr) In other words, the cavity velocity before is preferably 60 (Hr') or less. More preferably, it is around 30 (Hr'). If it exceeds 60 (Hr''), the gas velocity becomes too high, making it difficult for bromine and/or iodine to be included in β-cyclodextrin.

滞留時間は2〜6秒程度が好ましい。The residence time is preferably about 2 to 6 seconds.

β−サイクロデキストリンの包接量は理論的にはβ−サ
イクロデキストリン1モルに対し、臭素及び/又は沃素
1モルである。
Theoretically, the inclusion amount of β-cyclodextrin is 1 mole of bromine and/or iodine per 1 mole of β-cyclodextrin.

包接温度は0〜40℃が好ましく、5〜60℃が−らに
好ましい。40℃を越えると水の蒸発及びそれに基づく
β−サイクロデキストリンの飛散さらに塩素、臭素の蒸
発が起きやすくなる。包r圧力は通常常圧付近の圧力で
ある。
The inclusion temperature is preferably 0 to 40°C, more preferably 5 to 60°C. If the temperature exceeds 40°C, evaporation of water and the resulting scattering of β-cyclodextrin, as well as evaporation of chlorine and bromine, tend to occur. The envelope pressure is usually around normal pressure.

本発明において臭素及び/又は沃素を包接したβ−サイ
クロデキストリンはこれを再生し、また臭素及び/又は
沃素を回収することもできる。以下再生方法について述
べる。
In the present invention, β-cyclodextrin containing bromine and/or iodine can be regenerated, and bromine and/or iodine can also be recovered. The reproduction method will be described below.

臭素及び/又は沃素を包接したβ−サイクロデキストリ
ンは超音波を照射する方法又は加熱する方法によって再
生され、くり返し使用することができる。
β-Cyclodextrin containing bromine and/or iodine can be regenerated by ultrasonic irradiation or heating and can be used repeatedly.

■ 超音波による再生方法 包接能力のなくなったβ−サイクロデキストリンの溶液
に不活性ガスを流しながら超音波を照射すること罠より
、β−サイクロデキストリンを再生することができる。
■ Regeneration method using ultrasound It is possible to regenerate β-cyclodextrin by irradiating it with ultrasound while flowing an inert gas into a solution of β-cyclodextrin that has lost its inclusion ability.

超音波発生機器としては例えばブランソン社製の超音波
洗浄器で出力200W、周波数451(Hz、自動発振
のものが使用できる。不活性ガスとしては窒素が使用で
きるが、分子径が小さいものであれば他の不活性ガスも
使用できる。再生時の温度は20〜90℃が好ましく、
また高い方が再生条件としては好ましい傾向を示す。
As an ultrasonic generating device, for example, an ultrasonic cleaner made by Branson Corporation with an output of 200 W, a frequency of 451 (Hz, and automatic oscillation) can be used. Nitrogen can be used as an inert gas, but any gas with a small molecular diameter can be used. Other inert gases can also be used.The temperature during regeneration is preferably 20 to 90°C;
Moreover, the higher the value, the more favorable the reproduction conditions.

■ 加熱による再生方法 包接能力のなくなったβ−サイクロデキストリン溶液に
不活性ガスを流しながら加熱することにより、β−サイ
クロデキストリンを再生することができる。
(2) Regeneration method by heating β-cyclodextrin can be regenerated by heating a β-cyclodextrin solution that has lost its inclusion ability while flowing an inert gas.

不活性ガスとしては例えば窒素が使用できるが、分子径
が小さいものであれば他の不活性ガスも使用できる。加
熱温度は50℃以下では再生能力がないので、60〜1
00℃程度が好ましい。
For example, nitrogen can be used as the inert gas, but other inert gases can also be used as long as they have a small molecular diameter. There is no regeneration ability when the heating temperature is below 50℃, so 60~1
The temperature is preferably about 00°C.

本発明によれば、簡単な操作でかつ最小のエネルギーに
より臭素及び/又は沃素を微量含有するガス中の臭素及
び/又は沃素を効率よく除去することができ、臭素及び
/又は沃素を微量含有するガスを高純変圧精製すること
ができるのである。
According to the present invention, bromine and/or iodine in a gas containing trace amounts of bromine and/or iodine can be efficiently removed with simple operation and with minimum energy. It is possible to purify gas to a high degree of purity under reduced pressure.

また包接能力のなくなったβ−サイクロデキストリン溶
液を超音波又は加熱により容易に再生することができ、
β−サイクロデキストリンを繰返し使用することが可能
である。
In addition, a β-cyclodextrin solution that has lost its inclusion ability can be easily regenerated by ultrasound or heating.
It is possible to use β-cyclodextrin repeatedly.

以下に実施例及び参考例をあげて本発明をさらに具体的
に説明する。
EXAMPLES The present invention will be explained in more detail with reference to Examples and Reference Examples below.

実施例を 第1図に示すような、ガス流量計、β−サイクロデキス
トリン溶液の入った内径55m、高さ180Iのガラス
製吸収ビン及び水の入ったビンを備えた実験装置を用い
た。
In this example, an experimental apparatus as shown in FIG. 1 was used, which was equipped with a gas flow meter, a glass absorption bottle with an inner diameter of 55 m and a height of 180 mm containing a β-cyclodextrin solution, and a bottle containing water.

上記吸収ビンに200’rの水と8fのβ−サイクロデ
キストリンを入れた。この吸収ビ/&c100PPmの
臭素を含む粗塩素ガスを61 / Hrで通じた。1〜
B)lr 後の精製された塩素ガス中の臭素濃度の経時
変化は第2図に示すとおりであるが、その濃度は30〜
58 ppmであった。
200'r of water and 8f of β-cyclodextrin were placed in the above absorption bottle. Crude chlorine gas containing 100 PPm of bromine was passed through the reactor at a rate of 61/Hr. 1~
B) The time-dependent change in the bromine concentration in the purified chlorine gas after lr is shown in Figure 2.
It was 58 ppm.

実施例2 β−サイクロデキストリンの量を4tにした以外は、実
施例1と同様にして塩素ガスの精製を行った。
Example 2 Chlorine gas was purified in the same manner as in Example 1, except that the amount of β-cyclodextrin was changed to 4 tons.

精製された塩素ガス中の臭素濃度の経時変化は第2図に
示すとおりであるが、1〜A Hr 後の臭素濃度は3
8〜58 ppmであった。
The bromine concentration in purified chlorine gas changes over time as shown in Figure 2, and the bromine concentration after 1 to A Hr is 3.
It was 8 to 58 ppm.

参考例1 包接能力のなくなったβ−サイクロデキス) IJンの
再生を、超音波を照射することにより行なった。
Reference Example 1 (β-cyclodextrin that has lost its inclusion ability) Regeneration of IJ was carried out by irradiating it with ultrasonic waves.

包接能力のなくなったβ−サイクロデキストリン溶液の
入った内径55−1高さ180欝のガラス製吸収ビンに
窒素を3 / / Hrで流しながら超音波を照射した
。その結果を第3図に示す。
A glass absorption bottle with an inner diameter of 55 cm and a height of 180 cm containing a β-cyclodextrin solution that had lost its inclusion ability was irradiated with ultrasonic waves while flowing nitrogen at 3//Hr. The results are shown in FIG.

超音波により再生したβ−サイクロデキストリンは初期
のものに比べ同等の包接能力を持ち、くり返し再生を行
っても不純物、臭素及び/又はヨウ素の包接能力は変わ
らなかった。
The β-cyclodextrin regenerated by ultrasonic waves had the same clathration ability as the initial one, and the clathration ability of impurities, bromine and/or iodine did not change even after repeated regenerations.

参考例2 包接能力のなくなったβ−サイクロデキス) IJンの
再生を、加熱により行なった。
Reference Example 2 β-cyclodextrin (β-cyclodextrin that has lost its inclusion ability) IJ was regenerated by heating.

参考例1と同じガラス製吸収ビンに包接能力のなくなっ
たβ−サイクロデキストリンを入れ、窒素を!l t 
/ Hrの流速で流しながら温度を変化させ加熱した。
Put β-cyclodextrin, which has lost its inclusion ability, into the same glass absorption bottle as in Reference Example 1, and add nitrogen! lt
The mixture was heated by changing the temperature while flowing at a flow rate of /Hr.

その主な結果を第4図に示す。The main results are shown in Figure 4.

温度50℃以下では再生能力はなく、温度60〜92℃
では初期の能力に比べて30%の包接能力となった。
There is no regeneration ability at temperatures below 50℃, and temperatures between 60 and 92℃.
Now, the inclusion ability is 30% compared to the initial ability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で用いた実験装置を示す概略図である。 第2図は実施例1及び2、第3図は実施例6並びに第4
図は実施例4における臭素の減少量の経時変化を示すグ
ラフである。 1゛・ β−すイア0テ゛Nストリンm−3L特許出願
人 東亜合成化学工業株式会社 蔦/房
FIG. 1 is a schematic diagram showing an experimental apparatus used in Examples. Figure 2 shows Examples 1 and 2, Figure 3 shows Examples 6 and 4.
The figure is a graph showing the change over time in the amount of bromine reduced in Example 4. 1゛・β-Sea 0゛N String m-3L Patent Applicant Toagosei Chemical Industry Co., Ltd. Tsuta/Fusa

Claims (1)

【特許請求の範囲】[Claims] 1、 臭素及び/又は沃素を含有するガスをβ−サイク
ロデキストリンに接触させ、該ガスより臭素及び/又は
沃素を包接することを特徴とする臭素及び/又は沃素を
含有するガスの精製方法。
1. A method for purifying a gas containing bromine and/or iodine, which comprises bringing the gas containing bromine and/or iodine into contact with β-cyclodextrin, and clathrating the bromine and/or iodine from the gas.
JP58180618A 1983-09-30 1983-09-30 Purification of gas containing bromine and/or iodine Pending JPS6075319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180618A JPS6075319A (en) 1983-09-30 1983-09-30 Purification of gas containing bromine and/or iodine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180618A JPS6075319A (en) 1983-09-30 1983-09-30 Purification of gas containing bromine and/or iodine

Publications (1)

Publication Number Publication Date
JPS6075319A true JPS6075319A (en) 1985-04-27

Family

ID=16086367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180618A Pending JPS6075319A (en) 1983-09-30 1983-09-30 Purification of gas containing bromine and/or iodine

Country Status (1)

Country Link
JP (1) JPS6075319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041836A1 (en) * 2001-11-15 2003-05-22 Universität Bern Method of detecting and/or removing small compounds from a gaseous or liquid medium
CN102774812A (en) * 2011-05-09 2012-11-14 郭建利 New technology for extracting bromine from waste hydrobromic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041836A1 (en) * 2001-11-15 2003-05-22 Universität Bern Method of detecting and/or removing small compounds from a gaseous or liquid medium
CN102774812A (en) * 2011-05-09 2012-11-14 郭建利 New technology for extracting bromine from waste hydrobromic acid

Similar Documents

Publication Publication Date Title
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
JPH0553725B2 (en)
JPS6260128B2 (en)
JPH0512965B2 (en)
JPS6075319A (en) Purification of gas containing bromine and/or iodine
Rörsch et al. The effect of UV‐light on some components of the nucleic acids: I. Uracil, thymine
US4024219A (en) Process for removing nitrogen oxide from a waste gas
RU2110469C1 (en) Method of producing sulfur and hydrogen from hydrogen sulfide
JPH0622651B2 (en) Method to remove H 2 under S from sour gas stream
JP2004537524A (en) Two-stage flash for hydrocarbon removal
US3376113A (en) Catalytic hydrolysis of phosgene
CA1271159A (en) Photochemical production of hydrogen from hydrogen sulfide
CA1271618A (en) Process for purification of gases
JPS6013005B2 (en) Recovery method for halogenated hydrocarbons
US1717951A (en) Method of producing nitrosyl halide
JPS61212524A (en) Hydrolysis for removing cos from liquid propylene
Harteck Hydrogen atoms, oxygen atoms, and the hydroxyl radical
JPS588377B2 (en) Method for removing phosgene from exhaust gas during benzoyl chloride production
JPS58114713A (en) Self-control removing process of hydrogen sulfide in gas
SU874140A1 (en) Method of regeneration of absorbent
FR2342789A1 (en) Regeneration of catalyst bed for sulphur deposition - from gaseous effluents in cold-bed-adsorption process
KR870008606A (en) Removal of TiCl_4-Steam from Gas-Stream
SU578993A1 (en) Method of cleaning air from ozone
SU618922A1 (en) Method of purifying gases from hydrogen sulfide
JPH1179734A (en) Device for purifying boron trichloride by removal of phosgene and method thereof