JPS6074587A - Light-emitting semiconductor device with monitor output - Google Patents
Light-emitting semiconductor device with monitor outputInfo
- Publication number
- JPS6074587A JPS6074587A JP58180253A JP18025383A JPS6074587A JP S6074587 A JPS6074587 A JP S6074587A JP 58180253 A JP58180253 A JP 58180253A JP 18025383 A JP18025383 A JP 18025383A JP S6074587 A JPS6074587 A JP S6074587A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical fiber
- optical
- output
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Led Device Packages (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、発光ダイオード、半導体レーザなどの半導体
発光素子からの光出力の一部をモニターする手段を設け
たモニター出力付発光半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a light emitting semiconductor device with a monitor output, which is provided with means for monitoring part of the light output from a semiconductor light emitting element such as a light emitting diode or a semiconductor laser.
光フアイバ通信用発光装置として、発光ダイオードや半
導体レーザが使用式れているが、これらの発光装置は温
度変動、駆動電源変動などによって半導体発光素子の光
出力が変動し易いため、光出力の安定化が不可欠とされ
ている。この光出力安定化のために、その光出力の一部
を導出し受光素子によって検出してモニターしたり、あ
るいはそのモニター信号を上記発光素子の駆動回路にフ
ィードバックし駆動電流を制御して光出力の安定化がは
かられている。この光出力をモニターする手段として、
従来、第1図および第2図に示すような方法が知られて
いる。第1図は半導体発光素子1で発光した光のうち光
ファイバ5の受光角に入った光を光フアイバ5内を伝送
させ、その光出力の一部をレンズ素子7を介してビーム
スプリッタ9で分岐して受光素子10で光電気変換して
モニターする方法である。しかしこの方法では次のよう
な欠点があった。Light-emitting diodes and semiconductor lasers are used as light-emitting devices for optical fiber communications, but the light output of these light-emitting devices tends to fluctuate due to temperature fluctuations, drive power fluctuations, etc., so it is difficult to stabilize the light output. ization is considered essential. In order to stabilize this light output, a part of the light output is derived and detected by a light receiving element and monitored, or the monitor signal is fed back to the drive circuit of the light emitting element to control the drive current and output light. is being stabilized. As a means of monitoring this light output,
Conventionally, methods as shown in FIGS. 1 and 2 are known. FIG. 1 shows that out of the light emitted by a semiconductor light emitting device 1, the light that has entered the acceptance angle of an optical fiber 5 is transmitted through the optical fiber 5, and a part of the light output is transmitted via a lens element 7 to a beam splitter 9. This is a method in which the light is branched, photoelectrically converted by the light receiving element 10, and monitored. However, this method had the following drawbacks.
(1)半導体発光素子が発光ダイオードの場合、光フア
イバ5内への結合パワーが少ない(数10μW程度)た
め短距離区間の伝送に限られているところに、さらにビ
ームスプリッタ9を挿入してモニタ光をと9だすように
すると、ますます伝送距離が短かくなる。(1) When the semiconductor light emitting element is a light emitting diode, the power coupled into the optical fiber 5 is small (about several tens of microwatts), so transmission is limited to short distances, and a beam splitter 9 is further inserted for monitoring. The more light is emitted, the shorter the transmission distance becomes.
(2)またレンズ素子7,8の収差損、ビームスプリッ
タ9の分岐損もあるため、さらに光フアイバ6内を伝送
する光パワーが小さくなる。(2) Since there are also aberration losses in the lens elements 7 and 8 and branching losses in the beam splitter 9, the optical power transmitted through the optical fiber 6 is further reduced.
(3)光学系(5〜10]の光軸V@整が大変であり、
かつ装置の小型化がむずかしい。(3) It is difficult to adjust the optical axis V of the optical system (5 to 10),
Moreover, it is difficult to miniaturize the device.
第2図は第1図の欠点を解決させるだめの一方法である
。これはパッケージ2の底部に予め作成された半導体受
光装置10のような光電気変換装置を一体化した複合半
導体装置である。この装置の光モニタ一方法は、半導体
発光素子1の光出力のうち、光ファイバ5へ結合されな
かった光をパッケージ内壁面で反射させて受光素子10
へ集光嘔せるようにしたものである。この方法では光フ
アイバ5内へ結合きれた光パワーに損失を生じさせるこ
とがなく、光出力をモニターすることができる点で第1
図の方法よりも有利である。しかしながらこのような構
造では光ノ1アイパ5へ結合されなかった半導体発光素
子の光パワーをすべて受光素子10へ集光きせることが
極めて困難であシ、モニター用の光パワーは微弱なもの
である。したがってこのような微弱光では発光出力モニ
ター信号として不安定、不十分である。また半導体発光
素子の駆動回路の制御信号として用いる場合にも上記微
弱光では帰還増幅回路の利得を大きくとらなければなら
なくなり、そのため狭帯域な帰還ループ系に余儀なくさ
れてしまい、広帯域信号伝送が困難となるといった問題
点がおった。なお、第1.2図において、3.4は半導
体発光素子1に入力電流を供給する電極ピンである。FIG. 2 is one way to solve the drawbacks of FIG. 1. This is a composite semiconductor device in which a photoelectric conversion device such as a semiconductor light receiving device 10 prepared in advance at the bottom of a package 2 is integrated. One method of optical monitoring of this device is to reflect the light that is not coupled to the optical fiber 5 out of the optical output of the semiconductor light emitting device 1 on the inner wall surface of the package and send it to the light receiving device 10.
It was designed so that light could be focused on the area. This method is the first in that it does not cause any loss in the optical power that has been coupled into the optical fiber 5 and allows the optical output to be monitored.
This method is more advantageous than the method shown in the figure. However, with such a structure, it is extremely difficult to condense all the optical power of the semiconductor light emitting element that has not been coupled to the optical nozzle 1 eyer 5 onto the light receiving element 10, and the optical power for monitoring is weak. . Therefore, such weak light is unstable and insufficient as a light emission output monitor signal. Furthermore, when used as a control signal for a drive circuit for a semiconductor light emitting device, the weak light mentioned above requires a large gain in the feedback amplifier circuit, which forces a narrowband feedback loop system, making wideband signal transmission difficult. There were some problems. In addition, in FIG. 1.2, 3.4 is an electrode pin that supplies input current to the semiconductor light emitting device 1.
本発明の目的は5発光ダイオード、半導体レーザなどの
半導体発光素子からの光出力を伝送用光ファイバへ効率
良く結合させると共に、上記光ファイバへ結合されなか
った光パワーのほとんどすべてを別の光フアイバ群で結
合させて受光素子に入力し、大出力の発光出力モニター
信号、あるいは上記半導体発光素子の駆動回路の制御信
号を得るようにしたモニター出力付発光半導体装置を提
供することにある。It is an object of the present invention to efficiently couple optical output from a semiconductor light emitting device such as a light emitting diode or a semiconductor laser to a transmission optical fiber, and to transfer almost all of the optical power not coupled to the optical fiber to another optical fiber. It is an object of the present invention to provide a light-emitting semiconductor device with a monitor output, which is coupled in groups and inputted to a light-receiving element to obtain a large-output light-emission output monitor signal or a control signal for a drive circuit for the semiconductor light-emitting element.
本発明は、誘電体管(ガラス管、プラスチック管、磁性
体管、セラミック管など)内の中心軸に伝送用光ファイ
バを配置させ、その周囲に同心円状に一重あるいは多重
にモニター光導出用光フアイバ群を配置させてなる上記
誘電体管の一端を半導体発光素子の発光面に対向させ、
モニター光導出用光フアイバ群の他端を集合して受光素
子へ結合させるように構成したモニター出力付発光半導
体装置である。半導体発光素子の発光面からの光拡が9
面積をすべて補うように上記モニター光導出用ファイバ
群を同心円状に多重に配置させれば、伝送用光ファイバ
へ結合されなかった光パワーのほとんどすべてを上記モ
ニター光導出用光ファイi5)
バ内へ導びくことかできる。モニター光導出用光ファイ
バの構造は伝送用光ファイバと同じでもよいが、より光
パワーを多く導ひくようにするために、形状を小さくし
て多く用い、かつ光ファイバのコアとクラッドの屈折率
差が大きい方がよい。In the present invention, a transmission optical fiber is arranged at the center axis in a dielectric tube (glass tube, plastic tube, magnetic tube, ceramic tube, etc.), and a single or multiple monitor light is connected concentrically around the optical fiber. one end of the dielectric tube in which the fiber group is arranged is opposed to the light emitting surface of the semiconductor light emitting device;
This is a light emitting semiconductor device with a monitor output, in which the other ends of a group of optical fibers for leading out monitor light are assembled and coupled to a light receiving element. The light spread from the light emitting surface of the semiconductor light emitting device is 9
By arranging the monitor light output fibers in multiple concentric circles to compensate for the area, almost all of the optical power that is not coupled to the transmission optical fiber can be transferred to the monitor light output optical fiber i5). I can guide you to. The structure of the optical fiber for guiding the monitor light may be the same as that of the optical fiber for transmission, but in order to guide more optical power, it is necessary to use a smaller shape and increase the refractive index of the core and cladding of the optical fiber. The larger the difference, the better.
また各々のモニター光導出用光ファイバの出力端ノ光パ
ワーが等しくなるように誘電体管と半導体発光素子との
間隔1位置、傾きなどを調整することによシ、伝送用光
ファイバへの光結合効率を最良にすることができる。さ
らに、従来法ではパッケージ内に光ファイバ5を挿入し
、光軸調整後に固定しても、光ファイバが細径で、かっ
柔軟性があるため光軸ずれが起き易く、固定方法もむず
かしかったが、本発明の構成では誘電体管径が太く、か
つ固いので固定が容易であり、また光軸調整後もずれに
くいといった特徴もある。In addition, by adjusting the distance between the dielectric tube and the semiconductor light emitting element, the inclination, etc. so that the optical power at the output end of each optical fiber for leading out the monitor light is equal, the light to the transmission optical fiber can be adjusted. The coupling efficiency can be maximized. Furthermore, in the conventional method, even if the optical fiber 5 is inserted into the package and fixed after adjusting the optical axis, the optical axis is easily misaligned because the optical fiber has a small diameter and is somewhat flexible, and the fixing method is also difficult. In the configuration of the present invention, the dielectric tube has a large diameter and is hard, so it is easy to fix, and it also has the characteristics that it is difficult to shift even after adjusting the optical axis.
第3図は本発明のモニター出力付発光半導体装置の概略
図を示したものである。同図において、第1.2図と同
一符号のものは同一のものである。FIG. 3 shows a schematic diagram of a light emitting semiconductor device with a monitor output according to the present invention. In this figure, the same reference numerals as in FIG. 1.2 are the same.
(6)
12は伝送用光ファイバ13.モニター光導出用光フア
イバ群14などの挿入、充填されたガラス管であり、パ
ッケージ2内に挿入され、半導体発光素子10発光面と
対向配置されている。伝送用光ファイバ13とモニター
光導出用光フアイバ群14とはガラス管の他端部から分
離されている。(6) 12 is a transmission optical fiber 13. This is a glass tube into which a group of optical fibers 14 for leading out monitor light are inserted and filled, and is inserted into the package 2 and placed opposite the light emitting surface of the semiconductor light emitting element 10. The transmission optical fiber 13 and the monitor light guide optical fiber group 14 are separated from the other end of the glass tube.
モニター光導出用光フアイバ群の他端は受光素子10と
対向配置式れている。The other end of the optical fiber group for guiding the monitor light is arranged to face the light receiving element 10.
第4図および第5図に本発明の伝送用光信号、モニター
用光信号導出部の実施例を示す。(a)は概観図%(b
)は左側面図、(C)は右側面図である。ガラス管12
内の各党ファイバの配置はガラス管の中心軸に光ファイ
バ13を、その周囲に同心円状にモニター光導出用光フ
ァイバ15をそれぞれ位置させる構成である。モニター
光導出用光ファイバ15の数は、第4図の場合が8本、
第5図の場合が6本である。各党ファイバの固定は光フ
ァイバと光ファイバのすき間に樹脂16(あるいは接着
剤でもよい。)を充填することによって保たれている。FIGS. 4 and 5 show an embodiment of the transmission optical signal and monitoring optical signal deriving section of the present invention. (a) is an overview map% (b
) is a left side view, and (C) is a right side view. glass tube 12
The arrangement of the respective fibers is such that the optical fiber 13 is placed on the central axis of the glass tube, and the optical fiber 15 for guiding the monitor light is placed concentrically around the optical fiber 13. The number of optical fibers 15 for guiding the monitor light is 8 in the case of FIG.
In the case of Fig. 5, there are six. The fixation of each fiber is maintained by filling the gap between the optical fibers with resin 16 (or adhesive may be used).
モニター光導出用光ファイバ15の外径は、第4図の場
合には伝送用光ファイバ13の外径よシも小さく、第5
図の場合には同じである。伝送用光ファイバ13へ結合
されなかった光パワーをモニター光導出用光ファイバ1
5へできる限シ多く導出するためには、上記光ファイバ
15の外径は小さく、かつ数量を多く、さらにはコアと
クラッドの屈折率差を大きく(1%以上)、クラッドの
厚でも薄い(数μm−10数μm)はうがよい。In the case of FIG. 4, the outer diameter of the monitor light guiding optical fiber 15 is smaller than that of the transmission optical fiber 13;
The same is true for figures. Monitor the optical power that is not coupled to the transmission optical fiber 13 Optical fiber 1 for deriving light
5, the outer diameter of the optical fiber 15 should be small, the quantity should be large, the difference in refractive index between the core and the cladding should be large (1% or more), and the thickness of the cladding should be small (1% or more). (several μm to 10-odd μm) is good for gargling.
ガラス管の左端面(半導体発光素子の発光面と対向する
面)は研磨てれている。光フアイバ群14の端面((C
)側)は、受光素子との結合を良くするために、第4図
のようにリング状、第5図のようにアレイ状、さらには
たばねた状態でもよい。The left end surface of the glass tube (the surface facing the light emitting surface of the semiconductor light emitting element) is polished. The end face of the optical fiber group 14 ((C
) side) may be formed into a ring shape as shown in FIG. 4, an array shape as shown in FIG. 5, or a bent state in order to improve coupling with the light receiving element.
17は光フアイバ群14の被覆管でお9%ガラス管、ま
たは高分子材料の管で構成されている。ガラス管12の
内径は半導体発光素子の発光面からの光拡が9面積と等
しい内径か、それよりも大きい面積の内径となるように
モニター光導出用光ファイバ13を配置させる。上記実
施例はいずれも一重の同心円配置であるが、場らに2重
、3重などの多重同心円状に光ファイバを配置させると
より大出力の発光出力モニター信号を得ることができる
。したがってモニター光導出用光ファイバ13の数量は
できる限シ多い方がよい。また本発明の構成ではガラス
管径が太く、かつ固いので、パッケージ内への挿入、固
定が容易であp1光軸調整後も振動などによp光軸ずれ
が生じにくい。Reference numeral 17 denotes a cladding tube for the optical fiber group 14, which is made of a 9% glass tube or a polymer material tube. The optical fiber 13 for guiding the monitor light is arranged so that the inner diameter of the glass tube 12 is such that the light spread from the light emitting surface of the semiconductor light emitting element is equal to or larger than 9 areas. In all of the above embodiments, the optical fibers are arranged in a single concentric circle, but if the optical fibers are arranged in multiple concentric circles such as double or triple, it is possible to obtain a higher output light emission output monitor signal. Therefore, it is preferable that the number of optical fibers 13 for leading out the monitor light be as large as possible. Furthermore, in the configuration of the present invention, the glass tube is thick and hard, so it is easy to insert and fix into the package, and even after the p1 optical axis is adjusted, the p optical axis is unlikely to shift due to vibration or the like.
また光軸調整も各光ファイバ15の出力パワーが均等に
なるように観測しながら調整できる。さらに伝送用光信
号とモニター用光信号導出部が一体化され、かつ1対1
の簡易な関係にある。これに対し、従来法では光ファイ
バ5が細径で、柔軟性がありすぎるために振動などによ
る光軸ずれが生じ易いといった問題があった。なお、半
導体発光素子が半導体レーザのごとく楕円放射パターン
の光出力特性の場合でも同様に本発明の装置は適用でき
ることは明らかなことである。Further, the optical axis can be adjusted while observing so that the output power of each optical fiber 15 is equalized. Furthermore, the transmission optical signal and the monitoring optical signal derivation section are integrated and one-to-one.
There is a simple relationship between On the other hand, in the conventional method, the optical fiber 5 has a small diameter and is too flexible, so there is a problem in that the optical axis is easily misaligned due to vibration or the like. It is obvious that the apparatus of the present invention can be similarly applied even when the semiconductor light emitting element has an optical output characteristic of an elliptical radiation pattern, such as a semiconductor laser.
第6,7図は本発明の伝送用光信号、モニター用光信号
導出部の別の実施例を示したものである。6 and 7 show another embodiment of the transmission optical signal and monitoring optical signal deriving section of the present invention.
これは、各種光ファイバの挿入、充填されたガラ(9)
ス肯12の先端を18.19で示すように球状レンズ加
工したもので、これによって光フアイバ内への光結合効
率の向上と、光フアイバ端面からの反射光が半導体発光
素子へもどるのを低減きせることかできる。この加工は
、ガラス管の先端を酸水素バーナで加熱することによっ
て表面張力を利用して形成させることができる。あるい
は、第4゜5図で示した平坦なガラス管端面に半球状の
微小レンズ全敗9つけることによっても達成できる。This is made by inserting various optical fibers and processing the tip of the filled glass (9) tube 12 into a spherical lens as shown in 18.19. This improves the efficiency of light coupling into the optical fiber. It is possible to reduce the amount of light reflected from the end face of the optical fiber returning to the semiconductor light emitting device. This process can be performed by heating the tip of the glass tube with an oxyhydrogen burner to utilize surface tension. Alternatively, it can also be achieved by attaching a hemispherical microlens 9 to the end face of a flat glass tube as shown in FIG. 4.5.
このような先端加工は従来の1本の光ファイバの先端加
工に比して、まず形状が太きいため加工製作が容易であ
り、歩留りが良い。また球状レンズの焦点距離1球状形
状の異なったものを容易に作れる。球状形状が大きいた
め、従来法よりは光フアイバ内への光結合効率を大幅に
高くすることができる。Compared to the conventional tip processing of a single optical fiber, such tip processing is easier to process and manufacture because the shape is thicker, and the yield is higher. Furthermore, it is possible to easily make spherical lenses with different spherical shapes having a focal length of 1. Due to the large spherical shape, the efficiency of coupling light into the optical fiber can be significantly increased compared to conventional methods.
誘電体管としてはガラス管以外に、高分子材料からなる
管(たとえばテフロン管、シリコンゴム管、ポリプロピ
レン管、ナイロン管、あるいはシリコン、フッ素樹脂な
どからなる熱収縮性チュー(10〕
プなど)、セラミックスなどの磁性材料からなる管など
が使える。またパッケージ2とガラス管12の固定のた
めに、ガラス管の外周表面に全面、あるいは部分的に金
属膜を蒸着法、メッキ法などによシ形成し、パッケージ
2とハンダ付けをするようにしてもよい。In addition to glass tubes, dielectric tubes include tubes made of polymeric materials (for example, Teflon tubes, silicone rubber tubes, polypropylene tubes, nylon tubes, or heat-shrinkable tubes made of silicone, fluororesin, etc.); A tube made of a magnetic material such as ceramics can be used.In order to fix the package 2 and the glass tube 12, a metal film can be formed on the entire or partial outer surface of the glass tube by vapor deposition, plating, etc. However, it may be soldered to package 2.
光ファイバはマルチモードファイバ、シングルモードフ
ァイバなどを使うことができる。特にシングルモードフ
ァイバを用いる場合には、より光結合効率を高めるため
に、第8.9図のごとく、ガラス管12の先端部を20
で示すようにテーパ状にする。そしてさらに光結合効率
を高めるために、その先端を第6.7図で示したように
、球状レンズ加工21をほどこす。従来の1本の光ファ
イバの場合にはコア径が数μm〜10数μm%クラッド
径が125μm程度と小さいため、加工は極めてむずか
しかったが、本発明の場合にはガラス管外径が0.4
ttan〜数調程度数ケ程度め、加工がきわめて容易で
ある。Optical fibers can be multimode fibers, single mode fibers, etc. Particularly when using a single mode fiber, in order to further increase the optical coupling efficiency, the tip of the glass tube 12 should be
Make it tapered as shown. In order to further increase the optical coupling efficiency, the tip is processed into a spherical lens 21 as shown in FIG. 6.7. In the case of a single conventional optical fiber, the core diameter is as small as several μm to 10-odd μm, and the cladding diameter is as small as 125 μm, making it extremely difficult to process.However, in the case of the present invention, the glass tube outer diameter is 0.5 μm. 4
It is extremely easy to process, ranging from ttan to several digits.
(11]
本発明によれば、半導体発光素子からの光出力を伝送用
光7アイパヘ効率良く、かつ安定に結合させると共に、
上記光ファイバへ結合されなかった光パワーのほとんど
すべてをモニター光導出用光フアイバ群で結合させて受
光素子に入力させることができる。したがって、大出力
の発光出力モニター信号を得ることができ、またそれに
よって半導体発光素子の駆動回路の制御信号として有効
に使えることができ、帰還ループ系の増幅回路の利得を
小さくして広帯域特性をもたせ、広帯域信号の伝送を可
能にすることができる。さらに伝送用光信号とモニター
用光信号の導出部が一体化されて1対1の関係にあるの
で、モニター用光信号出力を観測しつつ光軸調整ができ
、従来のものに比し、極めて簡易構造で、信頼性が高い
。(11) According to the present invention, the optical output from the semiconductor light emitting device is efficiently and stably coupled to the transmission optical 7-iper, and
Almost all of the optical power that is not coupled to the optical fiber can be coupled by the monitor light guide optical fiber group and input to the light receiving element. Therefore, it is possible to obtain a high-output light emission output monitor signal, which can be effectively used as a control signal for the drive circuit of the semiconductor light emitting device, and to reduce the gain of the amplifier circuit in the feedback loop system to improve broadband characteristics. This makes it possible to transmit broadband signals. Furthermore, since the derivation parts for the transmission optical signal and the monitoring optical signal are integrated and have a one-to-one relationship, it is possible to adjust the optical axis while observing the monitoring optical signal output, which is extremely effective compared to conventional systems. Simple structure and high reliability.
第1.2図は従来のモニター出力付発光半導体装置の概
略図、第3図は本発明のモニター出力付発光半導体装置
の概略図、第4〜9図は本発明の伝送用光信号、モニタ
ー用光信号導出部の実施例(12)
を示したものである。
1・・・半導体発光素子、2・・・パッケージ、3,4
・・・電極ピン%5.6・・・光7アイバ、’7,8.
11・・・レンズ素子、9・・・ビームスプリッタ、1
0・・・受光素子、12・・・ガラス管、13・・・伝
送用光ファイバ、14・・・モニター光導出用光フアイ
バ群、15川モニター光導出用光フアイバ、16・・・
樹脂、17・・・被覆管、18,19.21・・・球状
レンズ加工部分、(13)
第1図
′WJ3t¥]
第 6 図
!A
第 7 図
第 δ 図
第 9 因Fig. 1.2 is a schematic diagram of a conventional light emitting semiconductor device with a monitor output, Fig. 3 is a schematic diagram of a light emitting semiconductor device with a monitor output of the present invention, and Figs. Embodiment (12) of the optical signal deriving section is shown. 1... Semiconductor light emitting device, 2... Package, 3, 4
... Electrode pin% 5.6 ... Hikari 7 Aiba, '7, 8.
11... Lens element, 9... Beam splitter, 1
0... Light receiving element, 12... Glass tube, 13... Optical fiber for transmission, 14... Group of optical fibers for leading out monitor light, 15 Optical fiber for leading out monitor light, 16...
Resin, 17... Covering tube, 18, 19. 21... Spherical lens processing part, (13) Fig. 1'WJ3t\] Fig. 6! A Figure 7 Figure δ Figure 9 Factor
Claims (1)
囲に同心円状に一重あるいは多重にモニター光導出用光
7アイパ群を配置させてなる上記誘電体管の一端を半・
導体発光素子の発光面に対向させ、上記モニター光導出
用光フアイバ群の他端を集合して受光素子へ結合させる
ように構成したモニター出力付発光半導体装置。 2 第1項記載のモニター出力付発光半導体装置におい
て、半導体発光素子の発光面に対向した誘電体管の端面
をテーパ形状に延伸加工、あるいは球状レンズ加工金は
どこしたことを特徴とする第1項記載のモニター出力付
発光半導体装置。[Scope of Claims] 1. One end of the dielectric tube, comprising a transmission optical fiber disposed at the central axis of the dielectric tube, and a group of seven eyepers for guiding light for monitoring arranged concentrically around the optical fiber in single or multiple configurations. A half-
A light-emitting semiconductor device with a monitor output, which is arranged to face a light-emitting surface of a conductive light-emitting element, and the other end of the group of optical fibers for leading out monitor light is assembled and coupled to a light-receiving element. 2. In the light emitting semiconductor device with a monitor output according to item 1, the end face of the dielectric tube facing the light emitting surface of the semiconductor light emitting element is stretched into a tapered shape or a spherical lens is formed. A light-emitting semiconductor device with a monitor output as described in 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58180253A JPS6074587A (en) | 1983-09-30 | 1983-09-30 | Light-emitting semiconductor device with monitor output |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58180253A JPS6074587A (en) | 1983-09-30 | 1983-09-30 | Light-emitting semiconductor device with monitor output |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6074587A true JPS6074587A (en) | 1985-04-26 |
Family
ID=16080030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58180253A Pending JPS6074587A (en) | 1983-09-30 | 1983-09-30 | Light-emitting semiconductor device with monitor output |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6074587A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008070753A (en) * | 2006-09-15 | 2008-03-27 | Fujifilm Corp | Fiber type coupler, photodetector, laser module, and aligning method |
JP2010237483A (en) * | 2009-03-31 | 2010-10-21 | Anritsu Corp | Optical modulator module |
-
1983
- 1983-09-30 JP JP58180253A patent/JPS6074587A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008070753A (en) * | 2006-09-15 | 2008-03-27 | Fujifilm Corp | Fiber type coupler, photodetector, laser module, and aligning method |
JP4555269B2 (en) * | 2006-09-15 | 2010-09-29 | 富士フイルム株式会社 | Fiber type coupler, light detection device, and laser module |
JP2010237483A (en) * | 2009-03-31 | 2010-10-21 | Anritsu Corp | Optical modulator module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5579422A (en) | Apparatus for coupling a multiple emitter laser diode to a multimode optical fiber | |
US5436990A (en) | Apparatus for coupling a multiple emitter laser diode to a multimode optical fiber | |
RU2142152C1 (en) | Connector for non-coaxial transmission of light energy | |
AU675609B2 (en) | High power semiconductor laser system | |
US5271079A (en) | Light mixing device with fiber optic output | |
US5438873A (en) | Fiberoptic sensor using tapered and bundled fibers | |
US4191446A (en) | Directional coupling-device for multi-mode optical fibres | |
JPS6215769Y2 (en) | ||
US4383731A (en) | Opto-electronic head incorporating a very small diameter optical fibre portion and connection device incorporating such a head | |
US5138677A (en) | Broadband optical power summer | |
JPS61260207A (en) | Bidirectional optoelectronics component part for forming optical couple | |
JPH04333808A (en) | Photosemiconductor module | |
US5852692A (en) | Tapered optical fiber delivery system for laser diode | |
JP2001330761A (en) | Light emitting device | |
JP3907233B2 (en) | Parallel optical data link | |
Wang et al. | Tolerance analysis of aligning an astigmatic laser diode with a single-mode optical fiber | |
US6396981B1 (en) | Optical device module | |
US5001722A (en) | Dynamic single-mode laser transmitter | |
JPS6074587A (en) | Light-emitting semiconductor device with monitor output | |
US7371017B1 (en) | Automated laser pressing system | |
JPS59226310A (en) | Optical coupling system | |
JPS6338909A (en) | Optical fiber with lens | |
CN218824794U (en) | Multichannel chip type emission collimator with light splitting function | |
JPH0498208A (en) | Optical array device | |
JPS5916904Y2 (en) | Semiconductor light emitting device with optical fiber |