JPS6074424A - Method of producing condenser - Google Patents

Method of producing condenser

Info

Publication number
JPS6074424A
JPS6074424A JP18229483A JP18229483A JPS6074424A JP S6074424 A JPS6074424 A JP S6074424A JP 18229483 A JP18229483 A JP 18229483A JP 18229483 A JP18229483 A JP 18229483A JP S6074424 A JPS6074424 A JP S6074424A
Authority
JP
Japan
Prior art keywords
film
capacitor
electrode foil
manufacturing
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18229483A
Other languages
Japanese (ja)
Inventor
佳之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP18229483A priority Critical patent/JPS6074424A/en
Publication of JPS6074424A publication Critical patent/JPS6074424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はコンデンサ素子乞熱融着性樹脂フイルムゲ含む
ラミネートフィルムケ用いてパッケージしたコンデンサ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a capacitor packaged using a laminate film containing a heat-sealable resin film for capacitor elements.

従来たとえばコンデンサ素モアラミネートフィルムでパ
ッケージした電解コンデンサは粗面化し化成皮膜ケ生成
したアルミ箔化陽極箔とし、これにリード線端モア取着
したものと粗面化したアルミ箔ン陰極箔とし、これにリ
ード線端子ケ取着したものと2一対としこれらをスペー
サ化分して巻回してコンデンサ素子化形成したの)該コ
ンデンサ素子を圧潰して偏平なコンデンサ素子ケ得てい
た。この偏平コンデンサ素子に駆動用電解液ケ含浸しこ
fLヲ熱融着性樹脂フィルム、アルミ箔、ポリエステル
フィルムなどの3層ラミネートフィルムの中に収容し該
ラミネートフィルムケ加熱圧着して封口していた。しか
しなから上記のような構成からなる電解コンデンサはコ
ンデンサ累子火巻回するときのり一ト:線端子の位置の
バラツキを生じたりラミネートフィルムケ加熱圧着した
とぎにリード線端子、特にアルミ丸線とリード線との接
続部分で熱融着性樹脂が溶融して逃げラミネートフィル
ム中のアルミ箔とリード線端子とが接触する場合があり
、陽極リード線端子と陰極1ノード線端子とがそれぞれ
ラミネートフィルム中のアルミ箔に接触した場合は短絡
となる問題点があった。
Conventionally, for example, an electrolytic capacitor packaged with a laminated film made of capacitor material is made of an aluminum foil anode foil with a roughened surface and a chemical conversion film, and one with a mower attached to the end of the lead wire and a cathode foil made of roughened aluminum foil. A lead wire terminal was attached to this and two pairs were made into spacers and wound to form a capacitor element.) The capacitor element was crushed to obtain a flat capacitor element. This flat capacitor element was impregnated with driving electrolyte and then housed in a three-layer laminate film made of heat-sealable resin film, aluminum foil, polyester film, etc., and the laminate film was sealed by heat-pressing. . However, when an electrolytic capacitor with the above structure is wound, the position of the wire terminals may vary, and the lead wire terminals, especially the round aluminum wires, may become uneven after the laminate film is heated and crimped. The heat-fusible resin may melt and escape at the connection part between the laminate film and the lead wire, and the aluminum foil in the laminate film may come into contact with the lead wire terminal. There was a problem in that if it came into contact with the aluminum foil in the film, it would cause a short circuit.

またコンデンサ素子の形成手段が巻回であるため巻回で
きろ陽・陰極箔の犬ぎさに自ずと限界があり、その寸法
は陽極箔で幅2龍×長さ1o龍であり、この巻回体乞圧
潰したコンデンサ素子の寸法は幅4.4龍×長さ3龍×
厚さ1.2龍となる。したかってこの寸法以下の小容量
のコンデンサ紙得ようとて石場合には陽極箔の化成電圧
火高くして単位面積当たりの静電容量を小さくしてアル
ミ箔の寸法が前述の寸法に達するまで太ぎくして使用し
なければならないという制約があった。このように従来
のラミネートフィルム欠円いてパッケージしたコンデン
サでは小形化に限度があり、かつ小容量の場合には容量
に応じた小形化ケできない欠点があった。さらにコンデ
ンサ素子は巻回体を圧潰して得ているので薄さにも限度
があり、圧潰されたコンデンサ素子が原状に復する反発
カケ化ずることと合わせて薄形化の推進を阻害していた
In addition, since the means of forming the capacitor element is winding, there is a natural limit to the size of the anode and cathode foils that can be wound. The dimensions of the crushed capacitor element are width 4.4 × length 3 ×
The thickness will be 1.2 dragons. Therefore, if you are trying to obtain a capacitor paper with a small capacity below this size, increase the anode foil's formation voltage and reduce the capacitance per unit area until the aluminum foil size reaches the above-mentioned size. There was a constraint that it had to be made thicker. As described above, conventional capacitors packaged with a laminate film having a circular cutout have the disadvantage that there is a limit to miniaturization, and in the case of a small capacity, the capacitor cannot be miniaturized according to the capacity. Furthermore, since the capacitor element is obtained by crushing the wound body, there is a limit to how thin it can be, and this, together with the fact that the crushed capacitor element returns to its original shape and becomes a repulsive chip, hinders the promotion of thinner designs. Ta.

本発明は上記の欠点を除去するためになされたもので陽
極箔または陰極箔に薄膜を形成しコンデンサ紙などのス
ペーサ欠除いた構成欠有するので工程が単純化され自動
化が容易となるほか短絡不良化減少せしめ小形化・薄形
化できるコンデンサの製造方法ケ提供せんとするもので
ある。以下図面を参照しながら説明する。第1図に示す
ようにアルミ箔ケ粗面化し化成皮膜化生成して角形の電
極箔(1)乞形成し該電極箔(1)の−辺から切込み(
2)2設は第2図に示すように該切込み121から反対
方向に折り返して他辺から突き出た引出部(31を形成
する。該引出部(3)に洋白、ニッケル、鉄、銅などの
はんだ付は可能な薄い板または箔からなる外部端子(4
)ケミ気・超音波・レーザーなどの溶接やコールド°ウ
ェルドあるいはかしめなどで接続し該接続部に樹脂やガ
ラスなどの絶縁物(5)ケ塗布し硬化させろ。また第3
図に示すようにアルミ箔を粗面化し角形の対向雷1極箔
(6)の−辺から切込み(7)7設は前記電極箔(1)
と同様に折り返して引出部(8)を形成するが、該対向
電極箔(6)の切込み(7)欠除いた残部分は前記型+
w ??3 [1) w上下両面から挟み込むために該
電極箔(1)の切込み(2)火設けた残部分の約2倍の
長さケ有する。該対向電極箔(6)の引出部(8)にも
前述の電極箔il+の場合と同様はんだ付は可能な外部
端子(9)を接続し、該接続部に絶縁物(10)を塗布
し硬化させる。次いで第4図に示すよ5に前記電極箔<
11に微孔性または半透性あるいはイオン電導性などか
らなるまたはバルブ繊維からなる薄膜(11)を形成し
対向電極箔(6)の前記残部分を長さ方向に二つ折りし
た内面に該電極箔(1)?挟み込みコンデンサ素子(1
2)’9構成する。したがって該コンデンサ素子(12
)は電極箔(1)の両面に形成された薄膜(11)ケ介
して対向電4fit ??’+ (61が対向して配さ
れ同一端面から外部端子(3)と外部端子(7)とが引
出された構成7有している。この薄膜(IJ)に含浸削
欠含浸させたら第5図のようにたとえばアイオノマー。
The present invention has been made to eliminate the above-mentioned drawbacks.The present invention has a structure in which a thin film is formed on the anode foil or the cathode foil and spacers such as capacitor paper are omitted, so the process is simplified, automation is easy, and short circuits occur. It is an object of the present invention to provide a method for manufacturing a capacitor that can be made smaller and thinner by reducing the cost. This will be explained below with reference to the drawings. As shown in Figure 1, the aluminum foil is roughened and formed into a chemical conversion film to form a rectangular electrode foil (1), and a cut (
2) As shown in Fig. 2, the second set is folded back from the notch 121 in the opposite direction to form a drawer part (31) protruding from the other side.The drawer part (3) is made of nickel silver, nickel, iron, copper, etc. It is possible to solder external terminals made of thin plates or foil (4
) Connect by chemical, ultrasonic, or laser welding, cold welding, or caulking, and apply an insulating material (5) such as resin or glass to the joint and harden it. Also the third
As shown in the figure, the aluminum foil is roughened and a cut (7) is made from the - side of the rectangular opposing lightning pole foil (6).
The lead-out part (8) is formed by folding back in the same manner as above, but the remaining part of the counter electrode foil (6) after removing the notch (7) is placed in the mold +
lol? ? 3 [1] The cut (2) of the electrode foil (1) has a length approximately twice as long as the remaining portion of the electrode foil (2) to be sandwiched from both the upper and lower surfaces. An external terminal (9) that can be soldered is also connected to the lead-out part (8) of the counter electrode foil (6) as in the case of the electrode foil IL+ described above, and an insulator (10) is applied to the connection part. Let it harden. Next, as shown in FIG.
A thin film (11) made of microporous, semipermeable, ion conductive, etc. or bulb fiber is formed on 11, and the remaining portion of the counter electrode foil (6) is folded in half in the length direction, and the electrode is attached to the inner surface of the foil. Foil (1)? Sandwich capacitor element (1
2) Configure '9. Therefore, the capacitor element (12
) is a counter current 4fit ? through the thin film (11) formed on both sides of the electrode foil (1). ? '+ (61 is arranged facing each other and has a structure 7 in which an external terminal (3) and an external terminal (7) are drawn out from the same end face. When this thin film (IJ) is impregnated with impregnation cutout, the fifth For example, an ionomer as shown in the figure.

ポリエチレン、ポリアミドなどの熱融着性樹脂フィルム
(13)+アルミ箔(14)+ポリエステル、塩化ビニ
リデン、弗素系樹脂などσ)外装フィルム(15)から
なるラミネートフィルム(16)の中にコンデンサ素子
(12)’%:収容し前記ラミネートフィルム(16)
の熱融着性(射脂フィルム(13)同志が合うようにし
て開ロ部ケ加熱・圧着し熱融着性樹脂フィルム(13)
Y接着して第6図に示でような偏平な角形コンデンサ素
子ろことができろ。なお前記において薄膜(11)ケミ
極箔+1+に形成した場合について述べたが、対向電極
箔(6)に形成しても同効であるし必要に応じて電極箔
(1)と対向電極箔(6)の両方に形成してもよい。そ
して微孔性、半透性、イオン電導性などの薄膜の形成は
たとえば特公昭43−8069号公報2%公昭50−2
8636号公報や特公昭51−3904号公報などに記
載されており、またパルプ繊維や駆動用電解液ケ含んだ
パルプ繊維層からなる薄膜化形成することは特公昭57
−38019号公報に記載されているものなどがある。
A capacitor element (16) is placed inside a laminate film (16) consisting of a heat-fusible resin film (13) made of polyethylene, polyamide, etc. + aluminum foil (14) + an exterior film (15) of polyester, vinylidene chloride, fluorine resin, etc. 12)'%: Accommodating said laminated film (16)
Thermal adhesiveness (resin film (13)) Heat and press the open part so that the resin film (13) fits together and heat and press the heat adhesive resin film (13).
By Y-bonding, a flat rectangular capacitor element as shown in Figure 6 can be made. In the above, we have described the case where the thin film (11) is formed on the chemical electrode foil +1+, but the same effect can be obtained even if it is formed on the counter electrode foil (6). 6) may be formed in both. For example, the formation of microporous, semipermeable, and ionic conductive thin films is described in Japanese Patent Publication No. 43-8069, 2% Publication No. 50-2
It is described in Japanese Patent Publication No. 8636, Japanese Patent Publication No. 51-3904, etc., and forming a thin film consisting of a pulp fiber layer containing pulp fibers and a driving electrolyte is described in Japanese Patent Publication No. 57, No.
There are those described in Publication No.-38019.

次いで電解コンデンサの実施例について述べる。Next, examples of electrolytic capacitors will be described.

表面に粗面化しgyの化成皮1&G y生成した0、1
11m厚アルミ箔Y 3 X 4 mmの角形および該
角形の一辺に1關幅×2龍長さの切込みを設は該切込み
から反対方向に折り返して突き出た引出部を形成し、第
1図に示すような陽極箔を作成でる。前記引出部にQ、
1m++厚×1厚幅1〜宜な長さの洋白からなる外部陰
極端子火スポット溶接して接続し該接続溶解した合成樹
脂溶液にポリエチレングリコール?添加して混合液とし
、該混合e、欠陽極箔に塗布したのち水蒸気雰囲気中ゲ
通過させ、次いで水中に浸漬後乾燥して厚さ201Lm
の微孔体薄膜ケ形成した。また0、 05 mm厚のア
ルミ箔ケ粗面化し第3図に示すように3 my X 8
 ”の角形および11111II幅×2關長さに形成し
た切込みから反対方向に折り返して引出部ケ設けた陰極
箔に前記陽極箔に接続したと同様の洋白からなる外部陰
極端子ケスポット溶層して接続し、該接続部にエポキシ
樹脂を塗布し硬化させた。前記陽碑箔0)上下面ケ前記
陰極箔で被覆し外部陽極端子および外部陰極端子か同一
端面から引出されたコンデンサ素子ケ構成し、該コンデ
ンサ素子に駆動用電解液を含浸てろ。したがってコンデ
ンサ素子は4 my X 3 +11J X 0.25
朋の寸法ケ有し、これから外部端モア引出した構造どな
る。該コンデンサ素モアアイオノマー樹脂フィルム(厚
さ0.151+l+アルミ箔(厚さQ、Q2mm)十ポ
リエステルフィルム(厚80−013+ui )からな
る3層ラミネートフィルムのアイオノマー側脂フィルム
上に載せ、該ラミネートフィルムケ折り返して前記第5
図のように収容しコンデンサ素子の周囲ケ加熱・圧着し
て前記アイオノマー樹脂フイルムケ溶着して密閉し不要
部を切断して得たコンデンサの寸法は横5II11×縦
4.5鰭×厚さQ、7朋から外部端子が引出さオtたも
ので体積は15.8 mm”で得らλtた静電容量kま
3.71=Fである。この6.3 WV−3,7pFの
電解コンチンサン従来の巻回形θ)素子・で構成した場
合には3 myφX5mffff1のケースに収容しな
ければならず、この体積は35.3 yhm” である
から本実施例は従来に比し45%σ)体積しか有せず5
5%の体積ン減することができろ。従来の巻回形のコン
デンサではケース直径が3 muφが最小であり、また
巻回形の素子ケ圧潰したコンデンサ素子をラミイ・−ト
フイルムを用いてパッケージしたものでは定格6.3 
WV’ −3,7pF テ厚さが1.5龍あるが、本発
明の場合には厚さ火0.7m11とすることかでき従来
より大幅に薄形化できる利点がある。また従来方法では
封口時の加熱・圧着によってラミネートフィルムの熱融
着性樹脂の逃げによるラミネートフィルム中のアルミ箔
と外部端子との接触による短絡2生じていたが、本発明
によれば外部端子と電極箔および対向電極箔と乞重ね合
わせたときの厚さが0.2111以下であり前記熱融着
性樹脂フィルムの厚さ0.3II11に比し薄いので熱
融着性樹脂が加熱・圧着によって逃げても外部端子1妾
触による短絡は発生しない。さらに上記実施例では外部
端子火同一方向から引出した場合について述べたが、第
7図に示したような電極箔(21)如切込み(22)′
fX−設けて折り返し引出部(23)′?影形成たもの
と第3図に示した対向電極箔(6)と大組合わせれば外
部端子反対方向形電解コンチンサン得ることができる。
Synthetic skin of gy with rough surface 1&G y generated 0,1
A square shape of 11 m thick aluminum foil (Y3 x 4 mm) and a notch of 1 square width x 2 lengths were made on one side of the square, and a drawer part was formed by folding back from the notch in the opposite direction to form a protruding part, as shown in Figure 1. You can make an anode foil like the one shown. Q in the drawer part,
An external cathode made of nickel silver with a thickness of 1 m++ thickness x 1 thickness and width of 1 to a length of appropriate length is connected by spot welding with a terminal flame, and polyethylene glycol is added to the dissolved synthetic resin solution. The mixture e was applied to a blank anode foil, passed through a steam atmosphere, and then immersed in water and dried to a thickness of 201 Lm.
A microporous thin film was formed. In addition, the aluminum foil with a thickness of 0.05 mm was roughened to form a surface of 3 my x 8 as shown in Figure 3.
An external cathode terminal made of nickel silver similar to the one connected to the anode foil is connected to the cathode foil which is folded in the opposite direction from the notch formed in the square shape and 11111II width x 2 length and provided with a drawer part. The positive foil 0) The upper and lower surfaces were covered with the negative electrode foil, and the external anode terminal and external cathode terminal were drawn out from the same end surface. Then, impregnate the capacitor element with the driving electrolyte. Therefore, the capacitor element is 4 my X 3 + 11 J X 0.25.
It has the same dimensions as mine, and the outer end of the mower is pulled out from this structure. The capacitor element was placed on the ionomer side fat film of a three-layer laminate film consisting of an ionomer resin film (thickness 0.151+l + aluminum foil (thickness Q, Q2mm) and a polyester film (thickness 80-013+ui), Fold back and read the fifth
The dimensions of the capacitor obtained by encasing the capacitor element as shown in the figure, heating and crimping the periphery of the capacitor element, welding and sealing the ionomer resin film, and cutting off unnecessary parts are: width 5II 11 x height 4.5 fins x thickness Q. With the external terminal drawn out from the 7-pin, the volume is 15.8 mm, and the capacitance obtained by λt is 3.71=F. In the case of a conventional wound type θ) element, it must be housed in a case of 3 myφ×5mffff1, and this volume is 35.3 yhm”, so this embodiment has a 45% σ) compared to the conventional one. It has only volume 5
Can you reduce the volume by 5%? The minimum case diameter for conventional wound-type capacitors is 3 muφ, and the rated value for capacitor elements packaged with crushed wound-type capacitors using laminate film is 6.3 mm.
WV' -3.7 pF The thickness is 1.5 mm, but in the case of the present invention, the thickness can be reduced to 0.7 m11, which has the advantage of being much thinner than the conventional one. In addition, in the conventional method, a short circuit 2 occurred due to contact between the aluminum foil in the laminate film and the external terminal due to escape of the heat-fusible resin of the laminate film due to heating and pressure bonding during sealing, but according to the present invention, short circuit 2 occurred due to contact between the external terminal and the aluminum foil in the laminate film. The thickness when stacked with the electrode foil and counter electrode foil is 0.2111 or less, which is thinner than the thickness of the heat-fusible resin film, which is 0.3II11, so that the heat-fusible resin can be easily bonded by heating and pressure bonding. Even if the terminal escapes, a short circuit due to contact with the external terminal 1 will not occur. Furthermore, in the above embodiment, a case was described in which the external terminals were pulled out from the same direction, but the electrode foil (21) and the notch (22)' as shown in FIG.
fX-provided fold-back drawer part (23)'? By combining the shaded material with the counter electrode foil (6) shown in FIG. 3, an electrolytic continuum with external terminals in opposite directions can be obtained.

また実施例では切込みの反対方向に折り返して引出部を
構成−fるものについて述べたが、第8図および第9図
のように切込みに対し直角に折り返した構成のもの大組
合わせれば外部端子ケ同一方向から引出すこともできろ
。このように本発明では切込みおよび折り返しの方向を
変えろことによって外部端子をどのような方向にも引出
部ことかできる。また電極箔および対向電極箔の切込み
、折り返し、外部端子接続などはたとえば切込み2入れ
たのち次工程で折り返し、外部端子を接続してから個々
に切断できろなと自動化が容易になる効果ケ有する。な
お実施例ではラミネートフィルムにアルミ箔を介挿した
3層うミ坏−トフィルムについて述べたが、これは駆動
用電解液などの含浸剤の透過性ケ考慮したものであり4
層となってもよいしまた使用する含浸剤によって樹脂フ
ィルムのみの2層〜4層うミネー)フイルムケ使用して
もよい。また薄膜形成後含浸剤ゲ含浸する実施例につい
て述べたが駆動用電解液などの含浸剤ケ含んだ薄膜を形
成し含浸工程ケ不要とした方法も本発明の範囲に含まi
tろ技術である。
In addition, in the embodiment, the pull-out part is formed by folding back in the opposite direction of the notch, but if the structure is folded back at right angles to the notch as shown in FIGS. 8 and 9, the external terminal can be You can also pull it out from the same direction. As described above, in the present invention, by changing the direction of the cut and the folding, the external terminal can be drawn out in any direction. In addition, cutting, folding back, and connecting external terminals in electrode foil and counter electrode foil can be easily automated by making two cuts, folding them back in the next process, connecting external terminals, and then cutting them individually. . In the example, a three-layer adhesive film in which aluminum foil was inserted into a laminate film was described, but this was done in consideration of the permeability of the impregnating agent such as the driving electrolyte.
Depending on the impregnating agent used, it may be a 2- to 4-layer resin film. In addition, although an example in which the thin film is formed and then impregnated with an impregnating agent has been described, a method of forming a thin film containing an impregnating agent such as a driving electrolyte and eliminating the need for an impregnating step is also within the scope of the present invention.
It is a t-ro technology.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいす、Itも本発明の実施例うで示し第1図は電
極箔に切込みケ設けた状態ケ示す平面図、第2図は電極
箔に外部端子ケ接続した状態ケ示す平面図、第3図は対
向電イセ箔に外部端子1妾触した状態を示す平面図、第
4図はコンデンサ素子の構成を説明するための〜部側断
面図、第5図はコンデンサ素子をラミネートフィルムに
収容した状態ン示す側断面図、第6図は完成した偏平角
形電解コンデンサ素子て斜視図、第7図は電極箔に切込
みを設けた(laの実施例を示す平面図、第8図は電極
箔+7)他の芙施例火示す平面図、第9図は対向電極箔
の他の実施例ケ示す平面図である。 +1)・・・・・電優籠 (2)・・・・・切込み(3
)・・・・・引出部(4)・・・・・外部端子(5)・
・・・・絶縁物 (6)・・・・・対向電極箔(7)・
・・・・切込み (8)・・・・・引出部(9)・・・
・・外部端子 (10)・・・・・絶縁物(11)・・
・・・薄膜 (12)・・・・・コンデンサ素子(13
◇・・・・・熱融着性樹脂フィルム(14)・・・・・
アルミ箔 (15)・・・・・外装フィルム(16)・
・・・・ラミネートフィルム。 特許出願人 マルコン電子株式会社 第 ろ 図 第 2 図
The drawings also show examples of the present invention, and FIG. 1 is a plan view showing the state in which notches are provided in the electrode foil, FIG. 2 is a plan view showing the state in which external terminals are connected to the electrode foil, and FIG. Figure 3 is a plan view showing the state in which the external terminal 1 is in contact with the counter electrode foil, Figure 4 is a side cross-sectional view of the ~ section for explaining the structure of the capacitor element, and Figure 5 is the capacitor element housed in the laminate film. Fig. 6 is a perspective view of the completed rectangular electrolytic capacitor element, Fig. 7 is a plan view showing the embodiment of the electrode foil with a cut (la), and Fig. 8 is a plan view showing the electrode foil. +7) A plan view showing another embodiment, FIG. 9 is a plan view showing another embodiment of the counter electrode foil. +1)・・・Denyu basket (2)・・・Notch (3
)...Drawer part (4)...External terminal (5)...
...Insulator (6) ...Counter electrode foil (7)
...Notch (8)...Drawer part (9)...
...External terminal (10)...Insulator (11)...
... Thin film (12) ... Capacitor element (13
◇・・・・Heat-fusible resin film (14)・・・・
Aluminum foil (15)... Exterior film (16)
····Laminate film. Patent Applicant Marukon Electronics Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】 (1)角形の電極箔および対向電極箔に設けた切込み火
折り返して引出部ケ構成でろ工程と、該引出部にそれぞ
れ外部端子ケ接続し該接続部を絶縁物で被覆する工程と
、前記電極箔および/または対向電極箔に薄膜ケ形成す
る工程と、該工程ののちに電極箔ゲ対向電極箔で挟み込
んでコンデンサ素子ケ構成する工程と、前記薄膜に含浸
剤化含浸する工程と7具備し、該工程ののちに前記コン
デンサ素子?ラミネートフィルム中に収容し該ラミネー
トフィルムケ接着する工程とからなるコンデンサの製造
方法。 (2)切込みが角形の一辺から垂直または水平に形成さ
れ折り返しが前記切込みに対し直角または反対方向にな
されること欠特徴とする特許請求の範囲第(1)項に記
載のコンデンサの製造方法。 (3)外部端子が洋白、ニッケル、鉄、銅などのはんだ
付は可能な金属薄板または金属箔からなることケ特徴と
する特許請求の範囲第(1)項または第(2)項に記載
のコンデンサの製造方法。 (4)絶縁物が樹脂、ガラスなどケ塗布−硬化させる(
5)薄膜が微孔性、半透性、イオノ電導性の薄膜あろい
はパルプ繊維層であることケ特徴とする特許請求の範囲
第(1)項〜第(4)項のいずitかに記載のコンデン
サの製造方法。 (6)薄膜が駆動用電解液ケ含んだものからブエろこと
ゲ特徴とする特許請求の範囲第(1)項〜第(5)項の
いずれかに記載のコンデンサの製造方法。 (7)ラミネートフィルムが熱融着性樹脂フィルムと外
装フィルムとのラミネートからなり、熱融着性樹脂フィ
ルム同志ケ接着することケ特徴とする特許請求の範囲第
(1)項〜第(6)項のいずi’tかに記載のコンデン
サの製造方法。 (8)熱融着性樹脂フィルムがアイオノマー、ポリエチ
レン、ポリアミドの中の1種であり、外装フイルムがポ
リエステル、塩化ビニリデン、弗素系樹脂の中の1種か
らなることを特徴とする特許請求の範囲第(7)項に記
載のコンデンサの製造方法。 (9)ラミネートフィルムか熱融着性樹脂フィルムと外
装フィルムとの間にアルミ箔ケ介挿したものからなるこ
とケ特徴とする特許請求の範囲第(1)項〜第(7)項
のいずれかに記載のコンデンサの製造方法。
[Scope of Claims] (1) A step in which the incisions provided in the rectangular electrode foil and the counter electrode foil are folded back to form a drawer portion, and an external terminal is connected to each of the drawer portions, and the connecting portion is covered with an insulating material. a step of forming a thin film on the electrode foil and/or a counter electrode foil; a step of sandwiching the electrode foil with a counter electrode foil after the step to form a capacitor element; and impregnating the thin film with an impregnating agent. 7, and after the step, the capacitor element ? A method for producing a capacitor, which comprises the steps of accommodating the capacitor in a laminate film and adhering the laminate film. (2) The method for manufacturing a capacitor according to claim (1), characterized in that the notch is formed vertically or horizontally from one side of the rectangle, and the fold is made at right angles to or in the opposite direction to the notch. (3) Claims (1) or (2) characterized in that the external terminal is made of a solderable metal thin plate or metal foil such as nickel silver, nickel, iron, or copper. manufacturing method for capacitors. (4) If the insulator is resin, glass, etc., apply it and cure it (
5) Any one of claims (1) to (4), characterized in that the thin film is a microporous, semipermeable, ionoconductive thin film layer that is a pulp fiber layer. The manufacturing method of the capacitor described in . (6) The method for manufacturing a capacitor according to any one of claims (1) to (5), characterized in that the thin film contains a driving electrolyte. (7) Claims (1) to (6) characterized in that the laminate film is composed of a laminate of a heat-fusible resin film and an exterior film, and the heat-fusible resin films are bonded together. A method for manufacturing a capacitor according to any one of Items i't. (8) Claims characterized in that the heat-fusible resin film is made of one of ionomer, polyethylene, and polyamide, and the exterior film is made of one of polyester, vinylidene chloride, and fluororesin. A method for manufacturing a capacitor according to paragraph (7). (9) Any one of claims (1) to (7) characterized in that it is made of a laminate film or a heat-fusible resin film and an exterior film with an aluminum foil inserted between them. A method for manufacturing a capacitor as described in .
JP18229483A 1983-09-29 1983-09-29 Method of producing condenser Pending JPS6074424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18229483A JPS6074424A (en) 1983-09-29 1983-09-29 Method of producing condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18229483A JPS6074424A (en) 1983-09-29 1983-09-29 Method of producing condenser

Publications (1)

Publication Number Publication Date
JPS6074424A true JPS6074424A (en) 1985-04-26

Family

ID=16115766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18229483A Pending JPS6074424A (en) 1983-09-29 1983-09-29 Method of producing condenser

Country Status (1)

Country Link
JP (1) JPS6074424A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133531A (en) * 1979-04-02 1980-10-17 Sprague Electric Co Sealed flat electrolytic condenser and method of manufacturing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133531A (en) * 1979-04-02 1980-10-17 Sprague Electric Co Sealed flat electrolytic condenser and method of manufacturing same

Similar Documents

Publication Publication Date Title
JPH05205984A (en) Laminated solid electrolytic capacitor
JPH04119614A (en) Aluminum electrolytic capacitor
US4603467A (en) Method of manufacturing chip-type aluminum electrolytic capacitor
JPH0568086B2 (en)
JPS6074424A (en) Method of producing condenser
JPS6052011A (en) Method of producing electrolytic condenser
JPS605572Y2 (en) Electrolytic capacitor
CN218241605U (en) Laminated solid-state aluminum electrolytic capacitor with good sealing performance
JPS6065522A (en) Method of producing capacitor
JPS6320112Y2 (en)
JPS61136218A (en) Manufacture of electrolytic capacitor
JPS58184719A (en) Chip-shaped solid electrolytic condenser
JPS6049622A (en) Method of producing electrolytic condenser
JPS62569B2 (en)
JPH0447952Y2 (en)
JPS6196720A (en) Electrolytic capacitor
JP2655428B2 (en) Exterior method of electric double layer capacitor
KR101475367B1 (en) Solid electrolytic capacitor
JPS6196718A (en) Electrolytic capacitor
JPS60250615A (en) Method of producing electrolytic condenser
JP2001196074A (en) Polymer battery and manufacturing method thereof
JPS6191915A (en) Electrolytic capacitor
JPS61142732A (en) Manufacture of electrolytic capacitor the same direction as lead terminal
JPS60213016A (en) Method of producing capacitor
JPS6195509A (en) Electrolytic capacitor