JPS607390A - Aggregate of nuclear fuel - Google Patents

Aggregate of nuclear fuel

Info

Publication number
JPS607390A
JPS607390A JP58116500A JP11650083A JPS607390A JP S607390 A JPS607390 A JP S607390A JP 58116500 A JP58116500 A JP 58116500A JP 11650083 A JP11650083 A JP 11650083A JP S607390 A JPS607390 A JP S607390A
Authority
JP
Japan
Prior art keywords
fuel assembly
flow
lower nozzle
plate
baffle plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58116500A
Other languages
Japanese (ja)
Inventor
雅也 星
義明 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP58116500A priority Critical patent/JPS607390A/en
Publication of JPS607390A publication Critical patent/JPS607390A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は原子炉におけるバックル板と炉心槽との間隙へ
流入する流れ抵抗を増大させるために燃料集合体下部ノ
ズルの形状を変更することにより、下部ノズルの脚間の
横流れ抵抗を故窟に大キくシてなる核燃料集合体に関す
るものである。
Detailed Description of the Invention The present invention improves the flow resistance between the legs of the lower nozzle by changing the shape of the lower nozzle of the fuel assembly in order to increase the flow resistance flowing into the gap between the buckle plate and the core barrel in a nuclear reactor. It concerns a nuclear fuel assembly that is made up of large-scale lateral flow resistance.

一般に燃料集合体40は第1図に示すように、大別して
下部ノズル1、燃料棒2、グリッド3、上部ノズル4か
らなり、第2図に示すように、燃料集合体40が炉心内
に装荷された状態で、炉心周辺部の一次冷却材の流れは
、入口ノズル5から原子炉容器6内に流入し、原子炉容
器6と炉心槽7との間を下υ、下部ブレナム8で流れ方
向を変えて下部炉心支持板9と、下部炉心板1oの孔を
通って炉心11に入る。
In general, the fuel assembly 40 is roughly divided into a lower nozzle 1, fuel rods 2, a grid 3, and an upper nozzle 4, as shown in FIG. 1, and as shown in FIG. 2, the fuel assembly 40 is loaded into the core. In this state, the flow of primary coolant around the core flows into the reactor vessel 6 from the inlet nozzle 5, flows between the reactor vessel 6 and the core tank 7 in the lower υ, and in the flow direction at the lower blennium 8. and enters the core 11 through the holes in the lower core support plate 9 and the lower core plate 1o.

上記−次冷却材の一部の流れは、第2図のA部を拡大し
た第3図に示すように、燃料集合体40の下部ノズル1
の脚間空間21を通って、バッフル板13の下端と炉心
槽7との間隙25に、矢印23で示されるように流入し
、フォーマ板14の孔12を通って上部ブレナム15に
至るバイパス流23となる。ここでバックル板13の下
端と下部炉心板10との間隔100は約4Qmmである
A portion of the secondary coolant flows through the lower nozzle 1 of the fuel assembly 40, as shown in FIG. 3, which is an enlarged view of section A in FIG.
Bypass flow flows through the inter-leg space 21 into the gap 25 between the lower end of the baffle plate 13 and the core barrel 7 as shown by the arrow 23, passes through the holes 12 in the former plate 14, and reaches the upper brenum 15. It will be 23. Here, the distance 100 between the lower end of the buckle plate 13 and the lower core plate 10 is about 4Qmm.

第4図は従来のプラントにおけるバックル板差圧の軸方
向分布例であり、第2図ないし第3図における間隙25
側と、炉心11側との差圧であるバッフル板差圧はGで
示される燃料集合体にグリッド3のある軸方向位置では
増大し、バッフル板13と、炉心槽7との間にFで示さ
れるフォーマ板14がちる軸方向位置では減少するため
、軸方向にはギザギザ形状となるが、バッフル板13と
炉心槽7側との間隙250入口における圧損が燃料集合
体下部ノズル1の圧損よシ小さいため、間1!+125
側が全体的にプラスとなる。
Figure 4 shows an example of the axial distribution of buckle plate differential pressure in a conventional plant.
The baffle plate differential pressure, which is the differential pressure between the side and the core 11 side, increases at the axial position of the grid 3 in the fuel assembly indicated by G, and the pressure difference between the baffle plate 13 and the core barrel 7 increases at F. As shown, the former plate 14 decreases in the axial position, resulting in a jagged shape in the axial direction, but the pressure loss at the inlet of the gap 250 between the baffle plate 13 and the core tank 7 side is greater than the pressure loss at the fuel assembly lower nozzle 1. Because it is small, it takes 1 time! +125
The overall side is positive.

第5図はバックル板13と燃料集合体40の位置関係を
示す説明図、第6図は第5図のB部拡大図であるが、バ
ッフル板13の接合部に隙間24がある場合、バックル
板13と炉心槽7との間隙25の方が圧力が高いために
ジェット流30が炉心に流入する。
FIG. 5 is an explanatory diagram showing the positional relationship between the buckle plate 13 and the fuel assembly 40, and FIG. 6 is an enlarged view of part B in FIG. Since the pressure is higher in the gap 25 between the plate 13 and the core barrel 7, the jet stream 30 flows into the core.

第7図はバックル板間隙から炉心に流入するジェット流
の流速と、燃料棒の振動の関係を示したものであって、
ジェット流の流速が充分小さいところでは燃料棒の振動
も小さい。また、ジェット流の流速をある程度大きくす
ると、まずカルマン渦による振動が生じるが、更に流速
を大きくすると、カルマン渦振動は生じなくなる。
Figure 7 shows the relationship between the flow velocity of the jet stream flowing into the core from the buckle plate gap and the vibration of the fuel rods.
Where the flow velocity of the jet stream is sufficiently low, the vibration of the fuel rods is also small. Furthermore, when the flow velocity of the jet stream is increased to a certain extent, vibrations due to Karman vortices are first generated, but when the flow velocity is further increased, Karman vortex vibrations no longer occur.

ひきつづき、流速を大きくすると、流力弾性振動が生じ
て、急激に振動が激しくなり、燃料棒の損傷が生じる。
If the flow velocity continues to increase, hydroelastic vibrations occur, which suddenly become more intense and cause damage to the fuel rods.

そこで、ジェット流の流速を極力小さくおさえ、燃料損
傷を防ぐには、バックル板間隙24を十分に小さくして
管理するか、あるいはバックル板差圧を減少させること
が有効であり、従床はバックル板間隙24が増大しない
ように定検時にバックル板間隙24の寸法測定を実施し
ており、被曝量の増大、定検期間の長期化の一因となっ
ていた。
Therefore, in order to keep the flow velocity of the jet flow as low as possible and prevent fuel damage, it is effective to manage the buckle plate gap 24 sufficiently small or to reduce the buckle plate differential pressure. In order to prevent the plate gap 24 from increasing, the dimensions of the buckle plate gap 24 are measured during regular inspections, which is one of the causes of increased radiation exposure and prolongation of the regular inspection period.

本発明は、上述した事情に鑑みてなされたもので、従来
の燃料集合体下部ノズルの形状に改良を加え、バッフル
板と炉心槽との間隙へ流入する流れ抵抗を増大させるこ
とによシ、バックル板間隙が増大してもジェット流の流
速が増大しないようにバイパス流を制限してなる核燃料
集合体を提供せんとするものである。
The present invention has been made in view of the above-mentioned circumstances, and improves the shape of the conventional fuel assembly lower nozzle to increase the resistance to flow into the gap between the baffle plate and the core barrel. It is an object of the present invention to provide a nuclear fuel assembly in which the bypass flow is restricted so that the flow velocity of the jet flow does not increase even if the buckle plate gap increases.

第8図はバッフル板差圧とジェット流30(第6図)の
流速の関係を示したものであり、バッフル板差圧の増加
に対してジェット流の流速は単調に増加する。第9図は
バッフル板に隣接した燃料集合体の下部ノズル側面の横
流れの流路面積すなわち下部ノズル脚間空間21 (第
3図)の面積とバッフル板の差圧との関係を示したもの
である。
FIG. 8 shows the relationship between the baffle plate differential pressure and the flow velocity of the jet stream 30 (FIG. 6), and the flow velocity of the jet stream increases monotonically as the baffle plate differential pressure increases. Figure 9 shows the relationship between the area of the lateral flow passage on the side surface of the lower nozzle of the fuel assembly adjacent to the baffle plate, that is, the area of the space 21 between the lower nozzle legs (Figure 3), and the differential pressure across the baffle plate. be.

この下部ノズル側面における、バッフル板13の下端と
下部炉心板10との間隙100に面する、流路面積を小
さくしバッフル板と炉心槽との間隙への流れの入口であ
るこの部分の圧損を大きくすることによシ、バッフル板
13と炉心槽7との間隙部25での圧力は全体的に低く
なるため、バッフル板差圧は第10図に示すように低減
する。第10図のGは燃料集合体のグリッド、Fはフォ
ーマ板14の位置を示す。また下部ノズル側面の流路面
積を第9図B点より減少させるとバックル板差圧は負と
なるが、この場合バックル板隙間の流れは炉心11側か
らバッフル板と炉心槽との間隙25側へと流れるのでジ
ェット流は問題とならない。
On the side surface of this lower nozzle, the flow path area facing the gap 100 between the lower end of the baffle plate 13 and the lower core plate 10 is reduced to reduce the pressure loss in this part, which is the entrance of the flow to the gap between the baffle plate and the core barrel. By increasing the size, the pressure in the gap 25 between the baffle plate 13 and the core barrel 7 is lowered as a whole, so the baffle plate differential pressure is reduced as shown in FIG. In FIG. 10, G indicates the grid of the fuel assembly, and F indicates the position of the former plate 14. Furthermore, if the flow passage area on the side surface of the lower nozzle is reduced from point B in Figure 9, the buckle plate differential pressure becomes negative, but in this case, the flow in the buckle plate gap is from the core 11 side to the gap 25 between the baffle plate and the core barrel. The jet flow is not a problem.

上記の如くバッフル板隙間からのジェット流を減少させ
るにはバッフル板を挾んでの差圧を減少させることが有
効でおるので、従来の下部ノズルの脚は、強度上問題な
い程度の太さとし、横流れに対しては抵抗の小さい、即
ち第1図に示す下部ノズル1の脚22で囲まれた脚空間
21の面積が大きい設剖となっていたのを、本発明では
下部ノズルの脚間の横流れ抵抗を故意に大きくすること
により、バッフル板を挾んでの差圧を減少させんとする
ものである。
As mentioned above, in order to reduce the jet flow from the baffle plate gap, it is effective to reduce the differential pressure between the baffle plates, so the legs of the conventional lower nozzle are made of a thickness that does not cause any problems in terms of strength. The structure of the lower nozzle 1 between the legs 22 of the lower nozzle 1 shown in FIG. The purpose is to reduce the differential pressure across the baffle plates by intentionally increasing the lateral flow resistance.

〜 以下第11図ないし第17図にもとづいて詳細に説明す
る。
~ A detailed explanation will be given below based on FIGS. 11 to 17.

第11図は本発明の一実施例である燃料集合体下部ノズ
ルのttrI造を示す一部破砕した側拘図、第12図は
同下面図であるが、下部ノズルは上部プレート16、エ
ンクローシア17及び脚18からなシ、従来構造と異な
る点はエンクローシア17は第3図に示す脚間空間21
の面積を小さくし、バイパス流23のfAikmf限す
る。そのため、エンクローシア17には流路孔26が穿
設されており、該7h路孔26及びスリット102の面
積を以下に説明する数値以下に設定すると共に該流路孔
26は第3図のバッフル板13の下端と下部炉心板10
との間隔内に位置するように下部ノズル下端よシ高さ4
0韻以下に配[;Lt、たものである。
FIG. 11 is a partially fragmented side view showing the ttrI structure of the lower nozzle of a fuel assembly according to an embodiment of the present invention, and FIG. 12 is a bottom view of the same. 17 and legs 18, the difference from the conventional structure is that the enclosure 17 has a space 21 between the legs shown in FIG.
The area of the bypass flow 23 is reduced to limit fAikmf of the bypass flow 23. Therefore, a flow passage hole 26 is bored in the enclosure 17, and the area of the 7h passage hole 26 and the slit 102 is set to be less than the numerical value explained below, and the flow passage hole 26 is formed by the baffle shown in FIG. Lower end of plate 13 and lower core plate 10
The height of the lower nozzle should be 4 from the lower end so that it is located within the distance between
It is placed below 0 rhymes.

第13図は流路孔26及びスリット102による下部ノ
ズル側面1面当りの横流れ流路面utk変化させた場合
の軸方向バッフル板差圧分布の変化を示すグラフであり
、横軸はバッフル板差圧(バッフル板と炉心槽Q間−炉
心側、1)、縦軸は下部炉心板よりの高さくff1)を
表わす。曲線■け現行設計点を示し、流路面!R8,3
00mm?で、以下番号順に下部ノズル側面1面当りの
流路面積を減少させている。曲線■の面積は■の面積の
約13分の1の650朋2になっており、曲線Cの面積
は曲線■の約2分の1の300mが、曲線■の面積は曲
線■の3分の2の200朋2と、面積の変化量は次第に
小さくなっている。一方、バッフル板差圧の変化量で見
ると、曲線■と■との間では差は小さく、曲線■と■、
あるいは曲線■と■の間の方が差が大きくなっている。
FIG. 13 is a graph showing changes in the axial baffle plate differential pressure distribution when the transverse flow passage surface utk per lower nozzle side surface due to the flow passage hole 26 and the slit 102 is changed, and the horizontal axis is the baffle plate differential pressure (Between the baffle plate and core tank Q - core side, 1), the vertical axis represents the height ff1) from the lower core plate. Curve ■ indicates the current design point, flow path surface! R8,3
00mm? Then, the flow path area per side surface of the lower nozzle is decreased in numerical order. The area of curve ■ is 650 mm, which is about 1/13 of the area of curve ■, the area of curve C is 300 m, which is about half of that of curve ■, and the area of curve ■ is 3 minutes of curve ■. The amount of change in area is gradually decreasing from 2 to 200 to 2. On the other hand, when looking at the amount of change in the baffle plate differential pressure, the difference between curves ■ and ■ is small;
Alternatively, the difference between curves ■ and ■ is larger.

この関係が更に明らかとなるように、第14図に軸方向
高さ1mにおける下部ノズル側面1面当りの面積と、バ
ックル板差圧の関係を示すグラフを示す。ここで横軸は
下部ノズル側面1面当りの横流れ流路面積(10” m
m” ) 、縦軸は、Po−6点における差圧、とした
場合のバックル板差圧(P / Po)を表わす。
In order to further clarify this relationship, FIG. 14 shows a graph showing the relationship between the area per side surface of the lower nozzle at an axial height of 1 m and the buckle plate differential pressure. Here, the horizontal axis is the cross flow channel area per side surface of the lower nozzle (10” m
m"), and the vertical axis represents the buckle plate differential pressure (P/Po) when the differential pressure at the Po-6 point is taken as the differential pressure at the Po-6 point.

第14図において下部ノズル側面流路面積を現行設計点
Cより減少させていくと、はじめはバッフなる。即ち本
発明が有効であるQは下部ノズル側面流路面積がD点以
下であり、D点の値は2.000mrn2である。捷だ
8点より小さいノズル側面流路面積に対しては、バッフ
ル板差圧は負となるが、この場合流れは第3図における
炉心11側からバッフル板と炉心槽との間jQ25へと
流れるので燃料集合体40に対するジェット流は発生せ
ず、従って本発明は有効である。第13図から分かるよ
うに軸方向差圧分布は下部ノズル側面流路面積によりほ
ぼ平行に移動するので、第14図の関係は軸方向のどの
位16でもほぼ同様のものとなる。
In FIG. 14, when the lower nozzle side flow passage area is decreased from the current design point C, a buff appears at first. That is, Q for which the present invention is effective is that the lower nozzle side flow passage area is equal to or less than point D, and the value of point D is 2.000 mrn2. For nozzle side flow passage areas smaller than 8 points, the baffle plate differential pressure becomes negative, but in this case, the flow flows from the core 11 side in Fig. 3 to jQ25 between the baffle plate and the core tank. Therefore, no jet flow is generated toward the fuel assembly 40, and therefore, the present invention is effective. As can be seen from FIG. 13, the axial differential pressure distribution moves approximately parallel to the area of the lower nozzle side surface flow path, so the relationship shown in FIG. 14 is approximately the same at any position 16 in the axial direction.

第15図は本発明の他の実施例を示す斜視図でエンクロ
ーシア17部の流路孔をなくシ、エンクローシア下部に
スリット102を設けたものであるが、この場合下部ノ
ズル側面当りの流路面ネ責はスリット高さで調整する。
FIG. 15 is a perspective view showing another embodiment of the present invention, in which the flow passage hole in the enclosure 17 is eliminated and a slit 102 is provided at the bottom of the enclosure, but in this case, the flow per side of the lower nozzle is Road surface impact can be adjusted by adjusting the slit height.

第16図は本発明の他の実施例を示す斜視図で機能的に
は第11図と同等であるが、この場合は脚220間にス
ライド式の側板19が挿入されておシ、側板19はボル
ト20で固定さ引ている。
FIG. 16 is a perspective view showing another embodiment of the present invention, which is functionally equivalent to FIG. 11, but in this case, a sliding side plate 19 is inserted between the legs 220. is fixed with bolt 20.

この構造の場合、側板19をとりはずすことがoJ能で
、バッフル板に接する位置以外ではとりはずして装荷す
ることができる。
In the case of this structure, it is possible to remove the side plate 19, and it is possible to remove and load the side plate 19 at positions other than those in contact with the baffle plate.

第17図は本発明の他の実施例を示す斜視図で第16図
と同様に脚22間にとりはずし可能な側板19をボルト
20で取りつけた構造であるが、側板19は脚22に直
接と9つける構造となっている。
FIG. 17 is a perspective view showing another embodiment of the present invention, which has a structure in which a removable side plate 19 is attached between legs 22 with bolts 20 in the same way as in FIG. It has a structure of 9.

以上詳細に説明したように本発明によれば、バッフル板
隙間からのジェット流が燃料棒に及ぼす影響は無視でき
るほどに小さくなるので、定検時のバックル板隙間の寸
法測定は不要となり、定検期間の短縮、被爆量の低減等
の効果を奏する。
As explained in detail above, according to the present invention, the influence of the jet flow from the baffle plate gap on the fuel rods becomes negligibly small, so there is no need to measure the dimensions of the buckle plate gap during regular inspections. This has the effect of shortening the inspection period and reducing the amount of radiation exposure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の核燃料集合体の正面図、第2図は燃料集
合体が炉心内装荷された状態での炉心周辺部の一次冷却
材の流れを示す説明図、第3図は第2図のA部拡大図、
第4図は従来プラントにおけるバッフル板差圧の軸方向
分布グラフ、第5図はバッフル板と燃料集合体の位置関
係を示す横断面図、第6図は第5図B部の拡大図、第7
図はバッフル板隙間から炉心に流入するジェット流の流
速と燃料棒の振動の関係を示すグラフ、第8図はバッフ
ル板差圧とジェット流の流速の関係を示すグラフ、第9
図はバッフル板に隣接した燃料集合体の下部ノズル側面
流路面積とバッフル板差圧との関係を示すグラフ、第1
0図は下部ノズル側面の流路面積を成る値にした場合に
おけるバッフル板差圧の軸方向分布のグラフ、第11図
は本発明の一実施例である燃料集合体下部ノズル構造を
示す一部破砕した側面図、第12図は同下面図、第13
図は下部ノズル側面1面当りの横流れ流路面積を変化さ
せた場合の軸方向バッフル板差圧分布の変化を示すグラ
フ、第14図は軸方向高さ1mにおける下部ノズル側面
1面当りの面積と、バッフル板差圧の関係を示すグラフ
、第15図は本発明の他の実施例の燃料集合体下部ノズ
ル構造を示す斜視図、第16図、第17図は同側の実施
例の斜ネR1図である。 1・・・下部ノズル、17・・・エンクローシア、19
・・・側板、18.22・・・脚、26・・・流路孔、
40・・・燃料集合体、特許出願人 三菱原子カニ業株
式会社 代理人 弁理土佐 藤 英 昭 バ、ソフ)し梳オfc ブ7明 一シー20 N・22ノ蛸A二 バッフ2し鰭L う//關 だセフ2暑 バ□ツフノム≠受、! /E(1つ ラ/4臼 一オ15(2
Figure 1 is a front view of a conventional nuclear fuel assembly, Figure 2 is an explanatory diagram showing the flow of primary coolant around the core when fuel assemblies are loaded into the core, and Figure 3 is Figure 2. Enlarged view of part A,
Figure 4 is a graph of the axial distribution of baffle plate differential pressure in a conventional plant, Figure 5 is a cross-sectional view showing the positional relationship between the baffle plate and the fuel assembly, Figure 6 is an enlarged view of part B in Figure 5, 7
The figure is a graph showing the relationship between the flow velocity of the jet flow flowing into the core from the baffle plate gap and the vibration of the fuel rod. Figure 8 is a graph showing the relationship between the baffle plate differential pressure and the flow velocity of the jet flow.
The figure is a graph showing the relationship between the lower nozzle side flow passage area of the fuel assembly adjacent to the baffle plate and the baffle plate differential pressure.
Figure 0 is a graph of the axial distribution of the baffle plate differential pressure when the flow path area on the side surface of the lower nozzle is set to the following value, and Figure 11 is a part showing the structure of the lower nozzle of a fuel assembly, which is an embodiment of the present invention. A fragmented side view, Fig. 12 is a bottom view of the same, Fig. 13
The figure is a graph showing the change in differential pressure distribution on the axial baffle plate when the lateral flow channel area per side surface of the lower nozzle is changed. Figure 14 is the area per side surface of the lower nozzle at an axial height of 1 m. FIG. 15 is a perspective view showing the lower nozzle structure of a fuel assembly according to another embodiment of the present invention, and FIGS. 16 and 17 are perspective views of the embodiment on the same side. This is a diagram of R1. 1...Lower nozzle, 17...Encrosia, 19
... Side plate, 18.22 ... Leg, 26 ... Channel hole,
40...Fuel assembly, Patent applicant Mitsubishi Atomic Crab Industry Co., Ltd. Agent Patent Attorney Tosa Hideaki Fuji (Sof) Shikofc Bu7 Meiichi Sea 20 N.22 Octopus A2 Buff 2 Shifin L U//Sekida Sefu 2 Hot Ba□Tsufnom≠Uke,! /E (1 la / 4 mills 1 o 15 (2

Claims (1)

【特許請求の範囲】 (1)下部ノズルに4側面を有する燃料集合体を装荷し
てなる原子炉において、上記燃料集合体下部ノズル脚間
の冷却材の横流れを禁止あるいは抑制するために、上記
下部ノズル脚間にエンクロージャ又は側板を設けるとと
もに、下部ノズル部における横流れの流路面積が1面当
り2ooomm2以下で、かつ流路9下部ノズル下端か
らの高さが40mm以下に設定されていることを特徴と
する核燃料集合体。 (2)エンクロージャに流路孔を有しないことを特徴と
する特許請求の範囲第(1)項記載の核燃料集合体。 (3)エンクロージャに流路孔を有することを特徴とす
る特許請求の範囲第(1)項記載の核燃料集合体。 (41m+11板は流路孔を有し、脚間にと9はずし可
能で、スライド式に固定されたことを特徴とする特許請
求の範囲第(1)項記載の核燃料集合体。 (5)側板は流路孔を有し、脚間にとりはずし可能に固
定されたととを特徴とする特許請求の範囲第(1)項記
載の核燃料集合体。
[Scope of Claims] (1) In a nuclear reactor in which a fuel assembly having four sides is loaded in a lower nozzle, in order to prohibit or suppress cross flow of coolant between the lower nozzle legs of the fuel assembly, In addition to providing an enclosure or side plate between the lower nozzle legs, the cross flow flow area in the lower nozzle section is set to 200mm2 or less per surface, and the height of flow path 9 from the lower end of the lower nozzle is set to 40mm or less. Characteristic nuclear fuel assembly. (2) The nuclear fuel assembly according to claim (1), characterized in that the enclosure does not have flow passage holes. (3) The nuclear fuel assembly according to claim (1), characterized in that the enclosure has flow passage holes. (The nuclear fuel assembly according to claim (1), characterized in that the 41m+11 plate has flow passage holes, can be removed between the legs, and is fixed in a sliding manner. (5) Side plate The nuclear fuel assembly according to claim 1, wherein the nuclear fuel assembly has a passage hole and is removably fixed between the legs.
JP58116500A 1983-06-28 1983-06-28 Aggregate of nuclear fuel Pending JPS607390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58116500A JPS607390A (en) 1983-06-28 1983-06-28 Aggregate of nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58116500A JPS607390A (en) 1983-06-28 1983-06-28 Aggregate of nuclear fuel

Publications (1)

Publication Number Publication Date
JPS607390A true JPS607390A (en) 1985-01-16

Family

ID=14688667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58116500A Pending JPS607390A (en) 1983-06-28 1983-06-28 Aggregate of nuclear fuel

Country Status (1)

Country Link
JP (1) JPS607390A (en)

Similar Documents

Publication Publication Date Title
US5167909A (en) Lower connector of a fuel assembly of a nuclear reactor cooled by light water
KR100271885B1 (en) Bottom nozzle for pressurized water reactor fuel aseemblies.
JP3044338B2 (en) PWR fuel assembly
TW200847191A (en) Bottom end-piece having an anti-debris device with a baffle for a nuclear fuel assembly and corresponding assembly
JPS607390A (en) Aggregate of nuclear fuel
JPS63231292A (en) Fuel aggregate
JPH0575079B2 (en)
JP4300011B2 (en) Coolant core inlet structure
JPH0113075B2 (en)
KR20200089347A (en) A bottom nozzle of Nuclear Fuel Assembly formed flow hole by utilizing a layered Aircraft Airfoil Structure
JP3188155B2 (en) Lower nozzle for fuel assembly
JPS59114488A (en) Nuclear fuel assembly
EP1986197B1 (en) Pressurized water reactor fuel assembly
JPH0843571A (en) Lower nozzle for pwr fuel assembly
JPH10213691A (en) Nuclear fuel assembly
KR100453268B1 (en) A vinyl-house shape debris filter installed on lower-end-fitting of nuclear fuel assembly
JPS6250691A (en) Core structure of nuclear reactor
JPH053553B2 (en)
JPS61200493A (en) Nuclear fuel aggregate for pressurized water type reactor
JP2000071060A (en) Method of constraining slide gate plate for controlling molten metal flow rate
JP3039346B2 (en) Continuous casting machine for molten metal
JPS58156883A (en) Nuclear fuel assembly
JPH01105193A (en) Fuel assembly
JP2583763B2 (en) Nuclear fuel assembly
JPH08136681A (en) Lower nozzle of fuel assembly for pwr