JPS6073602A - Optical waveguide of polymer - Google Patents

Optical waveguide of polymer

Info

Publication number
JPS6073602A
JPS6073602A JP18236883A JP18236883A JPS6073602A JP S6073602 A JPS6073602 A JP S6073602A JP 18236883 A JP18236883 A JP 18236883A JP 18236883 A JP18236883 A JP 18236883A JP S6073602 A JPS6073602 A JP S6073602A
Authority
JP
Japan
Prior art keywords
optical waveguide
refractive index
waveguide
vinylidene
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18236883A
Other languages
Japanese (ja)
Other versions
JPH0332763B2 (en
Inventor
Seizo Miyata
清蔵 宮田
Iwao Seo
瀬尾 巖
Yoshiji Ichihara
祥次 市原
Yasumitsu Uno
宇野 泰光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP18236883A priority Critical patent/JPS6073602A/en
Publication of JPS6073602A publication Critical patent/JPS6073602A/en
Publication of JPH0332763B2 publication Critical patent/JPH0332763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To facilitate writing by partially heat treating a copolymer consisting of specified vinylidene cyanide and a vinyl compound, other vinylidene compound or diene to form an optical waveguide. CONSTITUTION:A copolymer consisting of vinylidene cyanide represented by formula I and a vinyl compound, other vinylidene compound or diene is partially heat treated to form an optical waveguide which is different from other part in refractive index. For example, a substrate 1 of ''Pyrex'' glass or the like having a low refractive index is covered with a copolymer film 2, and an optical waveguide 3 is formed in the film 2. When light is introduced into the waveguide 3 from an end 4, the light is guided through the waveguide 3 in a trapped state because the waveguide 3 has a higher refractive index than the outside, and it emerges dividedly from ends 5, 5' of the waveguide 3.

Description

【発明の詳細な説明】 本発明は高分子材料を用いた光導波路、更に詳細にはレ
ーザーなどを用いて熱エネルギーを非晶性物質に加える
ことにより熱履歴差を生じさせ、これによる高い屈折率
差を利用した光導波路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an optical waveguide using a polymer material, and more specifically, uses a laser or the like to apply thermal energy to an amorphous material to create a difference in thermal history, thereby increasing refraction. This invention relates to optical waveguides that utilize index differences.

高分子材料は可視から近赤外領域まで比較的低損失で均
質・広面積な薄膜を容易に作製することができることが
ら光導波路用の材料として注目されている。しかし、現
状では高い屈折率の差を得る方法がないため実用化に至
っていない。例えば光損失が小さく、最も大きな屈折率
変化が得られている光重合によるメタクリル酸メチルの
場合でもその屈折率変化は0.1%程度であり、光導波
路形成用としては実用的でない。
Polymer materials are attracting attention as materials for optical waveguides because they can be easily fabricated into homogeneous, wide-area thin films with relatively low loss in the visible to near-infrared range. However, as there is currently no way to obtain a high difference in refractive index, this method has not been put into practical use. For example, even in the case of photopolymerized methyl methacrylate, which has a small optical loss and the largest change in refractive index, the change in refractive index is about 0.1%, which is not practical for forming optical waveguides.

本発明はかかる現状に鑑みてなされたもので、その目的
は可視から近赤外領域まで比較的光損失が小さく、均質
で広面積な薄膜作成が容易で、高い屈折率差を得ること
ができ、書き込みが容易にできる高分子光導波路を提供
することにある。
The present invention was made in view of the current situation, and its purpose is to have relatively low optical loss from the visible to near-infrared regions, to facilitate the production of homogeneous and wide-area thin films, and to be able to obtain a high refractive index difference. The object of the present invention is to provide a polymer optical waveguide that can be easily written.

すなわち、本発明は、次式で示されるシアン化ビニリデ
ンと、他のビニル化合物、ビニリデン化合物又はジエン
類との共重合体から構成され、AN CH2=C C=N かつ部分的に熱処理することにより屈折率の異なる部分
を生じさせて光導波回路を形成したことを特徴とする高
分子光導波路に関する。
That is, the present invention is composed of a copolymer of vinylidene cyanide represented by the following formula and other vinyl compounds, vinylidene compounds, or dienes, AN CH2=C C=N and partially heat-treated. The present invention relates to a polymer optical waveguide characterized in that the optical waveguide circuit is formed by forming portions with different refractive indexes.

次に本発明について詳細に説明する。本発明において光
導波路形成用材料として用いられる高分子化合物はシア
ン化ビニリデンと他のビニル化合物、ビニリデン化合物
あるいはジエン類との共重合あるいは交互共重合により
得られるものである。
Next, the present invention will be explained in detail. The polymer compound used as a material for forming an optical waveguide in the present invention is obtained by copolymerization or alternating copolymerization of vinylidene cyanide and other vinyl compounds, vinylidene compounds, or dienes.

他のビニル化合物、ビニリデン化合物、ジエン類として
は、スチレン、ジクロロスチレン、アクリル酸及びその
エステル、メタクリル酸及びそのエステル、ビニルアル
コール及ヒソのエステル、塩化ビニル、塩化ビニリデン
、弗化ビニル、弗化ビニリデン、三弗化エチレン、ブタ
ジェン、クロロブタジェン、イソブチレン、無水マレイ
ン酸、アクリロニトリル、α−クロロアクリロニトリル
、メチルビニルケトン、ビニルイソブチルエーテル、シ
アノアクリレート類などが例としてあげられる。
Other vinyl compounds, vinylidene compounds, and dienes include styrene, dichlorostyrene, acrylic acid and its esters, methacrylic acid and its esters, vinyl alcohol and hiscoesters, vinyl chloride, vinylidene chloride, vinyl fluoride, and vinylidene fluoride. Examples include ethylene trifluoride, butadiene, chlorobutadiene, isobutylene, maleic anhydride, acrylonitrile, α-chloroacrylonitrile, methyl vinyl ketone, vinyl isobutyl ether, and cyanoacrylates.

エステル化合物については重合後その一部あるいは全部
について加水分解等の化学変性を行、なうことも可能で
ある。
For ester compounds, it is also possible to chemically modify part or all of them after polymerization, such as hydrolysis.

シアン化ビニリデンと他のモノマーの共重合体中におけ
る組成比はモルで0.5 : 1〜1.5 : 1、好
ましくは0.8 : 1〜1.2 : ]の範囲が用い
られ、特に好ましくは、1:1の交互共重合体が用いら
れる。
The compositional ratio of vinylidene cyanide and other monomers in the copolymer is in the range of 0.5:1 to 1.5:1, preferably 0.8:1 to 1.2:, and particularly Preferably, a 1:1 alternating copolymer is used.

上記単量体の重合は、この種単量体の重合方法として知
られた方法を用いて行なうことができ、ラジカル開始剤
例えばα、α′−アゾビスイソプチロニ) IJルの共
存下または非共存下に熱を加えることにより重合するこ
とができる。
The polymerization of the above monomer can be carried out using a method known as a method for polymerizing this type of monomer, in the coexistence of a radical initiator such as α,α'-azobisisoputiloni, or Polymerization can be carried out by applying heat in the absence of coexistence.

手段としては乳化重合、けんだく重合、塊状重合、溶液
重合等を採用することができるが、好ましくは、単量体
をトルエンあるいはトルエン−ヘキサン混合溶剤等の溶
媒に溶解して重合を行ない、重合の進行と共に析出する
重合体を回収することによって行なわれる。
As the means, emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, etc. can be adopted, but preferably, the monomer is dissolved in a solvent such as toluene or a mixed solvent of toluene and hexane, and then the polymerization is carried out. This is done by collecting the polymer that precipitates as the process progresses.

通常、非晶質の高分子をそのガラス転移温度より若干低
い温度で熱処理を施すと、ガラス転移温度より高い温度
で加熱後急冷したものに比し、密度の高いガラス状態の
高分子が得られる。この現象は体積緩和現象と呼ばれて
いる。
Normally, when an amorphous polymer is heat-treated at a temperature slightly lower than its glass transition temperature, a glassy polymer with higher density can be obtained than when it is heated at a temperature higher than its glass transition temperature and then rapidly cooled. . This phenomenon is called volume relaxation phenomenon.

すなわち、ガラス転移温度より高い温度に加熱後急冷し
たものを、ガラス転移温度より10℃程度低い温度で熱
処理を施すと、密度はしだいに増加し、ある平衡値に近
づく。また、この熱処理を施したものをガラス転移温度
より高い温度に加熱後急冷すると、密度はほぼ熱処理前
の値にもどり、この密度変化は可逆的である。
That is, when a material that has been heated to a temperature higher than the glass transition temperature and then rapidly cooled is subjected to heat treatment at a temperature approximately 10° C. lower than the glass transition temperature, the density gradually increases and approaches a certain equilibrium value. Furthermore, when the heat-treated material is heated to a temperature higher than the glass transition temperature and then rapidly cooled, the density returns to approximately the value before the heat treatment, and this change in density is reversible.

同様な密度差は、ガラス転移温度より高い温度から早い
速度で冷却したものと徐冷したものの間でも観測される
。また、仮に冷却速度が同じでも、高圧下でその圧力下
でのガラス転移温度より高い温度からガラス転移温度以
下に冷却した後常圧に戻したものと、常圧でガラス転移
温度以上の温度から冷却したものの間でも同様な密度差
が観測される。これらの現象は全て、ガラス転移が緩和
現象であることに由来するものである。
Similar density differences are observed between samples cooled quickly and slowly from temperatures above the glass transition temperature. Even if the cooling rate is the same, there is a difference between cooling from a temperature higher than the glass transition temperature under high pressure to below the glass transition temperature and then returning to normal pressure, and one from a temperature higher than the glass transition temperature at normal pressure. A similar density difference is observed between cooled samples. All of these phenomena originate from the fact that glass transition is a relaxation phenomenon.

この密度差は通常ごく小さい。例えばポリスチレンを1
℃/3分で冷却した場合と、1℃/1日−5= で冷却して得られるガラスの密度差は約0.18%、常
圧と600気圧下で1℃/3分で冷却して得られるガラ
スの密度差はポリスチレンで約0.6%であるにすぎな
い(Potymer Journat、 !、644(
1971))。この密度差に基づく屈折率の差は1℃/
1日という遅い速度で冷却したものと急冷したものの差
でもやっと0.001程度であり、従来光導波路形成用
材料としての利用の対象とはならなかった。
This density difference is usually very small. For example, polystyrene is 1
The difference in density between the glass obtained when cooled at ℃/3 minutes and when cooled at 1℃/day-5= is about 0.18%, and when cooled at 1℃/3 minutes under normal pressure and 600 atm. The difference in density of the glass obtained with polystyrene is only about 0.6% (Potimer Journat, !, 644 (
1971)). The difference in refractive index based on this density difference is 1°C/
The difference between those cooled at a slow rate of one day and those cooled quickly is only about 0.001, and so it has not been used as a material for forming optical waveguides in the past.

本発明は、シアン化ビニリデンを他のモノマーとの共重
合体とすることにより、この密度差が通常の非晶性高分
子にくらべ格段に大きく、それに伴って光導波路として
利用出来る程大きな屈折率差を得ることができることを
可能としたものである。
In the present invention, by making vinylidene cyanide into a copolymer with other monomers, this density difference is much larger than that of ordinary amorphous polymers, and accordingly, the refractive index is large enough to be used as an optical waveguide. This made it possible to obtain the difference.

本発明の光導波路形成用材料はフィルム、シート、モノ
フィラメントなど目的に応じた形状に成形される。また
光導波路としては、本発明共重合体の単独相で構成する
こともできるが、本発明共重合体を溶融石英などの基材
と積層して用いると 6 − ともできる。
The material for forming an optical waveguide of the present invention is molded into a film, sheet, monofilament, or other shape depending on the purpose. Although the optical waveguide can be constructed from a single phase of the copolymer of the present invention, it can also be constructed by laminating the copolymer of the present invention with a base material such as fused silica.

本発明光導波路形成用材料に光導波回路を書き込むとき
は、成形された光導波路形成用材料を−Hガラス転移点
以上に加熱した後、徐冷又は急冷して、均一な状態とな
るように予備処理をし、次などを照射して部分的にガラ
ス転移点以上に昇温した後、急冷又は徐冷することによ
って前記予備処理とは異った熱履歴を与えて屈折率の相
異する部分を形成し、これによって書き込みが行なわれ
る。
When writing an optical waveguide circuit on the optical waveguide forming material of the present invention, the molded optical waveguide forming material is heated to above the -H glass transition point and then slowly or rapidly cooled to a uniform state. After pre-treatment, irradiating with the following to partially raise the temperature to above the glass transition point, and then rapidly or slowly cooling it, giving it a different thermal history than the pre-treatment and having a different refractive index. A portion is formed by which writing is performed.

従って、予備処理は書き込み時の熱履歴とは対照的な熱
履歴を与えるように行ない、書き込むときに急冷する場
合には、光導波路形成材料を加熱炉又はレーザー光線等
でガラス転移点以上に加熱した後に徐冷するか、あるい
はガラス転移点より若干低い温度、一般にはガラス転移
点より3〜50℃、好ましくは5〜15℃低い温度で熱
処理を行なう。加圧下に徐冷又は熱処理することもでき
る。
Therefore, preliminary treatment is performed to give a thermal history that is in contrast to the thermal history during writing, and when rapidly cooling during writing, the optical waveguide forming material is heated to above the glass transition point in a heating furnace or with a laser beam. This is followed by slow cooling or heat treatment at a temperature slightly lower than the glass transition point, generally 3 to 50°C, preferably 5 to 15°C lower than the glass transition point. Slow cooling or heat treatment under pressure can also be carried out.

一方、書き込み時に徐冷されるときは、予備処理は急冷
される。
On the other hand, when slow cooling is performed during writing, rapid cooling is performed during preliminary processing.

通常、ガラス転移は幅を持った温度域で起こる。Glass transition usually occurs over a wide range of temperatures.

したがって本発明の光導波路形成用材料をガラス転移温
度以上で加熱し転移を起こさせる場合、このことを考慮
に入れる必要がある。
Therefore, when the optical waveguide forming material of the present invention is heated to a temperature higher than the glass transition temperature to induce a transition, it is necessary to take this into consideration.

一般に、予備処理又は書き込時の加熱は、ガラス転移温
度よりも5℃以上、好ましくは10℃以上で加熱すると
良い。温度の上限は特になく光導波路形成材料の分解温
度以下で行なわれる。
Generally, heating during pretreatment or writing is preferably performed at a temperature of 5° C. or higher, preferably 10° C. or higher, above the glass transition temperature. There is no particular upper limit to the temperature, and the temperature is below the decomposition temperature of the optical waveguide forming material.

書き込まれた光導波回路の保存は、通常ガラス転移点よ
り30℃以上、好ましくは50℃以上低い温度で行なわ
れる。
The written optical waveguide circuit is normally stored at a temperature lower than the glass transition point by 30° C. or more, preferably 50° C. or more.

履歴差による屈折率の差は、シアン化ビニリデンと共重
合するモノマーの種類や組成比、履歴を与える条件にも
よるが、組成比が0.5 : 1〜1.5=1の場合で
0.003から0.03程度である。この値は、同じ条
件下のポリスチレンが0.001という屈折率の差しか
生じないことに比べ、非常に大きい。
The difference in refractive index due to history difference depends on the type and composition ratio of the monomer copolymerized with vinylidene cyanide, and the conditions for providing history, but it is 0 when the composition ratio is 0.5:1 to 1.5 = 1. It is about .003 to 0.03. This value is extremely large compared to polystyrene under the same conditions, which produces a refractive index difference of only 0.001.

本発明の一具体例を第1図に示す。A specific example of the present invention is shown in FIG.

1は低屈折率からなる基材、例えばパイレックスガラス
、溶融石英等を用いることができる。2は本発明の共重
合体よりなる高分子膜、3は高分子膜2中に作成された
光導波回路である。このような構造からなる光導波路に
おいては、例えば光を導波回路端面4から入射させると
、導波回路3の屈折率が外部より高いため、光は導波回
路内に閉じこめられたまま導波し、2本の導波回路の端
部5.5′から2つの光に分けられて出射させることが
できる。
1 may be a base material having a low refractive index, such as Pyrex glass or fused silica. 2 is a polymer film made of the copolymer of the present invention, and 3 is an optical waveguide circuit formed in the polymer film 2. In an optical waveguide having such a structure, for example, when light enters from the end face 4 of the waveguide circuit, since the refractive index of the waveguide circuit 3 is higher than that of the outside, the light remains confined within the waveguide circuit and is guided. However, the light can be divided into two light beams and emitted from the ends 5.5' of the two waveguide circuits.

以下、シアン化ビニリデンと他の七ツマ−の交互共重合
体を中心に説明するが、組成比が前述の範囲であれば比
較的容易に光導波路として使用できる程度の屈折率の差
を生ずるので本発明は以下の説明によりなんら制約され
るものではない。
The following explanation will focus on alternating copolymers of vinylidene cyanide and other heptamers; however, if the composition ratio is within the above-mentioned range, a difference in refractive index will occur that can be used relatively easily as an optical waveguide. The present invention is not limited in any way by the following description.

次に本発明を実施例によって説明するが、本発明はこれ
によってなんら限定されるものではない。
Next, the present invention will be explained by examples, but the present invention is not limited thereto in any way.

実施例1 シアン化ビニリデンと酢酸ビニルの交互共重合−〇 一 体のフィルム(ガラス転移点175℃)を作成し、この
フィルムを180℃迄加熱後急冷した。この急冷フィル
ムを部分的に160℃に加熱し、24時間160℃に保
った後、急冷して得られたフィルムの屈折率を測定した
。180℃で急冷した部分と比べて160℃で24時間
熱処理を施した部分の屈折率は約0.7%高くなった。
Example 1 Alternating copolymerization of vinylidene cyanide and vinyl acetate - An integral film (glass transition point: 175°C) was prepared, and this film was heated to 180°C and then rapidly cooled. This quenched film was partially heated to 160° C., kept at 160° C. for 24 hours, and then the refractive index of the film obtained by quenching was measured. The refractive index of the portion heat-treated at 160° C. for 24 hours was approximately 0.7% higher than that of the portion rapidly cooled at 180° C.

これらの熱処理フィルムを再度180℃に短時間加熱後
急冷したものの屈折率は約1.4892であり、急冷と
熱処理による屈折率の変化は可逆的であった。2時間程
度の熱処理でも、屈折率上昇は約0.33%であり、通
常の非晶性高分子に比べて非常に大きな変化を示した。
When these heat-treated films were heated again to 180° C. for a short time and then rapidly cooled, the refractive index was approximately 1.4892, and the change in refractive index due to rapid cooling and heat treatment was reversible. Even after heat treatment for about 2 hours, the refractive index increased by about 0.33%, which was a very large change compared to ordinary amorphous polymers.

実施例2 実施例1と同じシアン化ビニリデンと酢酸ビニルの交互
共重合体の急冷フィルムを4000気圧下でそれぞれ1
80℃及び200℃で1時間熱処理した後冷却し除圧し
た。得られたフィルムの屈折率は180℃で処理したも
ので1.5141また200℃で熱処理したものでは1
.5213であり、10− 常圧で180℃及び200℃より急冷したフィルムにく
らべ屈折率は約1.7ないし2.2%高くなった。これ
らのフィルムの中に作られる光導波路の部分を除いて再
度常圧で180℃まで加熱した後急冷することにより光
導波路を得た。
Example 2 The same quenched films of vinylidene cyanide and vinyl acetate alternating copolymers as in Example 1 were each heated at 4000 atm.
After being heat treated at 80°C and 200°C for 1 hour, it was cooled and the pressure was removed. The refractive index of the obtained film was 1.5141 when treated at 180°C, and 1 when heat treated at 200°C.
.. 5213, and the refractive index was about 1.7 to 2.2% higher than that of films rapidly cooled from 180°C and 200°C at 10-normal pressure. An optical waveguide was obtained by heating the film to 180° C. at normal pressure, excluding the portion of the optical waveguide formed in these films, and then rapidly cooling the film.

実施例3 シアン化ビニリデンとメタクリル酸メチルの交互共重合
体のフィルム(ガラス転移点148℃)を実施例1と同
様にして175℃から急冷した後、140℃で24時間
熱処理をしたものの屈折率を測定した。175℃から急
冷したものと比べて140℃で24時間熱処理を施した
ものの屈折率は約0.4%高くなった。この変化も可逆
的であり、再度175℃に加熱した後急冷したものの屈
折率は1.5174であった。
Example 3 Refractive index of a film of an alternating copolymer of vinylidene cyanide and methyl methacrylate (glass transition point: 148°C), which was rapidly cooled from 175°C in the same manner as in Example 1 and then heat-treated at 140°C for 24 hours. was measured. The refractive index of the sample heat-treated at 140°C for 24 hours was about 0.4% higher than that of the sample rapidly cooled from 175°C. This change was also reversible, and the refractive index after heating to 175° C. again and then rapidly cooling was 1.5174.

実施例4 シアン化ビニリデンと安息香酸ビニルの交互共重合体の
フィルム(ガラス転移点175℃)を実施例1と同様に
して190℃から急冷した後、160℃で24時間熱処
理をしたものの屈折率を測定した。190℃から急冷し
たものと比べ160℃で24時間熱処理を施したものの
屈折率は約0.3%高くなった。また、急冷と熱処理に
よる屈折率の変化は実施例1と同様可逆的であった。
Example 4 Refractive index of a film of an alternating copolymer of vinylidene cyanide and vinyl benzoate (glass transition point: 175°C), which was rapidly cooled from 190°C in the same manner as in Example 1 and then heat-treated at 160°C for 24 hours. was measured. The refractive index of the sample heat-treated at 160°C for 24 hours was about 0.3% higher than that of the sample rapidly cooled from 190°C. Furthermore, the change in refractive index due to rapid cooling and heat treatment was reversible as in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一興体例の斜視図である。 1・・・・・・基材、2・・・・・・高分子膜3・・・
・・・光導波回路 4.5.5′・・・・・・導波回路の端面特許出願人 
三菱油化株式会社 同 宮 1) 清 蔵 代理人 弁理士 古 川 秀 利 (ほか1名)
FIG. 1 is a perspective view of an example of an integrated body of the present invention. 1...Base material, 2...Polymer membrane 3...
... Optical waveguide circuit 4.5.5' ... Waveguide circuit end face patent applicant
Mitsubishi Yuka Co., Ltd. 1) Seizo agent Patent attorney Hidetoshi Furukawa (and 1 other person)

Claims (1)

【特許請求の範囲】 次式で示されるシアン化ビニリデンと、他ノビニル化合
物、ビニリデン化合物又はジエン類との共重合体から構
成され、 C三N CH2=C −EN かつ部分的に熱処理することにより屈折率の異なる部分
を生じさせて光導波回路を形成したことを特徴とする高
分子光導波路。
[Claims] Consisting of a copolymer of vinylidene cyanide represented by the following formula and other novinyl compounds, vinylidene compounds, or dienes, C3N CH2=C -EN and partially heat-treated. A polymer optical waveguide characterized in that an optical waveguide circuit is formed by forming portions with different refractive indexes.
JP18236883A 1983-09-30 1983-09-30 Optical waveguide of polymer Granted JPS6073602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18236883A JPS6073602A (en) 1983-09-30 1983-09-30 Optical waveguide of polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18236883A JPS6073602A (en) 1983-09-30 1983-09-30 Optical waveguide of polymer

Publications (2)

Publication Number Publication Date
JPS6073602A true JPS6073602A (en) 1985-04-25
JPH0332763B2 JPH0332763B2 (en) 1991-05-14

Family

ID=16117086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18236883A Granted JPS6073602A (en) 1983-09-30 1983-09-30 Optical waveguide of polymer

Country Status (1)

Country Link
JP (1) JPS6073602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103614A (en) * 1986-10-09 1989-04-20 Mitsubishi Petrochem Co Ltd Vinylidene cyanide copolymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103614A (en) * 1986-10-09 1989-04-20 Mitsubishi Petrochem Co Ltd Vinylidene cyanide copolymer

Also Published As

Publication number Publication date
JPH0332763B2 (en) 1991-05-14

Similar Documents

Publication Publication Date Title
US4505543A (en) Plastic optical fibers
JPS6410019B2 (en)
JPS63159459A (en) Resin composition
US4509163A (en) Process for producing a low hygroscopic methacrylic resin and information recording substrates made therefrom
JPS61226728A (en) High moisture content contact lens
US4737556A (en) Non-hydrous soft contact lens and process for producing the same
US5149753A (en) Fluorine-containing copolymer and process for preparing the same
WO1993003074A1 (en) Fluorine-containing plastic optical fiber cores
JPS6073602A (en) Optical waveguide of polymer
US4882403A (en) Non-hydrous soft contact lens and process for producing the same
JPS59125712A (en) Hydrogel contact lens
JPH02195302A (en) Optical fiber
US5863993A (en) Preparation method of polymeric rod and gradient-index rod lens using free radical bulk polymerization with temperature gradient
JPS61159408A (en) Production of polymer
JPS6271924A (en) Production of soft contact lens stock
JPH0252241B2 (en)
JPS60199007A (en) Optical material
JPH065322B2 (en) Method of manufacturing optical material
JP2000178321A (en) Production of fluororesin
US5491770A (en) Copolymers for optical fibers
JPH0242845B2 (en)
JPS6015194A (en) Material for optical recording
JPH0679083B2 (en) Optical material
JPS6374010A (en) Plastic optical fiber having good heat resistance
JPS6014202A (en) Plastic lens