JPS6073380A - Measurement of magnetostriction constant - Google Patents

Measurement of magnetostriction constant

Info

Publication number
JPS6073380A
JPS6073380A JP18204883A JP18204883A JPS6073380A JP S6073380 A JPS6073380 A JP S6073380A JP 18204883 A JP18204883 A JP 18204883A JP 18204883 A JP18204883 A JP 18204883A JP S6073380 A JPS6073380 A JP S6073380A
Authority
JP
Japan
Prior art keywords
yoke
magnetic field
magnetic
motor
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18204883A
Other languages
Japanese (ja)
Inventor
Junji Mada
間田 潤二
Hidema Uchishiba
内柴 秀磨
Kazuyuki Yamaguchi
一幸 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18204883A priority Critical patent/JPS6073380A/en
Publication of JPS6073380A publication Critical patent/JPS6073380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To make it possible to easily measure the magnetostriction of a magnetic crystal, by providing a permanent magnet to the leading end of a yoke and calculating the relative change amount of grating constant by using a magnetic field applying apparatus having such a structure that the yoke is driven by a motor. CONSTITUTION:A square shaft 15 having a yoke 14 attached to the leading end thereof by the screw 13 provided to a gear 12 driven by a motor 10 is provided so as to pierce a holding plate 16 in a before and behind slidable manner and a pair of permanent magnets are fixed to the inside of the yoke 14. The yoke 14 provided with the permanent magnets 17 is formed so as to be freely attached to and detached from the shaft 15. By exchanging this yoke, a necessary magnetic field value can be obtained. A specimen support stand 18 having a specimen 6 attached thereto is set to the prescribed position in an X-ray diffraction apparatus and a magnetic field applying apparatus is placed so as to be opposed to the support stand 18 and the motor is driven to apply magnetic fields from the permanent magnets 17. By this method, magnetostriction constant can be easily measured.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は取p扱いが各易な磁界印加装置を用いた磁虫足
数の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for measuring the number of magnetic worms using a magnetic field application device that is easy to handle.

(b) 技術の背、頃 ←ζ気バブルメモリ(身重バブルメモリ)ハ非磁14−
ガーネットであるカドリニウム・ガリウム・ガーネット
(Gd3GagO+を略してGGG )結晶の(111
)面上に必要とTる6今気的性質をもつ磁性カーネット
をエピタキシャル成長させ、これを基板としてこの上に
導′亀旧料會用いて磁気バブルの発生回路。
(b) Back of technology ←ζ Bubble memory (Bubble memory) Ha non-magnetic 14-
The (111
A magnetic bubble generation circuit is created by epitaxially growing a magnetic carnet with the required T6-temperature properties on a surface of ), and using this as a substrate and using a conductive material on this substrate.

ゲート回路などを、また高透磁率磁性材刺を用いて転送
回路、検出回路などのパターンを作り、基板に垂11に
加えたバイアス磁界により保持されている円筒状の磁気
バブル磁区を基板面に平行に加えた回転磁界によシ転送
回路に沿って駆動せしめ情報の書き込みと読み出しを行
うメモリである。
Patterns such as gate circuits, transfer circuits, detection circuits, etc. are made using high permeability magnetic material barbs, and cylindrical magnetic bubble magnetic domains, which are held by a bias magnetic field applied perpendicular to the substrate, are formed on the substrate surface. This is a memory that is driven along a transfer circuit by a rotating magnetic field applied in parallel, and writes and reads information.

ここでイオン注入デバイスが主流である高密度バ゛ プ
ルメモリに用いられる磁性ガーネットについて使用面か
ら見て必要な材料特性としてイオン注入誘導異方性定数
(Ki)、磁歪定数(λ)などがある。
For magnetic garnet used in high-density double memories, in which ion-implanted devices are the mainstream, material properties required from the viewpoint of use include ion-implanted anisotropy constant (Ki) and magnetostriction constant (λ).

ここでイオン注入誘導異方性定数(K1)は駆動磁界に
よるバブルの動き易さに関連し、この値が大きい場合は
広いバイアスマージンをとυ得ることを示している。ま
た磁歪定数(λ)は磁性体を磁化するとき生ずる変形の
程度を示すもので、両者の間に次のような関係がある。
Here, the ion implantation induced anisotropy constant (K1) is related to the ease of bubble movement due to the driving magnetic field, and a large value indicates that a wide bias margin υ can be obtained. Further, the magnetostriction constant (λ) indicates the degree of deformation that occurs when a magnetic material is magnetized, and there is the following relationship between the two.

3 E Δd K#−丁λ1+Jj(d’・・・・・・・・(1)但し
、 E ・・・・・・・・・・・・・ヤング率μ ・・・・
・・・・ ・・・ポアッソン比d・・・・・・・・・・
・・・・・・格子定数さて、バブルメモリ用ガーネ、)
の場合はGGGの(1113面一ヒに成長したものであ
るから磁歪定数は(λ11.)で表わされ、また剋は(
111)方向から見た格子定数の変化金子すこととなる
。ここでJ(iの値μ強磁性共鳴吸収(F’MRI法に
よシ測定−することができる。すなわちGGG面上に成
長し、ている磁t’igガーネットの膜面に沿って磁界
を加えた共鳴磁場値(Hl)と膜面に垂直に加えた場合
の共鳴磁場値(Hl)とスピンの回転磁気比(γ)の3
つのイmからKiをめることができる。そこで磁歪定数
(λ1,1)は磁性カーイ・ットに磁界を加えた場合の
格子間[1寂獲化tl−測定すればまることにlる0 (C)従来技術と問題点 イ訂付カーネット膜の4%−/一定θ、すなわち結晶格
子間隔はX線回折装置を用いて測定することができる。
3 E Δd K# - Ding λ1 + Jj (d'......(1) However, E...... Young's modulus μ...
・・・・・・Poisson's ratio d・・・・・・・・・
・・・・・・Lattice constant Now, Garnet for bubble memory)
In the case of , the magnetostriction constant is expressed as (λ11.) because it is grown on the (1113 plane) of GGG, and the
111) The change in the lattice constant seen from the direction will be the same. Here, the value of J(i) can be measured by ferromagnetic resonance absorption (F'MRI method).In other words, the magnetic field is grown along the film surface of the magnetic t'ig garnet grown on the GGG plane. The value of the applied resonant magnetic field (Hl), the value of the resonant magnetic field when applied perpendicular to the film surface (Hl), and the rotational magnetic ratio of spin (γ) of 3
Ki can be set from one im. Therefore, the magnetostriction constant (λ1, 1) is calculated as follows: When a magnetic field is applied to a magnetic core, the interstitial space [1 tl - measured becomes completely 0 (C) Prior art and problems The 4%-/constant θ of the Carnet film, that is, the crystal lattice spacing, can be measured using an X-ray diffraction device.

第1図+−r、この装置の構成を示すもので、X線管1
のフィラメント2と銅よりなるアノード3との間に高電
界を加えることにより発生したX線4はGGG結晶に投
射して波長幅を狭く単色化した後GGGの(111)面
上にエピタキシャル成長させた磁性ガーネット試料6に
投射し、この結晶格子で回折を起させ計数管7によシ創
測しこれより格子間隔をめる。ここで磁性ガーネット試
料に磁界を加えるには、従来は第2図r示すように電磁
石からなる磁極8の中央にある試料ホルダ9の上に試料
を置くと共に磁極8に設りであるX線投射孔19を通っ
てXmを投射し、これにより磁界臼Δd 加による格子定数の変化(7)を測定していた。
Figure 1 +-r shows the configuration of this device, with X-ray tube 1
X-rays 4 generated by applying a high electric field between the filament 2 and the anode 3 made of copper are projected onto the GGG crystal to narrow the wavelength width and make it monochromatic, and then grown epitaxially on the (111) plane of the GGG. It is projected onto a magnetic garnet sample 6, causes diffraction to occur in this crystal lattice, and is measured by a counter tube 7, thereby determining the lattice spacing. Here, in order to apply a magnetic field to the magnetic garnet sample, the conventional method is to place the sample on a sample holder 9 located at the center of a magnetic pole 8 made of an electromagnet, as shown in FIG. Xm was projected through the hole 19, thereby measuring the change (7) in the lattice constant due to the addition of the magnetic field Δd.

然しこの方法による場合に、電磁石に大きくなシ従って
重量が1〔トン〕を越すと共に消費電力も大きく、マた
水冷が必要であるなど実用的でなく、また残留磁界があ
り磁界を完全に零にできないと云う問題点がある。
However, this method requires a large electromagnet, weighs more than 1 ton, consumes a lot of power, requires water cooling, and is impractical. Also, there is a residual magnetic field, so it is impossible to completely eliminate the magnetic field. There is a problem that it cannot be done.

(d) 発明の目的 本発明は磁性結晶の磁歪定数を容易にめ得る磁界印加装
置の構成を提供すること全目的とする。
(d) Object of the Invention The entire object of the present invention is to provide a configuration of a magnetic field application device that allows the magnetostriction constant of a magnetic crystal to be easily determined.

(e) 発明のイH成 本発明の目的は、磁性結晶の磁歪定数を算出するのに必
要な格子定数の相対変化量の測定が永久磁石をヨークの
先端に設け、該ヨークがモータ駆動される構造の磁界印
加装置を用いて行われるこ、!:を特徴とする磁歪定数
の測定方法を用いることにより達成することができる。
(e) An object of the present invention is to measure the relative change in lattice constant necessary for calculating the magnetostriction constant of a magnetic crystal by providing a permanent magnet at the tip of a yoke, and driving the yoke with a motor. This is done using a structured magnetic field application device! This can be achieved by using a magnetostriction constant measurement method characterized by:

(fl 発明の実施例 試料6に磁界を印加する方向として試料面に平行に加え
る場合と直角に加える場合とがある。
(fl) Example of the Invention There are two cases in which a magnetic field is applied to the sample 6: parallel to the sample surface and perpendicular to the sample surface.

413図は平行に加える場合の実施例で、モータ10に
より駆動するギヤ11に噛み合って連動するギヤ12に
設けられているネジ13により先端にヨーク14をつけ
た角形のシャフト15が保持板16を貫いて前後圧スラ
イドするよう構成されている。1だ断面がコの字形に形
成され、鉄などの磁性体からなるヨーク14の内側には
一対の永久磁石1715(接着固定されている。なお、
永久磁石17全つりたヨーク14はシャフト15と着脱
自任に形成されており、これを交換することによシ必要
な磁界値が得られるようになっている。一方格子定数を
測定する試料6は、試tI支持台18に接着剤などによ
り固定されている0そして試料6をつけた試料支持台1
8は第1図に示すようなX線回折装置内の規定位置にセ
ットされ、この試料支持台18に本発明に係る磁界印加
装置を対向して置き、モータ10を駆動してシャフト1
5を伸ばし永久磁石17で磁界を加えるようにすればよ
い0 このような構成とすることにより破線で示すX線4の投
射に対し、磁界印加は支障なく行うことができる。
Fig. 413 shows an example in which the shafts are applied in parallel, and a square shaft 15 with a yoke 14 attached to the tip is attached to a holding plate 16 by a screw 13 provided on a gear 12 that meshes with and interlocks with a gear 11 driven by a motor 10. It is configured to penetrate and slide forward and backward. A pair of permanent magnets 1715 (adhesively fixed) are placed inside the yoke 14, which has a U-shaped cross section and is made of a magnetic material such as iron.
The yoke 14, on which all the permanent magnets 17 are suspended, is formed to be detachable from the shaft 15, and by replacing it, the required magnetic field value can be obtained. On the other hand, the sample 6 whose lattice constant is to be measured is fixed to the test tI support 18 with adhesive or the like, and the sample support 1 with the sample 6 attached thereto.
8 is set at a prescribed position in the X-ray diffraction apparatus as shown in FIG.
5 and apply a magnetic field using the permanent magnet 170. With this configuration, the magnetic field can be applied without any problem to the projection of the X-rays 4 shown by the broken line.

また第4図は試料6に対し磁界を垂直に印加する装置の
構成を示す実施例で、モータl0ICより回転するギヤ
111−1:支持台19の四面に設けてあり、これと連
動するネジ13によりシャフト15が上下にスライドす
ることができる。また第3図の装置の場合と同様に、永
久磁石17を内側に設けたヨーク14が着脱可能な状態
で固定されており、試料6を前後より挾むよう永久磁石
17を配置することによシ磁界の印加が可能となる。
FIG. 4 shows an embodiment showing the configuration of a device that applies a magnetic field perpendicularly to the sample 6. Gear 111-1 rotates from motor 10IC: screws 13 are provided on the four sides of support base 19 and interlock with gear 111-1. This allows the shaft 15 to slide up and down. Further, as in the case of the apparatus shown in FIG. 3, a yoke 14 with a permanent magnet 17 provided inside is fixed in a removable manner, and the permanent magnet 17 is arranged so as to sandwich the sample 6 from the front and back. It becomes possible to apply a magnetic field.

なお図3す、・よび図4の実施例においては永久磁石1
7を選択することにより、O〜5000[Oe]の範囲
で磁界印加がD[能であ多いこれにより磁界印力UKよ
る格子間隔の変化を容易に測定することができる。
In addition, in the embodiments of FIGS. 3 and 4, the permanent magnet 1
By selecting No. 7, the magnetic field can be applied with a large capacity of D in the range of 0 to 5000 Oe. This makes it possible to easily measure the change in the lattice spacing due to the magnetic field applied UK.

(g) 発明の効果 本発明は磁性カーネットの磁歪定数をめる際に必9μな
格子定数の磁界による相対変化の測定に今まで大がかυ
々装at−必要としていたのを改めるためになされたも
のであって、本発明に係る装置の使用によフ簡便且つ続
演的に行えると共に磁石17を試料6から遠ざけること
により完全に磁界零の状態を実現することが可能で、高
能率の測定がfiJ能となる。
(g) Effects of the Invention The present invention has made great efforts until now in the measurement of the relative change in the lattice constant due to the magnetic field, which is 9 μ when calculating the magnetostriction constant of a magnetic Carnet.
This was done in order to improve the need for multiple installations, and by using the device according to the present invention, it can be easily and continuously performed, and by moving the magnet 17 away from the sample 6, the magnetic field can be completely zeroed out. It is possible to realize the state of , and high-efficiency measurement becomes fiJ capability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はX線回折装置の構成H51,明図、第2図は従
来の磁界印加装置の構成を示す断面図、第3図とC44
図は本発明に係る磁界印加装置の斜視図であるう 図において、4はX&!、61−を試料、8Vi電磁石
のa極、] ]Off、−Fニー1’13,1211−
jギヤ、13はネジ、14はヨーク、15はシャフト、
17は永久磁石。 第1 図 半3閾 隼4図
Figure 1 is a clear diagram of the configuration of the X-ray diffraction device H51, Figure 2 is a sectional view showing the configuration of a conventional magnetic field application device, Figure 3 and C44
The figure is a perspective view of the magnetic field application device according to the present invention. In the figure, 4 indicates X&! , 61- is the sample, the a pole of the 8Vi electromagnet, ] Off, -F knee 1'13, 1211-
j gear, 13 is a screw, 14 is a yoke, 15 is a shaft,
17 is a permanent magnet. 1st Figure Half 3 Threshold Hayabusa 4 Figure

Claims (1)

【特許請求の範囲】[Claims] 磁性結晶の磁歪定数を算出するのに必要な格子定数の相
対り化量の測定が永久磁石をヨークの先端に設は該ヨー
クがモータ枢動されるS造の磁界印加装置を用いて行わ
れることを特徴とする磁歪定数の測定方法。
Measurement of the amount of relativization of the lattice constant necessary to calculate the magnetostriction constant of a magnetic crystal is carried out using a magnetic field application device made of S, in which a permanent magnet is placed at the tip of a yoke, and the yoke is pivoted by a motor. A method for measuring a magnetostriction constant, characterized by:
JP18204883A 1983-09-30 1983-09-30 Measurement of magnetostriction constant Pending JPS6073380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18204883A JPS6073380A (en) 1983-09-30 1983-09-30 Measurement of magnetostriction constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18204883A JPS6073380A (en) 1983-09-30 1983-09-30 Measurement of magnetostriction constant

Publications (1)

Publication Number Publication Date
JPS6073380A true JPS6073380A (en) 1985-04-25

Family

ID=16111427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18204883A Pending JPS6073380A (en) 1983-09-30 1983-09-30 Measurement of magnetostriction constant

Country Status (1)

Country Link
JP (1) JPS6073380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10493620B2 (en) 2011-07-13 2019-12-03 Brooks Automation, Inc. Compact direct drive spindle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10493620B2 (en) 2011-07-13 2019-12-03 Brooks Automation, Inc. Compact direct drive spindle

Similar Documents

Publication Publication Date Title
Urs et al. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters-imaging spin waves and temperature distributions
He et al. Determination of bulk domain structure and magnetization processes in bcc ferromagnetic alloys: Analysis of magnetostriction in F e 83 G a 17
Shaw et al. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures
Yin et al. Chiral magnetoresistance in Pt/Co/Pt zigzag wires
US2560430A (en) Magneto-optical transducer system
West Rotating‐field technique for galvanomagnetic measurements
JPS6073380A (en) Measurement of magnetostriction constant
Biorci et al. Frequency spectrum of the Barkhausen noise
Song et al. Evolutions of acoustic and optical mode resonances in the spin reorientation Permalloy film
Chaudhari et al. Submicrometer stripes and bubbles in amorphous films
Sangiao et al. Electrical detection of internal dynamical properties of domain walls
Coïsson et al. Magnetization processes in sputtered FeSiB thin films
US4001792A (en) Drive field for circular magnetic domain devices
Fluitman Applicability of the planar Hall effect
CA1063724A (en) Magnetic domain bias field assembly
Pollmann et al. Magnetic imaging of a buried SmCo layer in a spring magnet
Groenland et al. Measurement system for two-dimensional magnetic field distributions, applied to the investigation of recording head fields
US3760385A (en) Optical scanner
SU883821A1 (en) Device for measuring magnetic film characteristics
Clash Jr et al. Directions of discontinuous changes in magnetization in monocrystal bars and disks of silicon-iron
JPS62288585A (en) Apparatus for observing magnetic recording medium
Dove et al. Kerr Effect and Bitter Pattern Measurements of Easy‐Axis Distributions in Uniaxial Permalloy Films
MacNeal et al. Wall oscillation and overdamped motion in magnetic bubble domains
RU2168193C2 (en) Magnetooptical converter, process of film growing, method of visualization of inhomogeneous magnetic field (versions) and device for its embodiment
Höpfl et al. Demonstration of different bending profiles of a cantilever caused by a torque or a force