JPS6073344A - Biochemical component analytical apparatus using laser beam - Google Patents

Biochemical component analytical apparatus using laser beam

Info

Publication number
JPS6073344A
JPS6073344A JP58180778A JP18077883A JPS6073344A JP S6073344 A JPS6073344 A JP S6073344A JP 58180778 A JP58180778 A JP 58180778A JP 18077883 A JP18077883 A JP 18077883A JP S6073344 A JPS6073344 A JP S6073344A
Authority
JP
Japan
Prior art keywords
prism
laser light
sample
atr prism
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58180778A
Other languages
Japanese (ja)
Inventor
Yoshiharu Ito
佳治 伊藤
Masanori Kunida
正徳 国田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP58180778A priority Critical patent/JPS6073344A/en
Publication of JPS6073344A publication Critical patent/JPS6073344A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the continuous real time analysis of biochemical components without sampling body fluids, by guiding laser beam to an internal multiple total reflection prism (ATR) colsely adhered to the mucous membrane tissue of a living while measuring reflected light. CONSTITUTION:Laser beam from a CO2 laser beam source 14 branched in a beam branching part 30 is simultaneously guided to an ATR prism 10 for a specimen closely adhered to the mucous membrane tissue of a living body such as a lip and an ATR prism 32 for calibration immersed in a calibration solution and the residual reflected laser beams due to the prisms 10, 32 not absorbed with the biochemical components of a living body and the calibration solution are received by light receiving parts 38, 36 of a measuring and operating part. Because it is unnecessary to collect body fluids, the biochemical components of a living body can be continuously analyzed in a real time on the basis of the light receiving signals of the light receiving parts 38, 36.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光による生化学成分分析装置、特に生体
組織内にしみ込んだレーザ光のエネルギ減衰によって生
化学成分を非観血的に測定することのできる生化学成分
分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a biochemical component analyzer using laser light, and particularly to a device for non-invasively measuring biochemical components by attenuating the energy of laser light that has penetrated into living tissue. Regarding the biochemical component analyzer that can be used.

従来技術 近年の医療分野においては、予防医学、治療医学の両面
から生化学成分、特に血液等の体液中に含まれる成分の
測定が不可欠となってきており1これらの検体検査によ
り多大な診断情報が祷られている。
Prior Art In recent years, in the medical field, it has become essential to measure biochemical components, especially components contained in body fluids such as blood, from both preventive and therapeutic medicine.1 These sample tests provide a large amount of diagnostic information. is being prayed for.

従来の一般的な検体検査は生体組織から所定の体液を採
取し、この体液に必賛な分離ynII製等の処理を加え
た後に化学反応を行わせ、体液中の成分を同定している
。従って、このような従来装置では、測定結果を知るま
でに比較的長時間を要し、リアルタイム(実時間)で結
果を知ることが不可能であり、特に治療と同時あるいは
関連づけて生化学成分の分析を行うことができないとい
う問題があった。
Conventional general sample testing involves collecting a predetermined body fluid from a biological tissue, subjecting the body fluid to a highly recommended treatment such as Separation YNII, and then performing a chemical reaction to identify the components in the body fluid. Therefore, with such conventional devices, it takes a relatively long time to obtain the measurement results, and it is impossible to obtain the results in real time. There was a problem that analysis could not be performed.

また従来の検体検査では、体液等の採取が被検者に対し
て大きな負担となり、例えば糖尿病等に関する検査とし
て知られる負荷試験では、被検者から多数回血液を採取
するので、被検者に無視できない負担を与えるという問
題があった。
In addition, in conventional laboratory tests, the collection of body fluids places a large burden on the test subject. For example, in stress tests known as tests for diabetes, blood is collected from the test subject multiple times, so The problem was that it imposed a burden that could not be ignored.

発明の目的 本発明は上記従来の昧題に鑑みなされたもので、その目
的は、非観血的に生化学成分を連続的に測定することが
でき、リアルタイムで被検者に負担をかけることなく生
化学成分の分析を可能とするレーザ光を用いた生化学成
分分析装置を提供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to be able to continuously measure biochemical components in a non-invasive manner, and to avoid burdening the subject in real time. An object of the present invention is to provide a biochemical component analyzer using laser light that enables biochemical component analysis without any problems.

発明の構成 上記目的・を達成するために、本発明は、生体の粘膜組
織に密着される試料用AT)tプリズムと、レーザ光の
一部が導光される校正用ATRプリズムと、試料用AT
Rプリズム及び校正用ATRプリズムに所定波長のレー
ザ光を導光するレーザ光源と、試料用ATRプリズムの
エネルギ出力と校正用ATRプリズムのエネルギ出力と
を測定しこの測定結果に基づき上記生体の生化学成分を
測定する測定演算部と、を含み、試料用ATRプリズム
と校正用ATRプリズムへのレーザ光の導光路にはレー
ザ光を分岐して同時刻のレーザ光を試料用ATRプリズ
ムと校正用ATRプリズムに導くための光分岐部が設け
られ、レーザ光源にはレーザ光を断続的な光に変換する
光スィッチが設けられ、前記レーザ光源、光スィッチ、
光分岐部、試料用ATRプリズム、校正用ATRプリズ
ム及び測定演算部の導光路はそれぞれ元ファイバから成
り、生化学成分を非観血的に測定することを特徴とする
Structure of the Invention In order to achieve the above objects, the present invention provides a sample AT)t prism that is brought into close contact with the mucosal tissue of a living body, a calibration ATR prism through which a portion of laser light is guided, and a sample AT A.T.
A laser light source guides laser light of a predetermined wavelength to the R prism and the calibration ATR prism, and the energy output of the sample ATR prism and the calibration ATR prism are measured, and based on the measurement results, the biochemistry of the living body is determined. The light guide path of the laser light to the ATR prism for sample and the ATR prism for calibration includes a measurement calculation unit that measures the components, and the laser light is branched and the laser light at the same time is transmitted to the ATR prism for sample and the ATR prism for calibration. A light branching section for guiding the light to the prism is provided, and the laser light source is provided with an optical switch that converts the laser light into intermittent light, and the laser light source, the optical switch,
The optical branching section, the ATR prism for the sample, the ATR prism for calibration, and the light guide path of the measurement calculation section each consist of original fibers, and are characterized in that biochemical components are measured non-invasively.

実施例 以下、図面に基づいて本発明の好適な実施例を説明する
Embodiments Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には、本発明に係る生化学成分分析装置の原理図
が示されておシ、レーザ光100を試料用A’rR(内
部多重全反射)プリズム10内に導光し、この試料用A
TRプリズムを生体組織例えば口唇等の粘膜組織12に
押し当てて測定すわば、レーザ光100がその波長に比
例した深さだけ極〈僅かながら組織内にしみ込んで全反
射するので、生化学成分例えば組織糖濃度等を非観血的
に、しかも連続して測定することが可能となる。
FIG. 1 shows a principle diagram of the biochemical component analyzer according to the present invention, in which a laser beam 100 is guided into a sample A'rR (internal multiple total internal reflection) prism 10, and the sample For A
When the TR prism is pressed against a biological tissue, for example, a mucous tissue 12 such as the lips, the laser beam 100 penetrates into the tissue to a depth proportional to its wavelength and is totally reflected, so that biochemical components such as It becomes possible to non-invasively and continuously measure tissue sugar concentration and the like.

前記原理に基づいた本発明に係る生化学成分分析装置の
好適な実施例が第2図に示され、炭酸ガスレーザ光を試
料用ATRプリズム10に導光して口唇等の粘膜組織に
約lOミクロン程度の深さ内でレーザ光を多重的に反射
させ、その吸収スペクトルを測定して組織糖濃度を非観
血的に連続して測定することができる。
A preferred embodiment of the biochemical component analyzer according to the present invention based on the above principle is shown in FIG. 2, in which a carbon dioxide laser beam is guided to the sample ATR prism 10 to inject approximately 10 microns into the mucous tissue such as the lips. By multiply reflecting laser light within a certain depth and measuring its absorption spectrum, tissue sugar concentration can be continuously measured non-invasively.

レーザ光源14からの出力は光スィッチ28を迫って断
続的な光に変換された後、光分岐部30に印加きれ、該
光分岐部30により、試料用AT1tプリズム1()と
校正用ATRプリズム32に二分割されて導光される。
The output from the laser light source 14 is converted into intermittent light by the optical switch 28, and then applied to the optical branching section 30, which connects the sample AT1t prism 1 () and the calibration ATR prism. The light is divided into 32 parts and guided.

すなわち、元スイッチ28からのレーザ光の一方は、試
料用ATRプリズム10に導かれ、他方は校正用ATR
プリズム32に導かれ、試料用ATftプリズム10に
入射されたレーザ光は、そのプリズム面に押し当てられ
た被検者の口唇粘膜中に極く僅か、通常の場合約10ミ
クロンしみ込み、この時にレーザ光エネルギはその一部
が粘膜組織によって吸収される。
That is, one of the laser beams from the source switch 28 is guided to the sample ATR prism 10, and the other is guided to the calibration ATR prism 10.
The laser light guided by the prism 32 and incident on the sample ATft prism 10 penetrates a very small amount, usually about 10 microns, into the lip mucosa of the subject pressed against the prism surface, and at this time, A portion of the laser light energy is absorbed by mucosal tissue.

前述したように、この吸収量は粘膜組織中の糖濃度にほ
ぼ比例する。従って、試料用ATRプリズム10内で多
重全反射した光はその出力が生体組織内での吸収分減少
することとなり、この吸収減少分を測定することによっ
て生体組織内の生化学成分を分析することが可能となる
。すなわち、試料用ATRプリズムlOから出たレーザ
光は測定演算部34に供給され、該測定演算部34によ
り、生化学成分の分析が行われることとなる。
As mentioned above, the amount of absorption is approximately proportional to the sugar concentration in the mucosal tissue. Therefore, the output of the light that has undergone multiple total reflection within the sample ATR prism 10 is reduced by the absorption amount within the living tissue, and by measuring this absorption reduction, the biochemical components within the living tissue can be analyzed. becomes possible. That is, the laser light emitted from the sample ATR prism IO is supplied to the measurement calculation unit 34, and the measurement calculation unit 34 analyzes the biochemical components.

一方、校正用ATRプリズム32はそのプリズム向が生
理食塩水等の校正液中に浸されており、レーザ光は、予
め既知の減衰を受けた後、測定演算部34へ入射される
。校正用プリズム32も試料用ATRプリズム1oと同
様のプリズムかう成り、導光されるレーザ光の周波数、
強度その他に応じて校正液での吸収エネルギが変化し、
この校正用ATRプリズム32の出力と試料用ATRプ
リズム10の出力とを比較することによって、生化学成
分を正確に測定することが可能となる。
On the other hand, the calibration ATR prism 32 has its prism direction immersed in a calibration solution such as physiological saline, and the laser beam is incident on the measurement calculation section 34 after undergoing a known attenuation. The calibration prism 32 is also a prism similar to the sample ATR prism 1o, and the frequency of the guided laser light,
The energy absorbed by the calibration solution changes depending on the strength and other factors.
By comparing the output of the calibration ATR prism 32 and the sample ATR prism 10, it becomes possible to accurately measure biochemical components.

上記測定演算部34は、光入方信号を電気信号に変換す
る受光部36.38を含み、試料用ATRTRプリズム
及び校正用ATRプリズム32がら出射されたレーザ光
は、それぞれ受光部38.36に供給され、そのエネル
ギが電気的に検出される。
The measurement calculation section 34 includes a light receiving section 36.38 that converts a light incident signal into an electric signal, and the laser beams emitted from the sample ATRTR prism and the calibration ATR prism 32 are sent to the light receiving sections 38.36, respectively. The energy is detected electrically.

なお受光部36.38は、元コネクタによる着脱可能方
式のものが一般的である。該受光部36.38の出力は
、−rンプ4oによって増幅された後、A/Dコンバー
タ42によってデジタル信号に変換きれ、この後インタ
ーフェイス44を介してミニコンピユータ46へ供給き
れ、所望の演算処理が施きねた俊、測定値が出力記録さ
れる。ミニコンピユータ46がらのデータは実施例にお
いて、単位容積当たりの糖濃度として示され、所定の表
示あるいはプリンタにより印字記録されることとなる。
Note that the light receiving sections 36 and 38 are generally of a removable type using original connectors. The outputs of the light receiving sections 36 and 38 are amplified by the -r amplifier 4o, then converted into digital signals by the A/D converter 42, and then supplied to the minicomputer 46 via the interface 44 for desired arithmetic processing. Once completed, the measured values are output and recorded. In the embodiment, the data from the minicomputer 46 is expressed as sugar concentration per unit volume, and is displayed on a predetermined display or printed by a printer.

以上のように、第2図の実施例装置によれば、生化学成
分を非観血的に測定することができる。
As described above, according to the apparatus of the embodiment shown in FIG. 2, biochemical components can be measured non-invasively.

そして、本発明においては、光学系の安定度を向上させ
るために、光学系を全て光ファイノで及び光部品により
構成することを特徴としており、これにより、レーザ光
を外部空間に放出させることなく光学系に閉じ込めるこ
とが可能となる。以下、光学系の安定度の向上作用につ
いて詳細に説明する。
In order to improve the stability of the optical system, the present invention is characterized in that the optical system is constructed entirely of optical fins and optical components, thereby preventing the laser beam from being emitted into the external space. It becomes possible to confine it in an optical system. Hereinafter, the effect of improving the stability of the optical system will be explained in detail.

第2図の実施例装置において、レーザ光源14、元スイ
ッチ28、光分岐部30、試料用ATRプリズム10、
校正用ATRプリズム32及び測定演算部34の導光路
200,202,204,206,208,210及び
212はそれぞれ光ファイバから成り、更に制御回路1
8における導光路214,216及び218もそれぞれ
光ファイバから成る。従って、光ファイノくにより、レ
ーザ光の外部空間への放出を防止し、光学系の安定度を
向上させることができる。
In the embodiment apparatus shown in FIG. 2, a laser light source 14, a main switch 28, a light branching section 30, a sample ATR prism 10,
The light guide paths 200, 202, 204, 206, 208, 210, and 212 of the calibration ATR prism 32 and the measurement calculation unit 34 are each made of an optical fiber, and the control circuit 1
The light guides 214, 216 and 218 in 8 are each also made of optical fiber. Therefore, the optical fiber can prevent the laser light from being emitted to the outside space and improve the stability of the optical system.

光スィッチ28としては、例えば、ファイバ可動型、電
気的に元をオンオフ制御する光ICm(薄膜導波路型)
等があり、第3図には、ファイバ可動型光スイッチが示
されている。第3図において、光フアイバ素子48に対
向して光フアイバ素子50が設けられ、該元ファイバ素
子50を図の上下方向に移動し元をオンオフ制御するた
めに、元ファイバ素子501Cは励磁コイル52が巻回
され、該励磁コイル52に対向して永久磁石54.56
が設けられている。そして、光フアイバ素子50が図の
破線の位置にある場合には、光フアイバ素子50の端縁
が光フアイバ素子48の端縁と対向するので光がオン作
動し、一方、励磁コイル52に′1!流を供給して励磁
コイル52が励磁された場合には、元ファイバ素子50
が図の実線の位置に移動し、元ファイバ素子50の端縁
が元ファイバ素子48の端縁から外れるので元がオフ作
動する。
As the optical switch 28, for example, a movable fiber type, an optical ICm (thin film waveguide type) that electrically controls on/off operation, etc.
etc., and a fiber movable optical switch is shown in FIG. In FIG. 3, an optical fiber element 50 is provided opposite to the optical fiber element 48, and in order to move the original fiber element 50 in the vertical direction of the figure and to turn on and off the original fiber element 501C, the original fiber element 501C is connected to an excitation coil 52. is wound, and a permanent magnet 54,56 is placed opposite the excitation coil 52.
is provided. When the optical fiber element 50 is located at the position indicated by the broken line in the figure, the edge of the optical fiber element 50 faces the edge of the optical fiber element 48, so that light is turned on and, on the other hand, the excitation coil 52 is 1! When the excitation coil 52 is excited by supplying current, the original fiber element 50
moves to the position indicated by the solid line in the figure, and the edge of the original fiber element 50 comes off from the edge of the original fiber element 48, so that the original is turned off.

捷だ光分岐部30としては、例えば、多層膜型、スター
カップラ型、アクセスポート型(第4図参照)等のもの
がある。
Examples of the optical branching section 30 include a multilayer film type, a star coupler type, and an access port type (see FIG. 4).

以上のように、第2図の実施例装置によれば、導光路2
00〜218を光ファイバから構成し、更にレーザ光の
変換、分岐作用のために光スィッチ28及び光分岐部3
0を設けたので、レーザ光を外部空間に放出させること
なく光学系に閉じ込めることができ、光学系の安定度を
向上させることが可能となる。
As described above, according to the embodiment device of FIG.
00 to 218 are composed of optical fibers, and further an optical switch 28 and an optical branching section 3 are provided for converting and branching the laser beam.
Since 0 is provided, the laser beam can be confined in the optical system without being emitted to the outside space, and the stability of the optical system can be improved.

第5図には、本発明に係る生化学成分分析装置の具体的
な外観図の一例が示されている。レーザ光源14及びそ
の発振制御部セしてレーザ光導光装置は本体58内に収
納され、本体58の前面には、試料用ATRプリズム1
0が被検者の口唇に密着するに適した位置に露出されて
おり、試料用ATRプリズム10は各被検者に適合する
ように、本体58に対しである程度の可撓性をもって支
持きわている。1だ前述したように、試料用ATRフリ
ズム10の導光路206 、210は元ファイバかう成
す、レーザ光は元ファイバによって試料用ATRプリズ
ムlOに入出射されるので、試料用人THプリズム10
の位置が本体58に対しである程度移動することを可能
とする。そして、本体58の近傍には、ディスクトップ
コンピュータ60が設けら第1、所定の演算及びデータ
出力作用を行う。史に本体58内のレーザ光源に対して
は冷却器62がら冷却水が供給さね、レーザ光源の過熱
を防止している。
FIG. 5 shows an example of a specific external view of the biochemical component analyzer according to the present invention. The laser light source 14 and its oscillation control unit, as well as the laser light guide device, are housed in the main body 58, and the ATR prism 1 for sample is mounted on the front surface of the main body 58.
0 is exposed at a position suitable for close contact with the subject's lips, and the sample ATR prism 10 is supported with a certain degree of flexibility with respect to the main body 58 so as to fit each subject. There is. 1. As mentioned above, the light guide paths 206 and 210 of the sample ATR prism 10 are made of original fibers, and the laser light is emitted from the sample ATR prism lO by the original fiber, so the sample ATR prism 10
The position of the main body 58 can be moved to some extent. A desktop computer 60 is provided near the main body 58 and performs first, predetermined calculations and data output operations. Historically, cooling water is not supplied to the laser light source within the main body 58 through the cooler 62 to prevent the laser light source from overheating.

第6図には、第5図の分析装置を用いた実際の測定状態
が示はれ、被検者64は試料用ATRブリスム10をそ
の口唇にて密着挾持し、この状態で試料用ATRプリス
ム1oヘレーザ光源14がら所定波長のレーザ光を導光
することによってレーザ光をその波長に比例した深はた
け生体組織、実施列においては、1督組織内にしみ込ま
せて全反射をせ、組織内の糖濃度を非観血的に測定する
ことが11叱となる。
FIG. 6 shows an actual measurement state using the analyzer shown in FIG. By guiding a laser beam of a predetermined wavelength from the 10 laser light source 14, the laser beam penetrates into the biological tissue, or in the practical case, the 1st direct tissue, to a depth proportional to the wavelength and is totally reflected, causing the laser beam to penetrate into the tissue. Measurement of sugar concentration non-invasively is the 11th lesson.

6117図に1d1 レーザ光の糖水溶液内における吸
収スペクトルが示され、糖#度が大きい場合には、吸収
度も増加することが理解さね、またこの吸収度は波長に
よって著しく変化し、所定波長を選択することによって
、商会解能で糖濃反を測定可能施例においては、9.6
5<クロン程度の波長を選択シ、コの波長のレーザ光を
試料用ATRプリズム10へ供給することによって、口
唇組織内の糖濃度を極めて正確に測定することが可能と
なる。
Figure 6117 shows the absorption spectrum of the 1d1 laser beam in a sugar aqueous solution, and it is understood that the absorbance increases as the sugar content increases.Also, this absorbance changes significantly depending on the wavelength, and at a given wavelength By selecting , sugar concentration can be measured with Shokai resolution In the example, 9.6
By supplying a laser beam having a wavelength of about 5 < 1000 nm to the sample ATR prism 10, it becomes possible to measure the sugar concentration in the lip tissue with extreme accuracy.

前述したように、試料用ATRプリズム1oを被検者の
口唇に正しく適合感せるため、試料用人TRプリズム1
0けそれ自体本体58に対しである程度の可撓性を有す
ることが好適であり、このために、レーザ光を導光する
導光路206.210にも元ファイバを用いることが好
適である。第8図には、このような試料用A ’1’ 
Rプリズム1oと光ファイバ66との接続状態が示はれ
、光ファイバ66は中心導光部を形成するコア68と該
コア68の外皮を形成するクラッド7oとかう成す、ク
ラッド7oが試料用ATRプリズム1oに接着固定され
る。第8図の実施列から明らかなように、元ファイバ6
6はそれ自体良好な可撓性を有するので、試料用ATR
プリズム1()が本体に対してその支持位置を変化した
場合においても、レーザ光は確実に試料用ATRプリズ
ム10内に入射することができる。
As mentioned above, in order to make the sample ATR prism 1o fit properly to the subject's lips, the sample TR prism 1o is
It is preferable that the main body 58 itself has some degree of flexibility, and for this reason, it is preferable to use an original fiber for the light guide paths 206 and 210 that guide the laser beam. In Fig. 8, A '1' for such a sample is shown.
The state of connection between the R prism 1o and the optical fiber 66 is shown, and the optical fiber 66 consists of a core 68 forming a central light guiding portion and a cladding 7o forming an outer skin of the core 68. The cladding 7o is a sample ATR. It is adhesively fixed to the prism 1o. As is clear from the implementation row in FIG. 8, the original fiber 6
6 has good flexibility itself, so it is suitable for sample ATR.
Even if the prism 1 () changes its support position with respect to the main body, the laser beam can reliably enter the sample ATR prism 10.

第9図には、本発明に好適な試料用ATRプリズム10
と光ファイバ66との他の接続構造が足場れ、この実施
例においては、コア68の先端がレンズ状に加工されて
いるため、レーザ光100は第8図のように、コア68
の出口において散乱することなく、第9図に示されるよ
うに、平行光線に集束をれ、高稍度の測定に供される試
料用ATRプリズム10を得ることが可能となる。
FIG. 9 shows a sample ATR prism 10 suitable for the present invention.
In this embodiment, the tip of the core 68 is processed into a lens shape, so that the laser beam 100 is directed to the core 68 as shown in FIG.
As shown in FIG. 9, the sample ATR prism 10 which is focused into parallel light beams without being scattered at the exit of the sample beam and which can be used for high-intensity measurements can be obtained.

発明の詳細 な説明したように、本発明によれば、試料用A T R
プリズムを直接人体の粘膜組織に密着し、この密着状態
において試料用ATRプリズムへ所定波長のレーザ光を
導光するので、試料用ATRプリズムから出た反射レー
ザ光のエネルギを測定することによって、人体の粘膜組
織の生化学成分を分析することができ、非観血的に連続
した測定がijJ能となるオリ点を有する。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, the sample ATR
The prism is directly brought into close contact with the mucous tissue of the human body, and in this state of close contact, a laser beam of a predetermined wavelength is guided to the sample ATR prism. It is possible to analyze the biochemical components of the mucosal tissues of the human body, and has the advantage of being capable of continuous non-invasive measurement.

また本発明においては、レーザ光源、光スィッチ、光分
岐部、試料用ATRプリズム、校正用ATRプリズム及
び測定演算部の導光路はそれぞれ元ファイバから成り、
レーザ光の変換、分岐作用を行うために光スィッチ、光
分岐部が設けられており、光学系を全て光ファイバ及び
光部品にょシ構成している。従って、レーザ光を外部空
間に放出きせることなく光学系に閉じ込めることができ
るので、装置の振動、外乱に対して、光学系の安定度を
向上させることができるという利点を有する。更にレー
ザ光が外部空間に放出されないので、装置の小型化が達
成され装置の配置が自由となシ、また空気の汚染、空気
中の粉塵による悪影響を受けることがないと騒う利点を
有する。
Further, in the present invention, the laser light source, the optical switch, the optical branching section, the sample ATR prism, the calibration ATR prism, and the light guide path of the measurement calculation section are each made of an original fiber,
An optical switch and an optical branching section are provided to convert and branch the laser beam, and the optical system is entirely composed of optical fibers and optical components. Therefore, since the laser beam can be confined in the optical system without being emitted to the outside space, there is an advantage that the stability of the optical system can be improved against vibrations and disturbances of the apparatus. Furthermore, since the laser beam is not emitted into the external space, the apparatus has the advantage of being miniaturized, allowing freedom of arrangement, and not being adversely affected by air pollution or dust in the air.

なお本発明におりで、レーザ光源はその波長を任意に選
択して分析する生体組織に適合するレーザ光をATRプ
リズムへ導光することができ、このために、レーザ光源
を波長可変装置とすることも可能である。
In addition, according to the present invention, the laser light source can arbitrarily select its wavelength and guide laser light suitable for the biological tissue to be analyzed to the ATR prism, and for this purpose, the laser light source is a wavelength variable device. It is also possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の生化学成分分析作用を示す原地図、第
21は本発明に係る生化学成分分析装置の好適な実施例
を示す概略説明図、第3図はファイバ可動型光スイッチ
の説明図、第4図はアクセスホード型光分岐部の説明図
、第5図は第2図の実施例の具体的な外観図、第6図は
第5図の分析装置における測定状態を示す説明図、第7
図は本発明の分析例を示す特性図、第8図及び第9図は
それぞれ本発明に係る試料用ATRプリズムとその導光
路との接続状態を示す説明図である。 10・・試料用ATRプリズム 12・・・粘膜組織 14・・・レーザ光源 28・・・光スィッチ 30・・・元分岐部 32・・・校正用ATRプリズム 34・・・測定演算部 64・・・被検者 100・・・レーザ光 200〜218・・・導光路 出願人 アロカ株式会社 爪3図 荒5図 0 蒐7図 1053 1042 1031 1020 c吊1:J
lL数箪数回 8図図
FIG. 1 is an original map showing the biochemical component analysis function of the present invention, FIG. 21 is a schematic explanatory diagram showing a preferred embodiment of the biochemical component analyzer according to the present invention, and FIG. 3 is a diagram of a fiber movable optical switch. 4 is an explanatory diagram of the access hold type optical branching section, FIG. 5 is a concrete external view of the embodiment of FIG. 2, and FIG. 6 is an explanation showing the measurement state in the analyzer of FIG. 5. Figure, 7th
The figure is a characteristic diagram showing an analysis example of the present invention, and FIGS. 8 and 9 are explanatory diagrams each showing a connection state between the sample ATR prism and its light guide path according to the present invention. 10... ATR prism for sample 12... Mucosal tissue 14... Laser light source 28... Optical switch 30... Source branching section 32... ATR prism for calibration 34... Measurement calculation section 64...・Subject 100...Laser light 200-218...Light guide path applicant Aloka Co., Ltd. Tsume 3 Figure Rough 5 Figure 0 蒺7 Figure 1053 1042 1031 1020 c Hanging 1: J
lL number of numbers 8 diagrams

Claims (1)

【特許請求の範囲】[Claims] (1)生体の粘膜組織に密着される試料用ATRプリズ
ムと、レーザ光の一部が導光される校正用ATRプリズ
ムと、試料用AT、Rプリズム及び校正用A T lプ
リズムに所定波長のレーザ光を導光するレーザ光源と、
試料用ATRプリズムのエネルギ出力と校正用ATRプ
リズムのエネルギ出力とを測定しこの測定結果に基づき
上記生体の生化学成分を測定する測定演算部と、を含み
、試料用ATRプリズムと校正用ATRプリズムへのレ
ーザ光の導光路にはレーザ光を分岐して同時刻のレーザ
光を試料用ATRプリズムと校正用ATRプリズムに導
くためのツ0分岐部が設けられ、レーザ光源にはレーザ
光を断続的な光に変換する光スィッチが設けられ、前記
レーザ光源、元スイッチ、光分岐部、試料用A T l
プリズム、校正用AT)lプリズム及び測定演算部の導
光路はそれぞれ光ファイバから成り、生化学成分を非観
血的に測定することを特徴とするレーザ光による生化学
成分分析装置。
(1) A sample ATR prism that is in close contact with the mucosal tissue of a living body, a calibration ATR prism through which part of the laser light is guided, and a sample AT, R prism, and calibration A T l prism with a predetermined wavelength. a laser light source that guides laser light;
a measurement calculation unit that measures the energy output of the ATR prism for sample and the energy output of the ATR prism for calibration, and measures the biochemical components of the living body based on the measurement results, the ATR prism for sample and the ATR prism for calibration; The laser light guide path is provided with a two-branch section for branching the laser light and guiding the laser light at the same time to the sample ATR prism and the calibration ATR prism, and the laser light source has an intermittent laser light source. An optical switch is provided to convert the light into standard light, and includes the laser light source, the main switch, the optical branch, and the sample ATl.
A biochemical component analyzer using a laser beam, characterized in that the prism and the light guide path of the measurement calculation unit are each made of an optical fiber, and the biochemical components are measured non-invasively.
JP58180778A 1983-09-30 1983-09-30 Biochemical component analytical apparatus using laser beam Pending JPS6073344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180778A JPS6073344A (en) 1983-09-30 1983-09-30 Biochemical component analytical apparatus using laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180778A JPS6073344A (en) 1983-09-30 1983-09-30 Biochemical component analytical apparatus using laser beam

Publications (1)

Publication Number Publication Date
JPS6073344A true JPS6073344A (en) 1985-04-25

Family

ID=16089161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180778A Pending JPS6073344A (en) 1983-09-30 1983-09-30 Biochemical component analytical apparatus using laser beam

Country Status (1)

Country Link
JP (1) JPS6073344A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686659B1 (en) * 2004-02-19 2007-02-27 너스킨 인터어내셔날 인코포레이팃드 Bio-photonic feedback controlling device and method
JP2021067653A (en) * 2019-10-28 2021-04-30 株式会社リコー Absorbance measuring device and biological information measuring device
WO2021085341A1 (en) * 2019-10-28 2021-05-06 Ricoh Company, Ltd. Measuring apparatus and biological information measuring apparatus
JP2021074068A (en) * 2019-11-06 2021-05-20 株式会社リコー Measuring apparatus and biological information measuring apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766741A (en) * 1980-10-11 1982-04-23 Aloka Co Ltd Analysing device for biochemical component through lasre
JPS5816397A (en) * 1981-07-20 1983-01-31 松下電器産業株式会社 Optical fiber sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766741A (en) * 1980-10-11 1982-04-23 Aloka Co Ltd Analysing device for biochemical component through lasre
JPS5816397A (en) * 1981-07-20 1983-01-31 松下電器産業株式会社 Optical fiber sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686659B1 (en) * 2004-02-19 2007-02-27 너스킨 인터어내셔날 인코포레이팃드 Bio-photonic feedback controlling device and method
JP2021067653A (en) * 2019-10-28 2021-04-30 株式会社リコー Absorbance measuring device and biological information measuring device
WO2021085341A1 (en) * 2019-10-28 2021-05-06 Ricoh Company, Ltd. Measuring apparatus and biological information measuring apparatus
JP2021074068A (en) * 2019-11-06 2021-05-20 株式会社リコー Measuring apparatus and biological information measuring apparatus

Similar Documents

Publication Publication Date Title
JP3643842B2 (en) Glucose concentration testing device
US9237850B2 (en) System and method for noninvasively monitoring conditions of a subject
JP5075116B2 (en) Spectroscopic determination of analyte concentration
US4768513A (en) Method and device for measuring and processing light
JP4490587B2 (en) Device for noninvasive detection of oxygen metabolism in tissues
US7307258B2 (en) Terahertz system for detecting the burn degree of skin
US20060135861A1 (en) Apparatus and method for blood analysis
JPH1073481A (en) Method and instrument for measuring absorption information of scattering body
JP2007267848A (en) Instrument for inspecting tumor
JP2007083028A (en) Noninvasive inspecting apparatus
CN110361357A (en) A kind of single array element photoacoustic spectrum signal acquisition system and method for skin detection
JPH0754855Y2 (en) Photoacoustic sensor
US20110125004A1 (en) Analysis by photo acoustic displacement and interferometryl
JP2006524091A (en) Catheter head
JP2016112470A (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
JPS6073344A (en) Biochemical component analytical apparatus using laser beam
JPS6157774B2 (en)
JPH0113852B2 (en)
JPS6075032A (en) Biochemical component analyser due to laser beam
CN113349769A (en) Optoacoustic microscopic endoscopic imaging system
JPH11342123A (en) Non-invasion organic component measuring device
JPS6075031A (en) Biochemical component analyser due to laser beam
JPS6073345A (en) Biochemical component analytical apparatus using laser beam
CN113243889B (en) Method and apparatus for obtaining information of biological tissue
JPS6075029A (en) Biochemical component analyser due to laser beam