JPS6072927A - Production of polymer microlens - Google Patents

Production of polymer microlens

Info

Publication number
JPS6072927A
JPS6072927A JP18375983A JP18375983A JPS6072927A JP S6072927 A JPS6072927 A JP S6072927A JP 18375983 A JP18375983 A JP 18375983A JP 18375983 A JP18375983 A JP 18375983A JP S6072927 A JPS6072927 A JP S6072927A
Authority
JP
Japan
Prior art keywords
light
refractive index
mask
optical medium
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18375983A
Other languages
Japanese (ja)
Inventor
Kazuo Mikami
和夫 三上
Maki Yamashita
山下 牧
Mitsutaka Kato
加藤 充孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP18375983A priority Critical patent/JPS6072927A/en
Publication of JPS6072927A publication Critical patent/JPS6072927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To produce a polymer microlens in good yield, by selectively irradiating with light an optical medium containing a photopolymerizable monomer which, when formed into a polymer, changes in its refractive index. CONSTITUTION:An optical medium 10, i.e. a mixture of a matrix (e.g., bisphenol Z-derived polycarbonate) a photopolymerizable monomer (e.g., methyl acrylate), a solvent (e.g., methylene chloride), a photosensitizer, etc., is poured into a casting container 1 (numeral 2 is a level) and dried to form a sheet-like transparent semi-solid film. A mask 3 whose light transmission is uniformly high outside the circular area 3a, is decreasing toward the center of the circular area, and decreases to nearly zero at the center is laid on the above semi-solid film. Light is transmitted through the mask 3 to polymerize the monomer in response to the intensity of the light. The whole casting container is transferred to a vacuum drier to dry the semisolid film into a flat microlens.

Description

【発明の詳細な説明】 発明の背景 この発明は、高分子材料を用いたマイクロレンズの製造
方法に関スル。
DETAILED DESCRIPTION OF THE INVENTION Background of the Invention The present invention relates to a method for manufacturing microlenses using polymeric materials.

従来から各種光学系では凸レンズや凹レンズなどのよう
に外形が凸凹しているレンズが多用されているが、この
ようなレンズはその保持機構が必要で、多数のレンズを
平面状に並べて使用するような場合には大きなスペース
をとるとともに保持機構が複雑となるという問題がある
Traditionally, various optical systems have often used lenses with an uneven outer shape, such as convex lenses or concave lenses, but such lenses require a holding mechanism, so it is difficult to use a large number of lenses lined up in a flat shape. In such a case, there are problems in that it takes up a large amount of space and the holding mechanism becomes complicated.

またこのような凸凹形状をもつレンズを複数個一体的に
製作することはできなかった。
Furthermore, it has not been possible to integrally manufacture a plurality of lenses having such uneven shapes.

発明の要°点 この発明は、高分子材料を用いることにより任意の大き
さのレンズを任意の個数だけ任意の配置で作製すること
のできる方法を提供するものである。
Key Points of the Invention The present invention provides a method by which lenses of any size, in any number, and in any arrangement can be manufactured by using a polymeric material.

この発明による高分子マイクロレンズの製造方法は、光
の照射によって重合され、重合されると屈折率が変化す
るモノマを含む光学媒体をフィルム状に形成し、その少
なくとも一面上に面方向に光強度分布をもつ光を照射す
ることを特徴とする。照射光の光強度分布をつくるため
には、面方向に光透過率分布をもつマスクを用いるとよ
い。
The method for producing a polymer microlens according to the present invention is to form an optical medium containing a monomer that is polymerized by light irradiation and whose refractive index changes when polymerized into a film, and to apply light intensity in the plane direction on at least one surface of the optical medium. It is characterized by emitting light with a distribution. In order to create a light intensity distribution of irradiation light, it is preferable to use a mask having a light transmittance distribution in the surface direction.

光の照射量によってポリマの重合度が異なり、これによ
り屈折率も異なる。したがって光学媒体にはその面方向
にマスクの光透過率薯こ応じた屈折率分布が生じる。等
屈折率曲線が円形でありかつ中心にいくほど屈折率が高
くなるような屈折率分布を生じさせれば光を収束させる
凸レンズ相当のレンズができ、逆に中心にいくほど屈折
率が低くなるようにすれば光を拡散させる凹レンズ相当
のレンズができる。さらに、等屈折率曲線が楕円形のレ
ンズをつくることも、等屈折率直線をもつシリンドリカ
ル・レンズ相当のレンズの製造も可能である。
The degree of polymerization of the polymer varies depending on the amount of light irradiation, and the refractive index also varies accordingly. Therefore, the optical medium has a refractive index distribution in its surface direction that corresponds to the light transmittance of the mask. If we create a refractive index distribution where the equirefractive index curve is circular and the refractive index increases toward the center, we can create a lens equivalent to a convex lens that converges light, and conversely, the refractive index decreases toward the center. By doing this, you can create a lens equivalent to a concave lens that diffuses light. Furthermore, it is also possible to manufacture a lens with an elliptical equirefractive index curve, or a lens equivalent to a cylindrical lens with an equirefractive straight line.

照射光の強度分布の広がりの大きさ、すなわちマスクの
光透過率分布の広がりの大きさに応じて任意の形状で任
意の大きさのレンズの製造が゛可能であり、しかも1つ
の光学媒体フィルム上に任意の配置で任意の数のレンズ
を任意の組合せで作製することができる。
It is possible to manufacture lenses of any shape and size depending on the spread of the intensity distribution of the irradiated light, that is, the spread of the light transmittance distribution of the mask, and moreover, it is possible to manufacture a lens of any shape and size according to the spread of the intensity distribution of the irradiated light. Any number of lenses can be fabricated in any combination on top in any arrangement.

実施例の説明 この実施例では、光重合によ弓てポリマになると屈折率
が低くなるモノマが用いられている。
DESCRIPTION OF THE EXAMPLE In this example, a monomer is used which has a low refractive index when photopolymerized to form a polymer.

第1図に示すように、先導波路が形成されるべA/Z系
ボり、f+−*ネ−)(PCZ)70F、 モノマとし
てアクリル酸メチル(MA)42m/、溶媒として塩化
メチレン(CH2CI!2)looof。
As shown in Figure 1, a base A/Z system where the leading wavepath is formed, f+-*ne-) (PCZ) 70F, methyl acrylate (MA) 42m/m/m as a monomer, and methylene chloride (CH2CI) as a solvent. !2) looof.

光増感剤としてベンゾインエチルエーテル(BZEE)
2.19.散乱防止剤としてハイドロキノン(HQ)0
、07 fを混合した溶液である。膜厚が100μ毒な にむるように溶液αQの量が調整される。この膜厚は形
成すべきレンズの大きさ等によって定めればよく、任意
の厚さたとえば10μ乳〜100μ展程度に設定するこ
とができる。水準器(2)は、液面の水平度を保つため
に水準調整を行なうものである。
Benzoin ethyl ether (BZEE) as a photosensitizer
2.19. Hydroquinone (HQ) 0 as an anti-scattering agent
, 07 f. The amount of solution αQ is adjusted so that the film thickness is 100 μm. This film thickness may be determined depending on the size of the lens to be formed, etc., and can be set to an arbitrary thickness, for example, from about 10 μm to 100 μm. The level (2) is used to adjust the level of the liquid to keep it level.

第3図は、を記のような光学媒体の光照射量に対する屈
折率変化(重合度)を示している。
FIG. 3 shows the change in refractive index (degree of polymerization) with respect to the amount of light irradiation of an optical medium as shown in FIG.

光の照射量が多ければそれだけ重合が進み、屈折率も変
化する。光照射量によって屈折率の変化を制御すること
が可能である。
The greater the amount of light irradiation, the more polymerization progresses and the refractive index changes. It is possible to control changes in the refractive index by adjusting the amount of light irradiation.

第2図はレンズの製造において用いられるマスクの一例
を示している。マスク(3)はその中央部に光透過率が
分布している円形部分(3a)をもっている。光透過率
はこの円形部分(3&)内で中心にいくほど小さくなっ
ており、中心ではGtとんど零である。等光透過率曲線
Tは円形であり、同心円状になっている。円形部分(3
a)の外側憂こおいては光透過率は最大でありかつ一様
である。
FIG. 2 shows an example of a mask used in lens manufacturing. The mask (3) has a circular part (3a) in the center of which the light transmittance is distributed. The light transmittance decreases toward the center within this circular portion (3&), and Gt is almost zero at the center. The isolight transmittance curve T is circular and concentric. Circular part (3
In the outer region of a) the light transmission is maximum and uniform.

キャスト容器(1)内に光学媒体a〔を流し込んだのち
、キャスト容器(1)を半密閉状態しこしてチッソガス
を100m1/分で100分間流し、その後モノマ蒸気
を20分間流して、溶媒およびモノマの一部を蒸発させ
、シート状の透明な半固形状フィルムとする。
After pouring the optical medium a into the cast container (1), the cast container (1) is semi-closed and nitrogen gas is flowed at 100 ml/min for 100 minutes, followed by monomer vapor for 20 minutes to remove the solvent and monomer. A part of it is evaporated to form a sheet-like transparent semi-solid film.

次に、シート状光学媒体αθ上にマスク(3)を置き、
紫外線露光装置から発生する均一な平行光をキャスト容
器(1)の上方から下方に向けて15分間程度継続して
照射する。これにより、マスり(3)の円形部分(3&
)の直下の光学媒体叫において、光透過率の最も小さい
部分にはほとんど紫外線が照射されず、周囲にいくほど
照射光量が増大するから、中心部では屈折率が最も高く
(はとんど光重合されてない)、周囲にいくほどし7ス
゛’ (roal 屈折率が低下したル曇檎弁噛が形成される。マスク(3
)の円形部分(3a)の光透過重分布を第:3図のグラ
フを考慮して適当に決定することにより、レンズ相当)
を得ることができる。光学媒体a[Iの他の部分は屈折
率の最も小さな基板となる。
Next, a mask (3) is placed on the sheet-like optical medium αθ,
Uniform parallel light generated from an ultraviolet exposure device is continuously irradiated from above to below the cast container (1) for about 15 minutes. As a result, the circular part (3&
), the part with the lowest light transmittance is hardly irradiated with ultraviolet rays, and the amount of irradiated light increases as it goes to the periphery, so the refractive index is highest in the center (mostly (not polymerized), and as it goes to the periphery, a 7' (roal) layer with a decreased refractive index is formed.Mask (3
) by appropriately determining the light transmission weight distribution of the circular part (3a) of (corresponding to a lens) by considering the graph in Figure 3.
can be obtained. The other portion of the optical medium a[I becomes a substrate with the smallest refractive index.

後処理として、露光終了後30分以上常温放置し、その
後キャスト容器ごと真空乾燥機内に移し、90℃で約5
時間乾燥する。
As a post-processing, after exposure, leave it at room temperature for 30 minutes or more, then transfer the entire cast container to a vacuum dryer and dry at 90℃ for about 5 minutes.
Dry for an hour.

このような平板状レンズは10μm径から1000μm
径程度のものまで作製できるし、また光透過重分布をも
つ多数の円形部分がつくられたマスクを用いれば1つの
基板上基こ1o〜1oo個程 度のレンズを並べてつく
ることができる。このような多数のレンズが配列された
レンズ基板は、たとえばアレイ状の光源(LEDアレイ
など)がら出る光をそれぞれ集光する場合に、また受光
素子アレイのそれぞれの受光素子上に光スポットをつく
る場合などに応用できる。第4図に示されているように
レンズ(lOβ)をもつ基板叫を積層することによりレ
ンズの焦点距離等を調整することも可能である。
Such a flat lens has a diameter of 10 μm to 1000 μm.
It is possible to fabricate lenses up to the same diameter, and if a mask is used that has a large number of circular parts with a light transmission weight distribution, about 1 to 10 lenses can be lined up on one substrate. A lens substrate with such a large number of lenses arranged is used, for example, when condensing light emitted from an array of light sources (such as an LED array), or to create a light spot on each light receiving element of a light receiving element array. It can be applied in various cases. As shown in FIG. 4, it is also possible to adjust the focal length of the lens by laminating substrates each having a lens (lOβ).

上記実施例では光を上方から下方に向けて照射している
が、マスク(3)をキャスト容器(11の底面外側に配
置し、またはキャスト容器ti+の底面それ自体をマス
クとして下方から上方に向けて −光を照射してもよい
。中心に向うにつれて光透過率が高くなるような円形部
分をもつマスクを用いれば光を拡散させる凹レンズ相当
のレンズを作製できる。また、上下両面から光を照射し
でもよい。
In the above embodiment, light is irradiated from above to below, but the mask (3) is placed outside the bottom of the cast container (11), or the bottom of the cast container ti+ is used as a mask to direct the light from below to above. -You may also irradiate light.If you use a mask with a circular part where the light transmittance increases toward the center, you can create a lens equivalent to a concave lens that diffuses light.Also, you can irradiate light from both the top and bottom sides. It's okay.

上記実施例では、光重合されることによって屈折率が低
下するモノマを用いているが、逆に屈折率が高くなるよ
うなモノマを用いることも可能である。このようなモノ
マを用いても、凸レンズ機能、凹レンズ機能をもつもの
の両方を作製できる。
In the above embodiments, a monomer whose refractive index decreases when photopolymerized is used, but it is also possible to use a monomer whose refractive index increases. Even by using such a monomer, lenses having both convex lens function and concave lens function can be produced.

り さらに楕円屈折重大布その他任意の屈折率分布をもつレ
ンズの製造が可能であW)うまでもない。中心にいくほ
ど屈折率が高くなりかっ等屈折率曲線が楕円形のレンズ
を作製すれば、半導体レーザから出射するレーザ・ビー
ムのように異方的な広がりをもつ光を真円化することも
可能となる。
Furthermore, it is possible to manufacture lenses having an arbitrary refractive index distribution such as an elliptical refractive index cloth. The refractive index increases toward the center.If you create a lens with an elliptical refractive index curve, you can make light that spreads anisotropically, such as a laser beam emitted from a semiconductor laser, into a perfect circle. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

4イア0レンス゛ 第1図はこの発明によるに巻破嘲の製造過程を示す図、
第2図はマスクの一例を示す図、第3図は光の照射量に
対する屈折率変化(重合度)を示すグラフ、第4図はこ
の発明により製造されたレンズの応用例を示す斜視図で
ある。 (11・・拳キャスト容器、+31−・・マスク、 (
3m)・・・光透過率分布円形部分、叫・・・光学媒体
、(lOa)・・・レンズ。 以 上 外4名 第1図 第2図 第3図 第4図
Figure 1 is a diagram showing the manufacturing process of the 4-ear lens according to the present invention.
Fig. 2 is a diagram showing an example of a mask, Fig. 3 is a graph showing changes in refractive index (degree of polymerization) with respect to the amount of light irradiation, and Fig. 4 is a perspective view showing an application example of the lens manufactured according to the present invention. be. (11...Fist cast container, +31-...Mask, (
3m)...Circular part with light transmittance distribution, optical medium, (lOa)...lens. Other 4 people Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)光の照射掻こよって重合され、重合されると屈折
率が変化するモノマを含む光学媒体をフィルム状に形成
し、その少なくとも一面上に面方向に光強度分布をもつ
光を照射する、高分子マイクロレンズの製造方法。 分子マイクロレンズの製造方法。
(1) An optical medium containing a monomer that is polymerized by light irradiation and whose refractive index changes when polymerized is formed into a film, and at least one surface of the optical medium is irradiated with light having a light intensity distribution in the surface direction. , a method for manufacturing polymer microlenses. Method for manufacturing molecular microlenses.
JP18375983A 1983-09-30 1983-09-30 Production of polymer microlens Pending JPS6072927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18375983A JPS6072927A (en) 1983-09-30 1983-09-30 Production of polymer microlens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18375983A JPS6072927A (en) 1983-09-30 1983-09-30 Production of polymer microlens

Publications (1)

Publication Number Publication Date
JPS6072927A true JPS6072927A (en) 1985-04-25

Family

ID=16141475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18375983A Pending JPS6072927A (en) 1983-09-30 1983-09-30 Production of polymer microlens

Country Status (1)

Country Link
JP (1) JPS6072927A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161042A (en) * 1990-06-28 1992-11-03 Sharp Kabushiki Kaisha Color liquid crystal display device using dichroic mirrors for focusing different colors in different directions
JPH07509325A (en) * 1993-04-29 1995-10-12 ライカ リトグラフィー システーメ イエーナ ゲーエムベーハー Stepped lens with Fresnel surface structure made by lithography and manufacturing method
EP0945762A1 (en) * 1998-03-24 1999-09-29 Lucent Technologies Inc. Optical article and process for forming article
EP1033623A3 (en) * 1999-03-01 2002-10-23 Lucent Technologies Inc. Photorecording medium, process for fabricating medium, and process for holography using medium
WO2008138732A1 (en) 2007-05-11 2008-11-20 Basf Se Oxime ester photoinitiators
US7599120B2 (en) 2004-09-07 2009-10-06 Sanyo Electric Co., Ltd. Composite lens, manufacturing method for composite lens, and lens module
EP2402315A1 (en) 2007-05-11 2012-01-04 Basf Se Oxime ester photoinitiators
WO2012045736A1 (en) 2010-10-05 2012-04-12 Basf Se Oxime ester derivatives of benzocarbazole compounds and their use as photoinitiators in photopolymerizable compositions
WO2013083505A1 (en) 2011-12-07 2013-06-13 Basf Se Oxime ester photoinitiators
WO2013167515A1 (en) 2012-05-09 2013-11-14 Basf Se Oxime ester photoinitiators
JP2014136774A (en) * 2013-01-18 2014-07-28 Nippon Zeon Co Ltd Method for producing resin sheet
WO2015004565A1 (en) 2013-07-08 2015-01-15 Basf Se Oxime ester photoinitiators
WO2015036910A1 (en) 2013-09-10 2015-03-19 Basf Se Oxime ester photoinitiators
US9051397B2 (en) 2010-10-05 2015-06-09 Basf Se Oxime ester
JP2019507206A (en) * 2015-12-29 2019-03-14 スリーエム イノベイティブ プロパティズ カンパニー Adhesive additive manufacturing method and adhesive article
WO2020152120A1 (en) 2019-01-23 2020-07-30 Basf Se Oxime ester photoinitiators having a special aroyl chromophore
WO2021175855A1 (en) 2020-03-04 2021-09-10 Basf Se Oxime ester photoinitiators

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161042A (en) * 1990-06-28 1992-11-03 Sharp Kabushiki Kaisha Color liquid crystal display device using dichroic mirrors for focusing different colors in different directions
JPH07509325A (en) * 1993-04-29 1995-10-12 ライカ リトグラフィー システーメ イエーナ ゲーエムベーハー Stepped lens with Fresnel surface structure made by lithography and manufacturing method
EP0945762A1 (en) * 1998-03-24 1999-09-29 Lucent Technologies Inc. Optical article and process for forming article
US6482551B1 (en) 1998-03-24 2002-11-19 Inphase Technologies Optical article and process for forming article
EP1033623A3 (en) * 1999-03-01 2002-10-23 Lucent Technologies Inc. Photorecording medium, process for fabricating medium, and process for holography using medium
US7599120B2 (en) 2004-09-07 2009-10-06 Sanyo Electric Co., Ltd. Composite lens, manufacturing method for composite lens, and lens module
WO2008138732A1 (en) 2007-05-11 2008-11-20 Basf Se Oxime ester photoinitiators
EP2402315A1 (en) 2007-05-11 2012-01-04 Basf Se Oxime ester photoinitiators
US9051397B2 (en) 2010-10-05 2015-06-09 Basf Se Oxime ester
WO2012045736A1 (en) 2010-10-05 2012-04-12 Basf Se Oxime ester derivatives of benzocarbazole compounds and their use as photoinitiators in photopolymerizable compositions
WO2013083505A1 (en) 2011-12-07 2013-06-13 Basf Se Oxime ester photoinitiators
US9365515B2 (en) 2011-12-07 2016-06-14 Basf Se Oxime ester photoinitiators
EP2963016A1 (en) 2012-05-09 2016-01-06 Basf Se Oxime ester photoinitiators
EP3354641A1 (en) 2012-05-09 2018-08-01 Basf Se Oxime ester photoinitiators
US11209733B2 (en) 2012-05-09 2021-12-28 Basf Se Oxime ester photoinitiators
EP2963015A1 (en) 2012-05-09 2016-01-06 Basf Se Oxime ester photoinitiators
US11209734B2 (en) 2012-05-09 2021-12-28 Basf Se Oxime ester photoinitiators
EP2963014A1 (en) 2012-05-09 2016-01-06 Basf Se Oxime ester photoinitiators
WO2013167515A1 (en) 2012-05-09 2013-11-14 Basf Se Oxime ester photoinitiators
US9864273B2 (en) 2012-05-09 2018-01-09 Basf Se Oxime ester photoinitiators
US11204554B2 (en) 2012-05-09 2021-12-21 Basf Se Oxime ester photoinitiators
US10488756B2 (en) 2012-05-09 2019-11-26 Basf Se Oxime ester photoinitiators
JP2014136774A (en) * 2013-01-18 2014-07-28 Nippon Zeon Co Ltd Method for producing resin sheet
WO2015004565A1 (en) 2013-07-08 2015-01-15 Basf Se Oxime ester photoinitiators
WO2015036910A1 (en) 2013-09-10 2015-03-19 Basf Se Oxime ester photoinitiators
US10793555B2 (en) 2013-09-10 2020-10-06 Basf Se Oxime ester photoinitiators
US9957258B2 (en) 2013-09-10 2018-05-01 Basf Se Oxime ester photoinitiators
JP2019507206A (en) * 2015-12-29 2019-03-14 スリーエム イノベイティブ プロパティズ カンパニー Adhesive additive manufacturing method and adhesive article
US11254841B2 (en) 2015-12-29 2022-02-22 3M Innovative Properties Company Additive manufacturing methods for adhesives and adhesive articles
US11279853B2 (en) 2015-12-29 2022-03-22 3M Innovative Properties Company Additive manufacturing methods for adhesives and adhesive articles
WO2020152120A1 (en) 2019-01-23 2020-07-30 Basf Se Oxime ester photoinitiators having a special aroyl chromophore
WO2021175855A1 (en) 2020-03-04 2021-09-10 Basf Se Oxime ester photoinitiators

Similar Documents

Publication Publication Date Title
JPS6072927A (en) Production of polymer microlens
US4877717A (en) Process for the production of optical elements
US5998096A (en) Process for producing polymerization or crosslinking rate-distributed article and process for producing lens, lens array or waveguide using the process
US4842969A (en) Transmittance modulation photomask, process for producing the same, and process for producing diffraction gratings using the same
CN110989054B (en) Liquid crystal film lens and manufacturing method thereof
JPH0618739A (en) Production of waveguide
JPS5971830A (en) Manufacture of lens of refractive index distribution type
EP0575885B1 (en) Process for producing polymerization or crosslinking rate-distributed article and process for producing lens, lens array or waveguide using the process
JPH06194502A (en) Microlens and microlens array and their production
JP3504683B2 (en) Method of forming lens region, lens and lens array plate
JP3321194B2 (en) Photo mask
JPS589110A (en) Manufacture of optical focusing device for light emitting diode array
JP2505447B2 (en) Optical element manufacturing method
JPS6153031A (en) Manufacture of refractive index distributed type micro lens
JP3181998B2 (en) Method for producing polymer and method for producing crosslinked product
JPH02310501A (en) Production of flat plate microlens array made of synthetic resin
JPS59204519A (en) Preparation of synthetic resin plane lens
JPH07104590B2 (en) Transmittance modulation type photomask, its manufacturing method and diffraction grating manufacturing method using the same
JPH063506A (en) Production of lens and production of lens array plate
JPH0627303A (en) Lens plate and its production
JPS60202402A (en) Fresnel lens
JPS59131430A (en) Fabrication of self-condensing lens
JPH06222202A (en) Plastic non-spherical micro-lens and its manufacture
JPH03154001A (en) Reflection type lens
JPH0313975B2 (en)