JPS6072844A - Preparation of formylnorbornane containing polar functional group - Google Patents

Preparation of formylnorbornane containing polar functional group

Info

Publication number
JPS6072844A
JPS6072844A JP58179182A JP17918283A JPS6072844A JP S6072844 A JPS6072844 A JP S6072844A JP 58179182 A JP58179182 A JP 58179182A JP 17918283 A JP17918283 A JP 17918283A JP S6072844 A JPS6072844 A JP S6072844A
Authority
JP
Japan
Prior art keywords
functional group
polar functional
catalyst
reaction
bisulfite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58179182A
Other languages
Japanese (ja)
Inventor
Yoshio Yanagi
柳 良夫
Michitoku Yoshihara
吉原 道徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP58179182A priority Critical patent/JPS6072844A/en
Publication of JPS6072844A publication Critical patent/JPS6072844A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound, by subjecting a norbornene containing a polar functional group to hydroformylation in the presence of a specific catalyst, bringing an aqueous solution of a bisulfite into contact with the prepared reaction mixture so that a formylnorbonane containing a polar functional group is extracted in the form of an addition product in the aqueous solution, separating it from a catalytic phase. CONSTITUTION:A norbornene shown by the formula I (X is polar functional group such as cyano, carbomethoxy, etc.) containing a functional group is subjected to hydroformylation with a mixed gas of H2 and CO in an organic solvent immiscible with water in the presence of a catalyst consisting of a rhodium complex and a triarylphosphine. After the reaction is over, an aqueous solution of a bisulfite is brought into contact with the reaction mixture, formylnorbornane containing a polar functional group is extracted in the aqueous solution in the form of a bisulfite addition product, an organic solvent phase containing the catalyst is separated, to give the desired compound shown by the formula II. The organic solvent phase containing the separated catalyst is recycled to the reaction zone. USE:Various intrmediates useful in polymer fields such as polyester, etc.

Description

【発明の詳細な説明】 本発明は分子内に極性官能基を有するノルボルネン類の
ヒドロホルミル化に関し、詳しくはロジウム錯化合物お
よびトリアリールホスフィンからなる触媒の存在下に極
性官能基含有ノルボルネンをヒドロホルミル化して得ら
れる反応混合物から、生成物と触媒とを分離回収する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the hydroformylation of norbornenes having a polar functional group in the molecule, and more specifically to the hydroformylation of norbornenes containing a polar functional group in the presence of a catalyst consisting of a rhodium complex compound and a triarylphosphine. The present invention relates to a method for separating and recovering a product and a catalyst from a resulting reaction mixture.

極性官能基を有するホルミルノルボルナン類には、ポリ
マー分野で有用な種々の中間体があり、例えば極性官能
基としてシアノ基を有するシアノホルミルノルボルナン
は、水添触媒の存在下でアミノ水素化反応により相当す
るジアミンに容易に転換され、このジアミンはポリカル
ボン酸と縮重合させて種々のポリアミドを得ることがで
きる。
There are various intermediates of formylnorbornanes having polar functional groups that are useful in the polymer field.For example, cyanoformylnorbornanes having cyano groups as polar functional groups can be converted into equivalent intermediates by aminohydrogenation reaction in the presence of a hydrogenation catalyst. This diamine can be subjected to condensation polymerization with a polycarboxylic acid to obtain various polyamides.

また、極性官能基としてカルボメトキシ基を有するカル
ボメトキシノルボルナンは、銅クロマイトの様な水添触
媒の存在下に水素化することにより相当するジオールに
転換することができ、一方、酸化反応により相当するジ
カルボン酸にも転換可能である。これらのジオールまた
はジカルボン酸はいずれもポリエステル原料となり得る
ものである。
Additionally, carbomethoxynorbornane, which has a carbomethoxy group as a polar functional group, can be converted to the corresponding diol by hydrogenation in the presence of a hydrogenation catalyst such as copper chromite, while the corresponding diol can be converted by an oxidation reaction. It can also be converted to dicarboxylic acids. Any of these diols or dicarboxylic acids can be used as raw materials for polyester.

このような極性官能基を有するホルミルノルボルナンは
、次式に示すように極性官能基を有するノルボルネンを
、ロジウム錯化合物およびトリアリールホスフィンから
なる触媒の存在下にオキソガスを反応せしめて得られる
Formylnorbornane having such a polar functional group can be obtained by reacting norbornene having a polar functional group with oxo gas in the presence of a catalyst consisting of a rhodium complex compound and triarylphosphine, as shown in the following formula.

ここでXは極性官能基を示し、生成物として得られるホ
ルミルノルボルナンは次の(I)および(II)で示す
化合物の単独または混合物を意味する。
Here, X represents a polar functional group, and the formylnorbornane obtained as a product means the compounds shown in the following (I) and (II) alone or in a mixture.

(1)(■) このヒドロホルミル化反応はロジウム錯体のような高価
な貴金属触媒を用いるので、生成アルデヒド類の回収に
際して、用いた貴金属触媒を効率よく回収し、その損失
を少なくすることが、工業化に当って重要な課題である
(1) (■) This hydroformylation reaction uses an expensive precious metal catalyst such as a rhodium complex, so it is important for industrialization to efficiently recover the used precious metal catalyst and reduce its loss when recovering the generated aldehydes. This is an important issue.

ロジウム錯化合物を触媒とするヒドロホルミル化反応に
おいて、反応混合物よりロジウム触媒を回収する方法は
いくつか提案されており、生成物であるアルデヒドを蒸
留または蒸発することにより生成物と触媒を分離する方
法(特開昭52−125106号等)や生成アルデヒド
を水等の極性溶媒中に抽出することにより生成物と触媒
とを分離する方法(特開昭51−29412号等)など
が提案され、実際の商業プロセスに適用されている。
Several methods have been proposed for recovering the rhodium catalyst from the reaction mixture in the hydroformylation reaction using a rhodium complex compound as a catalyst. JP-A-52-125106, etc.) and a method of separating the product and catalyst by extracting the generated aldehyde into a polar solvent such as water (JP-A-51-29412, etc.) have been proposed, Applied to commercial processes.

前記の方法のうち、蒸留分離による方法は、例えばエチ
レン、プロピレン等の低級オレフィンからプロピレンア
ルデヒドやブチルアルデヒド等の低級アルデヒドを製造
する数多くのプロセスにおおいて広く採用されており、
生成物が低沸点の化合物である場合には有用な方法であ
る。しかしながら、本発明の生成物である極性官能基含
有ホルミルノルボルナンは沸点が高く、蒸留による生成
物と触媒の分離が困難であり、かつ、生成物が熱により
樹脂状物質を生成しやすく、目的生成物の回収率が低下
するだけでなく、樹脂状物質が分離した触媒中に蓄積す
るため、回収触媒の再循環による反応系内への樹脂状物
質の蓄積を防ぐため、触媒流の相当量を系外に抜出す必
要があり、これによって高価な触媒の再利用率が低下す
る。
Among the above methods, the method by distillation separation is widely adopted in many processes for producing lower aldehydes such as propylene aldehyde and butyraldehyde from lower olefins such as ethylene and propylene.
This is a useful method when the product is a low boiling point compound. However, the polar functional group-containing formylnorbornane, which is the product of the present invention, has a high boiling point, making it difficult to separate the product from the catalyst by distillation. Not only will the recovery rate of the catalyst be reduced, but resinous material will accumulate in the separated catalyst, so a significant amount of the catalyst stream should be removed to prevent resinous material from accumulating in the reaction system by recycling the recovered catalyst. It must be extracted from the system, which reduces the reuse rate of the expensive catalyst.

また、本発明の生成物は極性溶媒、特に水に対する溶解
性があまり大きくないので、水による抽出分離も有効で
はない。
Furthermore, since the products of the present invention do not have very high solubility in polar solvents, especially water, extractive separation using water is also not effective.

このような比較的高い沸点を有し、かつ、水への溶解性
に乏しいアルデヒド類について、本発明者等は前に炭素
数が8以上のジアルデヒド類について、重亜硫酸塩水溶
液により抽出することにより、ロジウム錯体触媒を分離
する方法を特開昭58−21638号として提案した。
Regarding aldehydes having such a relatively high boiling point and poor solubility in water, the present inventors previously extracted dialdehydes having 8 or more carbon atoms with an aqueous bisulfite solution. proposed a method for separating rhodium complex catalysts as JP-A-58-21638.

しかしながら、この方法はジアルデヒド類を対象とする
ものであす、通常、モノアルデヒド類を重亜硫酸アルカ
リ水溶液と接触させて重亜硫酸アルカリ付加塩を形成さ
せると、水溶液にも有機溶媒にも離溶性の付加物となり
、有機相と水相の相分離も困難となることが知られてい
た。
However, this method targets dialdehydes; usually, when a monoaldehyde is brought into contact with an aqueous aqueous bisulfite solution to form an alkali bisulfite addition salt, it is soluble in both an aqueous solution and an organic solvent. It was known that the organic phase becomes an adduct and phase separation between the organic phase and the aqueous phase becomes difficult.

本発明者等はこの点について更に研究を進めた結果、極
性官能基を有する場合にはモノアルデヒドの場合におい
ても重亜硫酸塩水溶液による抽出が可能であることを見
出し、本発明に到達した。
As a result of further research on this point, the present inventors have discovered that even monoaldehydes can be extracted with an aqueous bisulfite solution if they have a polar functional group, and have thus arrived at the present invention.

即ち、ジアルデヒドの場合には次式 により得られる重亜硫酸塩付加物は、分子内に水等の極
性溶媒と親和性の強い−CH(OH)SO”;基を2個
有するため、水等の極性溶媒への溶解性が高く、はぼ定
量的に抽出することができるが、シアノホルミルノルボ
ルナンやカルボメトキシホ′ルミルノルボルナンのよう
な極性官能基含有ホルミルノルボルナンにおけるシアン
基やカルボメトキシ基は一0H(OH)SO7,基はど
強い親和性を持たないと考えられだにも拘らず、重亜硫
酸塩付加体の形にすることにより、ジアルデヒド類の場
合と同様に水溶液相への抽出分離が室温で速やかに定量
的に進行することが見出された。
In other words, in the case of dialdehyde, the bisulfite adduct obtained by the following formula has two -CH(OH)SO'' groups in the molecule that have a strong affinity for polar solvents such as water. It has high solubility in polar solvents and can be extracted almost quantitatively, but the cyan group and carbomethoxy group in formylnorbornane containing polar functional groups such as cyanoformylnorbornane and carbomethoxyformylnorbornane are highly soluble in polar solvents. Although it is thought that the 0H(OH)SO7, group does not have a strong affinity, by forming it into a bisulfite adduct, it can be extracted and separated into the aqueous phase in the same way as in the case of dialdehydes. was found to proceed rapidly and quantitatively at room temperature.

即ち本発明は、極性官能基を有するノルボルネンを、水
と混和しない有機溶媒中でロジウム錯化合物およびトリ
アリールホスフィンの存在下に、水素および一酸化炭素
の混合ガスでヒドロホルミル化して極性官能基含有ホル
ミルノルボルナンを製造する方法において、ヒドロホル
ミル化反応終了後の反応液を重亜硫酸塩水溶液と接触せ
しめて極性官能基含有ホルミルノルボルナンを重亜硫酸
塩付加物の形で水溶液相中に抽出し、触媒を含む有機溶
媒相と分離することを特徴とする極性官能基含有ホルミ
ルノルボルナンの製造方法である。
That is, in the present invention, norbornene having a polar functional group is hydroformylated with a mixed gas of hydrogen and carbon monoxide in the presence of a rhodium complex compound and a triarylphosphine in an organic solvent that is immiscible with water to formyl having a polar functional group. In the method for producing norbornane, the reaction solution after the completion of the hydroformylation reaction is brought into contact with an aqueous bisulfite solution to extract polar functional group-containing formylnorbornane in the form of a bisulfite adduct into an aqueous solution phase, and the organic compound containing the catalyst is extracted into the aqueous phase. This is a method for producing polar functional group-containing formylnorbornane, which is characterized by separating it from a solvent phase.

本発明に原料として用いられる極性官能基含有ノルボル
ネンは、極性官能基含有オレフィンとシクロペンタジェ
ンとのディールス・アルダ−反応によって容易に得られ
る。例えば、シアノノルボルネンやカルボメトキシノル
ボルネンはそれぞれアクリロニトリルやアクリル酸メチ
ルとシクロペンタジェンとの反応によって容易に得られ
る。
The polar functional group-containing norbornene used as a raw material in the present invention can be easily obtained by a Diels-Alder reaction between a polar functional group-containing olefin and cyclopentadiene. For example, cyanonorbornene and carbomethoxynorbornene are easily obtained by reacting acrylonitrile or methyl acrylate with cyclopentadiene, respectively.

ヒドロホルミル化反応触媒にはロジウム錯化合物とトリ
アリールホスフィンからなる触媒が用いられる。配位子
として使用するトリアリールホスフィンとしてはトリフ
ェニルホスフィンを使用するのが最も好ましいが、トリ
ーp−)リルホスフィン、トリーm −)リルホスフィ
ン、トリス−(p−エチルフェニル)ホスフィン、する
いはトリス−(p−メトキシフェニル)ホスフィンの様
な、低級アルキル基またはアルコキシ基等のヒドロホル
ミル化反応条件下で不活性な置換基が結合しているトリ
アリールホスフィンも本発明の方法に使用できる。
A catalyst consisting of a rhodium complex compound and triarylphosphine is used as a hydroformylation reaction catalyst. The triarylphosphine used as a ligand is most preferably triphenylphosphine, but triarylphosphine, tri-p-)lylphosphine, tri-m-)lylphosphine, tris-(p-ethylphenyl)phosphine, or Triarylphosphines having attached substituents which are inert under the hydroformylation reaction conditions, such as lower alkyl or alkoxy groups, such as tris-(p-methoxyphenyl)phosphine, can also be used in the process of the invention.

本発明で用いられるヒドロホルミル化反応溶媒は、反応
条件下で不活性で上記ロジウム触媒を溶解し、かつ、重
亜硫酸塩水溶液と混和しない有機溶媒であればすべて使
用可能であるが、通常、ベンゼン、トルエン、キシレン
等の芳香族炭化水素が特に望ましい。
The hydroformylation reaction solvent used in the present invention can be any organic solvent as long as it is inert under the reaction conditions, dissolves the rhodium catalyst, and is immiscible with the bisulfite aqueous solution, but usually benzene, Aromatic hydrocarbons such as toluene and xylene are particularly preferred.

 7− ヒドロポルミル化反応条件は、温度については50〜2
00°C好ましくは70〜150°Cであり、圧力につ
いては30〜200 kg/ cr&であるが好ましく
は30〜100kg/crIである。
7- Hydropormylation reaction conditions are 50-2 for temperature.
00°C, preferably 70-150°C, and pressure 30-200 kg/cr&, preferably 30-100 kg/crI.

反応に使用するオキソガスの組成はH2/co−10/
1〜1/10の範囲で変更できるが、反応選択性などの
点を考慮してH210O=2/1〜1/2の範囲が好ま
しい。当該ガス中に窒素、メタン等反応に対して不活性
なガスが少量台まれることは何らさしつかえない。
The composition of the oxo gas used in the reaction is H2/co-10/
Although it can be changed in the range of 1 to 1/10, the range of H210O=2/1 to 1/2 is preferable in consideration of reaction selectivity and the like. There is nothing wrong with including a small amount of gas inert to the reaction, such as nitrogen or methane, in the gas.

触媒濃度は、反応条件等により任意に変更し得るが、反
応速度、選択性を考慮して、通常は0.5〜10 mm
 01 / l の濃度で実施される。
The catalyst concentration can be arbitrarily changed depending on the reaction conditions, etc., but considering the reaction rate and selectivity, it is usually 0.5 to 10 mm.
Performed at a concentration of 0.01/l.

反応帯域中に存在するトリアリールホスフィンはロジウ
ム1モルに対し3〜300モルの広い範囲で変更できる
が、ロジウム1モルに対し5〜100モルの範囲が好ま
しい。
The amount of triarylphosphine present in the reaction zone can vary over a wide range from 3 to 300 mol per mol of rhodium, but preferably from 5 to 100 mol per mol of rhodium.

反応後の反応液と重亜硫酸塩水溶液との接触は触媒、生
成アルデヒド、重亜硫酸塩の変質を回避する為、酸素等
の酸化作用を有するおそれのある 8− 物質と遮断した形で実施すべきであり、通常は窒素等不
活性ガス雰囲気中で行う。オキソガス雰囲気下で上記操
作を実施することも可能である。
Contact between the reaction solution and the aqueous bisulfite solution after the reaction should be carried out in a state where it is isolated from substances that may have an oxidizing effect such as oxygen, in order to avoid deterioration of the catalyst, aldehyde produced, and bisulfite. This is usually carried out in an atmosphere of an inert gas such as nitrogen. It is also possible to carry out the above operation under an oxo gas atmosphere.

使用する重亜硫酸塩としては重亜硫酸す) IJウム、
重亜硫酸カリウム、重亜硫酸セシウム等が可能であるが
、重亜硫酸す) IJウムが特に好ましい。
The bisulfite used is bisulfite) IJum,
Potassium bisulfite, cesium bisulfite, etc. are possible, but cesium bisulfite (IJ) is particularly preferred.

上記重亜硫酸塩付加体への転換反応は0〜50°Cの範
囲で実施されるが、通常は室温下で満足すべき結果が得
られる。温度をこれ以上にすることはロジウム錯体の変
質や水溶液層への溶出を増加せしめるので回避すべきで
ある。
The conversion reaction to the bisulfite adduct is carried out at a temperature in the range of 0 to 50°C, but satisfactory results are usually obtained at room temperature. Raising the temperature above this level should be avoided since it increases the deterioration of the rhodium complex and its elution into the aqueous solution layer.

分離されたロジウム触媒を含有する有機溶媒はそのまま
ヒドロホルミル化反応帯域へ循環してもよいが、循環さ
せる前に予め水洗処理を施すことが好ましい。
The separated organic solvent containing the rhodium catalyst may be recycled as it is to the hydroformylation reaction zone, but it is preferable to wash it with water before circulating it.

以上述べてきた方法により分離回収したロジウム錯体触
媒を含む有機溶媒はなおもヒドロホルミル化反応に対し
充分な触媒性能を有し、これに再び原料となるシアン基
やカルボメトキシ基のような極性官能基含有ノルボルネ
ンを加え、ヒドロホルミル化反応を前述の条件下で実施
することにより、再び所望の極性官能基含有ホルミルノ
ルボルナンが得られる。
The organic solvent containing the rhodium complex catalyst separated and recovered by the method described above still has sufficient catalytic performance for the hydroformylation reaction, and the organic solvent containing the rhodium complex catalyst that has been separated and recovered by the method described above still has sufficient catalytic performance for the hydroformylation reaction. By adding the containing norbornene and carrying out the hydroformylation reaction under the above-mentioned conditions, the desired polar functional group-containing formylnorbornane can be obtained again.

次に本発明を実施例に従って具体的に説明するが、その
要旨をこえない限り本発明は以下の実施例に限定される
ものではない。
Next, the present invention will be explained in detail according to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1 内容積200 mlの電磁誘導攪拌オートクレーブにH
Rh (CO) (P Ph 3) 30 、16 m
m o ]、P Ph 31 、64mmolおよび5
−シアノノルボルネン−2165mmolをトルエン7
0gに溶解したものを仕込み、H2/ao=1/lの混
合ガスを7okg/c++!の圧力になるまで供給した
Example 1 In an electromagnetic induction stirring autoclave with an internal volume of 200 ml,
Rh (CO) (P Ph 3) 30, 16 m
m o ], P Ph 31 , 64 mmol and 5
-cyanonorbornene-2165 mmol to toluene 7
Prepare 0g of dissolved gas and add 7okg/c++ of H2/ao=1/l mixed gas! was supplied until the pressure reached .

このオートクレーブを120’cまで昇温し、2時間反
応を継続し、加熱を止め室温まで冷却した。
The autoclave was heated to 120'C and the reaction was continued for 2 hours, then the heating was stopped and the autoclave was cooled to room temperature.

反応中オートクレーブ内の圧力は前記混合ガスの供給に
より70kg/cn!と80 kg/c+Jの間に保っ
た。
During the reaction, the pressure inside the autoclave was 70 kg/cn due to the supply of the above-mentioned mixed gas! and 80 kg/c+J.

内容物を分析した結果、原料である5−シアノノルボル
ネン−2の転化率は98.8%であり、目的生を物であ
る2 (3)−ホルミル−5−シアノノルボルナンの収
率は86.9%であった。
As a result of analyzing the contents, the conversion rate of the raw material 5-cyanonorbornene-2 was 98.8%, and the yield of the target product 2(3)-formyl-5-cyanonorbornane was 86.8%. It was 9%.

次に攪拌機および温度計を取付けた5 00 mlフラ
スコに上記反応液を窒素雰囲気下で全量移し、これに重
亜硫酸ソーダ45gを300 mlの水に溶解して得ら
れた水溶液を加えた。20’Cで攪拌を開始すると重亜
硫酸ソーダ付加体への反応が進行し、温度は20’Cか
ら38°Cまで上昇した。
Next, the entire amount of the reaction solution was transferred under a nitrogen atmosphere to a 500 ml flask equipped with a stirrer and a thermometer, and an aqueous solution obtained by dissolving 45 g of sodium bisulfite in 300 ml of water was added thereto. When stirring was started at 20'C, the reaction to form a sodium bisulfite adduct proceeded, and the temperature rose from 20'C to 38°C.

室温にもどした後、上層の有機溶媒相を分離し分析した
結果、生成物である2(3)−ホルミル−5−シアノノ
ルボルナンは殆んど含まれていないことがわかった。一
方、下層の水溶液中にはロジウムは1.3 ppm (
金属換算)、有機リン化合物は2ppm (リン元素換
算)しか含まれていなかった。
After returning to room temperature, the upper organic solvent phase was separated and analyzed, and it was found that the product, 2(3)-formyl-5-cyanonorbornane, was hardly contained. On the other hand, the lower aqueous solution contains 1.3 ppm of rhodium (
The content of organic phosphorus compounds was only 2 ppm (in terms of phosphorus element).

この分析結果は触媒であるロジウム錯体や配位子テアル
PPh3が水溶液中へ殆んど溶出することなく、生成ア
ルデヒドのみが定量的に水溶液中に移行していることを
示すものである。
The results of this analysis indicate that only the generated aldehyde quantitatively transferred into the aqueous solution, with almost no rhodium complex as a catalyst or the theal PPh3 ligand eluting into the aqueous solution.

実施例2 実施例1で回収したロジウム触媒を含む有機溶媒60g
に原料である5−シアノノルボルネンー−11= 2を160 mmol加え溶媒としてトルエン8gを追
加して、再び実施例1に記載した方法に従って反応を実
施した。
Example 2 60 g of organic solvent containing the rhodium catalyst recovered in Example 1
160 mmol of 5-cyanonorbornene-11=2 as a raw material was added to the mixture, 8 g of toluene was added as a solvent, and the reaction was carried out again according to the method described in Example 1.

反応液の分析をしたところ、5−シアノノルボルネン−
2の転化率は98.2%であり、目的生成物である2 
(3)−ホルミル−5−シアノノルボルナンの収率は8
6.3%であった。この結果により、本発明により分離
回収された有機溶媒中の触媒はヒドロホルミル化反応に
対しなおも充分な活性を保持していることが判る。
Analysis of the reaction solution revealed that 5-cyanonorbornene-
The conversion rate of 2 was 98.2%, and the desired product 2
(3) The yield of -formyl-5-cyanonorbornane is 8
It was 6.3%. This result shows that the catalyst in the organic solvent separated and recovered according to the present invention still maintains sufficient activity for the hydroformylation reaction.

実施例6 内容積200 mlの電磁誘導攪拌オートクレーブにH
Rh(CO)(PPh3)30.12mm01、PPh
32.83mmol および183 mm+)1のカル
ボメトキシノルボルネン−2をトルエン68gに溶解し
たものを仕゛込み、H,,10O=1,2 /1.Ot
D混合ガスを60 kg/crdの圧力になるまで供給
し、130°Cの温度で4時間反応を継続した。反応中
オートクレーブは60kg/ craと70 kg /
c++tの間に保った。
Example 6 H in an electromagnetic induction stirring autoclave with an internal volume of 200 ml.
Rh(CO)(PPh3)30.12mm01, PPh
A solution of 32.83 mmol and 183 mm+) 1 of carbomethoxynorbornene-2 dissolved in 68 g of toluene was charged, and H,,10O=1,2/1. Ot
D mixed gas was supplied until the pressure reached 60 kg/crd, and the reaction was continued at a temperature of 130°C for 4 hours. Autoclave capacity during reaction is 60kg/cra and 70kg/cra.
It was kept between c++t.

原料である5−カルボメトキシノルボルネン−12− 2の転化率は99.3%であり、目的生成物である2 
(3)−ホルミル−5−カルボメトキシノルボルナンの
収率は76.2%であった。
The conversion rate of the raw material 5-carbomethoxynorbornene-12-2 was 99.3%, and the target product 2
The yield of (3)-formyl-5-carbomethoxynorbornane was 76.2%.

実施例1に記載した方法に従って重亜硫酸ソーダ水溶液
との反応を行い、殆んど定量的に水溶液相への抽出が行
われ、抽出率は98.6%であった。
The reaction with an aqueous sodium bisulfite solution was carried out according to the method described in Example 1, and the extraction into the aqueous phase was carried out almost quantitatively, with an extraction rate of 98.6%.

実施例4 実施例6で分離回収したロジウム触媒含有有機溶媒58
gに、原料である5−カルボメトキシノルボルネン−2
を170 mmol、トルエンを6g加え、再び実施例
乙に記載した方法に従って反応を実施した。
Example 4 Rhodium catalyst-containing organic solvent 58 separated and recovered in Example 6
g, the raw material 5-carbomethoxynorbornene-2
170 mmol of and 6 g of toluene were added, and the reaction was carried out again according to the method described in Example B.

反応液の分析の結果、5−カルボメトキシノルボルネン
−2の転化率は98.8%、目的生成物である2 (3
)−ホルミル−5−カルボメトキシノルボルナンの収率
は76.3%であり、本方法による回収触媒がなお充分
なヒドロホルミル化能を有していることが示された。
As a result of analysis of the reaction solution, the conversion rate of 5-carbomethoxynorbornene-2 was 98.8%, and the desired product 2 (3
The yield of )-formyl-5-carbomethoxynorbornane was 76.3%, indicating that the catalyst recovered by this method still had sufficient hydroformylation ability.

実施例5 内容積500 ml、の電磁誘導攪拌オートクレープに
HRh (c o) (Pph3)30,643 mm
ol、PPh3]コ、3mmol および620 mm
olの5−シアノノルボルネン−2をトルエン200g
に溶解したものを仕込んだ。H,、/CO= 1 /l
の混合ガスを60 kg/c+Iの圧力になるまで供給
し、120’Cの温度で3時間反応を継続した。この間
オートクレーブ内の圧力は60kg/ crlと70k
gZcrIの間に保った。
Example 5 HRh (co) (Pph3) 30,643 mm was placed in an electromagnetic induction stirring autoclave with an internal volume of 500 ml.
ol, PPh3], 3 mmol and 620 mm
200g of 5-cyanonorbornene-2 in toluene
was prepared by dissolving it in H,,/CO= 1/l
A mixed gas of 1 was supplied until the pressure reached 60 kg/c+I, and the reaction was continued at a temperature of 120'C for 3 hours. During this time, the pressure inside the autoclave was 60kg/crl and 70k.
gZcrI.

反応液分析の結果、5−シアノノルボルネンの転化率は
98.9%であり、目的生成物である2(3)−ホルミ
ル−5−シアノノルボルナンの収率ハ87.9%であっ
た。
As a result of analysis of the reaction solution, the conversion rate of 5-cyanonorbornene was 98.9%, and the yield of the target product, 2(3)-formyl-5-cyanonorbornane, was 87.9%.

攪拌機および湿度計を取付けた1500mlのフラスコ
に上記反応液を窒素雰囲気下で全量移し、これに重亜硫
酸ソーダ100gを800 mlの水に溶解して得た水
溶液を加えた。攪拌を開始し」−下二層の接触を容易に
してやると重亜硫酸ソーダと生成アルデヒド、との反応
が始り、温度25°Cから4゜°Cまで上昇した。
The entire amount of the reaction solution was transferred under a nitrogen atmosphere to a 1500 ml flask equipped with a stirrer and a hygrometer, and an aqueous solution obtained by dissolving 100 g of sodium bisulfite in 800 ml of water was added thereto. Stirring was started to facilitate contact between the lower two layers, and the reaction between the sodium bisulfite and the formed aldehyde began, and the temperature rose from 25°C to 4°C.

室温にもどし」二層を分析したところ2(3)−ホルミ
ル−5−ノルボルナンは殆んど検出されず、水溶液中へ
ほぼ定量的に抽出されていることを示した。
When the two layers were cooled to room temperature and analyzed, almost no 2(3)-formyl-5-norbornane was detected, indicating that it was almost quantitatively extracted into the aqueous solution.

ロジウム錯体を含む上層を分離回収し、原料である5−
シアノノルボルネン−2ヲ600mmol、トルエン2
5gを加え、再び同じ条件で反応をくり返し実施した時
の反応結果は次のとおりであった。
The upper layer containing the rhodium complex is separated and collected, and the raw material 5-
Cyanonorbornene-2 600 mmol, toluene 2
When 5 g was added and the reaction was repeated under the same conditions, the reaction results were as follows.

上記結果は本発明にもとづくロジウム錯体触媒と生成物
である2 (3)−ホルミル−5−シアノノルボルナン
の分離法が極めて効率的であり、がっ、ロジウム錯体の
触媒能に殆んど悪影響を及していないことを示している
The above results show that the method of separating the rhodium complex catalyst and the product 2(3)-formyl-5-cyanonorbornane according to the present invention is extremely efficient and has almost no negative effect on the catalytic ability of the rhodium complex. It shows that it has not been reached.

出願人 三菱油化株式会社 代理人 弁理士厚田桂一部Applicant: Mitsubishi Yuka Co., Ltd. Agent: Patent attorney Katsura Atsuta

Claims (4)

【特許請求の範囲】[Claims] (1)極性官能基を有するノルボルネンを、水と混和し
ない有機溶媒中でロジウム錯化合物およびトリアリール
ホスフィンの存在下に、水素および一酸化炭素の混合ガ
スでヒドロホルミル化して極性官能基含有ホルミルノル
ボルナンを製造する方法において、ヒドロホルミル化反
応終了後の反応液を重亜硫酸塩水溶液と接触せしめ、極
性官能基含有ホルミルノルボルナンを重亜硫e flM
 付加物(D形で水溶液相中に抽出し、触媒を含む有機
溶媒相と分離することを特徴とする極性官能基含有ホル
ミルノルボルナンの製造方法。
(1) Norbornene having a polar functional group is hydroformylated with a mixed gas of hydrogen and carbon monoxide in the presence of a rhodium complex compound and a triarylphosphine in an organic solvent that is immiscible with water to produce formylnorbornane having a polar functional group. In the manufacturing method, the reaction solution after the completion of the hydroformylation reaction is brought into contact with an aqueous bisulfite solution, and the polar functional group-containing formylnorbornane is converted into bisulfite eflM.
A method for producing polar functional group-containing formylnorbornane, which comprises extracting the adduct (form D) into an aqueous solution phase and separating it from an organic solvent phase containing a catalyst.
(2)分離された、触媒を含む有機溶媒相を反応帯域中
に再循環せしめる、特許請求の範囲第(1)項に記載の
方法。
(2) The method according to claim 1, wherein the separated organic solvent phase containing the catalyst is recycled into the reaction zone.
(3)極性官能基がシアノ基またはカルボメトキシ基で
ある、特許請求の範囲第(1)項または第(2)項に記
載の方法。
(3) The method according to claim (1) or (2), wherein the polar functional group is a cyano group or a carbomethoxy group.
(4)重亜硫酸塩が重亜硫酸す) IJウムである、特
許請求の範囲第(1)項から第(3)項までのいずれか
に記載の方法。
(4) The method according to any one of claims (1) to (3), wherein the bisulfite is bisulfite.
JP58179182A 1983-09-29 1983-09-29 Preparation of formylnorbornane containing polar functional group Pending JPS6072844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58179182A JPS6072844A (en) 1983-09-29 1983-09-29 Preparation of formylnorbornane containing polar functional group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58179182A JPS6072844A (en) 1983-09-29 1983-09-29 Preparation of formylnorbornane containing polar functional group

Publications (1)

Publication Number Publication Date
JPS6072844A true JPS6072844A (en) 1985-04-24

Family

ID=16061368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58179182A Pending JPS6072844A (en) 1983-09-29 1983-09-29 Preparation of formylnorbornane containing polar functional group

Country Status (1)

Country Link
JP (1) JPS6072844A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812618A (en) * 1994-06-23 1996-01-16 Nippon Synthetic Chem Ind Co Ltd:The Purification of valproic acid
WO2011150205A3 (en) * 2010-05-27 2012-03-29 Dr. Reddy's Laboratories Ltd. Highly selective asymmetric hydroformylation of (1s,4r) or (1r,4s)-2-azabicyclo[2.2.1]hept-5-en-3- one (+) or (-)-lactam
KR20130138833A (en) 2011-05-09 2013-12-19 미쓰이 가가쿠 가부시키가이샤 Aldehyde compound production method
WO2014073663A1 (en) 2012-11-09 2014-05-15 三井化学株式会社 Method for purifying aldehyde compound
WO2014073664A1 (en) 2012-11-09 2014-05-15 三井化学株式会社 Method for producing aldehyde compound
WO2014073672A1 (en) 2012-11-09 2014-05-15 三井化学株式会社 Method for producing aldehyde compound

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812618A (en) * 1994-06-23 1996-01-16 Nippon Synthetic Chem Ind Co Ltd:The Purification of valproic acid
WO2011150205A3 (en) * 2010-05-27 2012-03-29 Dr. Reddy's Laboratories Ltd. Highly selective asymmetric hydroformylation of (1s,4r) or (1r,4s)-2-azabicyclo[2.2.1]hept-5-en-3- one (+) or (-)-lactam
KR20130138833A (en) 2011-05-09 2013-12-19 미쓰이 가가쿠 가부시키가이샤 Aldehyde compound production method
KR20160062218A (en) 2011-05-09 2016-06-01 미쓰이 가가쿠 가부시키가이샤 Aldehyde compound production method
US9227925B2 (en) 2011-05-09 2016-01-05 Mitsui Chemicals, Inc. Process for producing aldehyde compounds
WO2014073672A1 (en) 2012-11-09 2014-05-15 三井化学株式会社 Method for producing aldehyde compound
JP5841676B2 (en) * 2012-11-09 2016-01-13 三井化学株式会社 Method for producing aldehyde compound
CN104768924A (en) * 2012-11-09 2015-07-08 三井化学株式会社 Method for purifying aldehyde compound
CN104768923A (en) * 2012-11-09 2015-07-08 三井化学株式会社 Method for producing aldehyde compound
CN104781228A (en) * 2012-11-09 2015-07-15 三井化学株式会社 Method for producing aldehyde compound
WO2014073664A1 (en) 2012-11-09 2014-05-15 三井化学株式会社 Method for producing aldehyde compound
JP5840801B2 (en) * 2012-11-09 2016-01-06 三井化学株式会社 Method for producing aldehyde compound
JP5583879B1 (en) * 2012-11-09 2014-09-03 三井化学株式会社 Method for purifying aldehyde compounds
WO2014073663A1 (en) 2012-11-09 2014-05-15 三井化学株式会社 Method for purifying aldehyde compound
EP2918576A4 (en) * 2012-11-09 2016-06-08 Mitsui Chemicals Inc Method for producing aldehyde compound
US9475760B2 (en) 2012-11-09 2016-10-25 Mitsui Chemicals, Inc. Preparation method of aldehyde compound using a metal compound and a phosphorus compound
US9487475B2 (en) 2012-11-09 2016-11-08 Mitsui Chemicals, Inc. Preparation method of aldehyde compound with limited amount of acrylonitrile
US9809533B2 (en) 2012-11-09 2017-11-07 Mitsui Chemicals, Inc. Purification method of aldehyde compound
US10399930B2 (en) 2012-11-09 2019-09-03 Mitsui Chemicals, Inc. Purification method of aldehyde compound
US10399929B2 (en) 2012-11-09 2019-09-03 Mitsui Chemicals, Inc. Purification method of aldehyde compound

Similar Documents

Publication Publication Date Title
US5138101A (en) Recovery of high-boiling aldehydes from rhodium-catalyzed hydroformylation processes
JPS6289639A (en) Manufacture of aldehyde
JPS6221771B2 (en)
US4242284A (en) Process for recovery of rhodium values and triphenylphosphine from rhodium catalyzed hydroformylation medium
US5091350A (en) Process for hydroformylation with rhodium catalysts and the separation of rhodium therefrom
CN112608340A (en) Tetradentate nitrogen phosphine ligand and preparation method and application thereof
JPH0687782A (en) Method of hydroformylation and bimetallic catalyst therefor
AU645189B2 (en) A process for the recovery of rhodium from the residues of the distillation of products of the oxo synthesis
JPS6072844A (en) Preparation of formylnorbornane containing polar functional group
JP2981328B2 (en) Method for producing aldehydes
US4731485A (en) Process for hydroformylation with rhodium catalysts and the separation of rhodium therefrom
JPH0129778B2 (en)
JPS6272637A (en) Manufacture of nonadecanediol
JPH0133095B2 (en)
JPH11189563A (en) Preservation of hydroformylated product
JPS58116495A (en) Manufacture of rhodium complex compound
KR19990082119A (en) Process for the preparation of aldehydes by hydroformylation of olefins
JP2857055B2 (en) Method for producing 1,9-nonandial
EP0018161A1 (en) Aldehyde-ethers and process for their production
KR920000891B1 (en) Method for obtaining 2-methyl alkanal
JP4573002B2 (en) Method for producing tricyclodecanedicarbaldehyde and / or pentacyclopentadecanedicarbaldehyde
US5434311A (en) Rhodium-containing catalyst
JPH0755834B2 (en) Method for recovering rhodium from distillation residue of oxo synthesis product
JP4608713B2 (en) Recovery method of aldehyde from reaction product
KR100886977B1 (en) One step hydroformylation and hydrogenation process for preparing a 1,3-propanediol