JPS6072051A - Interruption unifying device - Google Patents

Interruption unifying device

Info

Publication number
JPS6072051A
JPS6072051A JP17810483A JP17810483A JPS6072051A JP S6072051 A JPS6072051 A JP S6072051A JP 17810483 A JP17810483 A JP 17810483A JP 17810483 A JP17810483 A JP 17810483A JP S6072051 A JPS6072051 A JP S6072051A
Authority
JP
Japan
Prior art keywords
interrupt
data
cdt
state
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17810483A
Other languages
Japanese (ja)
Inventor
Osamu Sakura
櫻 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17810483A priority Critical patent/JPS6072051A/en
Publication of JPS6072051A publication Critical patent/JPS6072051A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • G06F13/24Handling requests for interconnection or transfer for access to input/output bus using interrupt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • G06F13/28Handling requests for interconnection or transfer for access to input/output bus using burst mode transfer, e.g. direct memory access DMA, cycle steal

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bus Control (AREA)

Abstract

PURPOSE:To reduce the load or a CPU by outputting an interruption unifying signal, in case the output of a state variation counter is larger than the output of generating device of a threshold level which decreases gradually as a time elapses from an initial state, and initializing the counter and the generating device. CONSTITUTION:When process in formation 1 is received by a DMA5 through a CDT master station 4, etc. and processed between the DMA and a CPU7, an interruption unifying device 14 is constituted of a state variation counter 15, threshold level generating device 16 and a comparator 17, and connected between the DMA5 and a state variation receiving device 13 in the CPU7. In this state, the interrupting signal 18 from the DMA5 is counted by the counter 15, an accumulation state variation number 19 from an initial state is outputted, a threshold level 20 which decreases gradually as a time elapses from the initial state is outputted by the device 16, both the outputs are compared by the comparator 17, and in case when the number 19 is larger or equal, an interruption unifying signal 21 is applied to the device 13, the device 16 is initialized, and the overhead is reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、割込統合装置、特に情報伝送装置(CDT 
)からのデータをダイレクトメモリアクセス装置(DM
A )を介して電子計算機(CPU )に入力する場合
に、電子計算機の負荷を軽減するようにした割込統合装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an interrupt integration device, particularly a information transmission device (CDT).
) to a direct memory access device (DM
This invention relates to an interrupt integration device that reduces the load on a computer (CPU) when an input is made to the computer (CPU) via A).

〔発明の技術的背景〕[Technical background of the invention]

第1図によ勺従来技術を説明する。第1図はプロセスか
らの情報をCPUに導入する構成を示す。
The conventional technology will be explained with reference to FIG. FIG. 1 shows an arrangement for introducing information from a process into a CPU.

即ち、ゾロセス情報1の状態を示す情報はCDT子局2
から伝送路3を介してCDT親局4へ伝送される。前記
親局4からのCDTデータ6をDMA 5が受信すると
、DMA 5はCPU 7内CDTデータ旧値エリア8
より対応データ9を取出す。第2図ばCDTデータの構
成図であり、とのCDTデータはデータ識別符号として
のワードアドレスWを有し、一方、これに対するCDT
データ旧値二値エリア8、前記ワードアドレスW倍圧エ
リアが用意されている。
That is, the information indicating the status of Zorocess information 1 is transmitted to CDT slave station 2.
The data is transmitted from the CDT master station 4 via the transmission path 3. When the DMA 5 receives the CDT data 6 from the master station 4, the DMA 5 stores the CDT data old value area 8 in the CPU 7.
Corresponding data 9 is extracted. FIG. 2 is a configuration diagram of CDT data, the CDT data has a word address W as a data identification code, and the CDT data for this has a word address W as a data identification code.
A data old value binary area 8 and the word address W doubling area are prepared.

したがってCDTデータ6が入力されると、DMA 5
はCPUから対応データ9を取出す。
Therefore, when CDT data 6 is input, DMA 5
retrieves corresponding data 9 from the CPU.

第3図はCDTデータ旧値二値成図であり、対応データ
9には、(1)データの状態変化検出の要否(S)と、
(2) cDTデータ6に対応する二値(DATA’)
との2情報が入っている。DMA 5は状態変化検出要
(S=1 )であれば、CDTデータ6と対応データ9
内のCDTデータに対応する旧値とを比較し、これが異
なっていればCDTデータ6を状変データ10として状
変りスト11に書込むと共に、CPU7に対して割込み
12を与える。CPU 7内ではこの割込み12により
状変受付装置13が駆動される。
FIG. 3 is a binary diagram of CDT data old values, and corresponding data 9 includes (1) whether or not data state change detection is necessary (S);
(2) Binary value (DATA') corresponding to cDT data 6
It contains two pieces of information: If state change detection is required (S=1), DMA 5 outputs CDT data 6 and corresponding data 9.
The CDT data 6 is compared with the old value corresponding to the CDT data, and if they are different, the CDT data 6 is written to the status change list 11 as the status change data 10, and an interrupt 12 is given to the CPU 7. In the CPU 7, the status change reception device 13 is driven by this interrupt 12.

そして状変受付装置13は後述する状変処理を行なった
後、状変りスト11内の状変データ10よりCDTデー
タ6を取出し、これをCDTデータ6に対応するCDT
データ旧値二値エリア8内定エリアに書込む。これが旧
値の更新である。
After performing the state change processing described later, the state change reception device 13 extracts the CDT data 6 from the state change data 10 in the state change list 11 and transfers it to the CDT data 6 corresponding to the CDT data 6.
Write data to the old value binary area 8 informally determined area. This is updating the old value.

ここで状変受付装置13の状変処理とは、系統監視盤の
ランプ表示及び警報動作などを云う。また対応データ9
が状変検出否(S=0)であれば、DMA 5はCDT
データ6をCDTデータ旧値二値エリア8内応エリアに
店−込む。
Here, the status change processing by the status change reception device 13 refers to lamp display on the system monitoring panel, alarm operation, and the like. Also, corresponding data 9
If no change is detected (S=0), DMA 5 is CDT
Data 6 is stored in the corresponding area of CDT data old value binary area 8.

〔背景技術の問題点〕[Problems with background technology]

上記構成からなる従来システムにおいてはワード単位に
状態変化を検出してCPUに割込みを与えているため、
状変受付装置内処理のオーバーヘッドが大であった。し
たがって、このオーバーヘッドを小さくするため状変受
付装置を定期的に、駆動するようにすると、状変発生か
ら状変処理までに時間がかかる欠点があった。
In the conventional system with the above configuration, a state change is detected in word units and an interrupt is given to the CPU.
The overhead of processing within the status change reception device was large. Therefore, if the status change reception device is driven periodically to reduce this overhead, there is a drawback that it takes time from the occurrence of the status change to the status change processing.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決することを目的としてなされ
たものであυ、CPUの負荷を軽減し得る割込統合装置
を提供することを目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an interrupt integration device that can reduce the load on the CPU.

〔発明の概要〕[Summary of the invention]

本発明ではDMAと状変受付装置との間に割込統合装置
をもうけ、前回割込発生からの経過時間と累積状変数と
の関係から状変受付装置に対する割込信号の発生を制御
するものである。即ち、前回割込信号発生から所定時間
以上経過して1個の状変があった場合には、そのまま素
通しにして状変受付装置に割込信号を出力し、多重状変
の場合には最初の割込信号が前回割込統合信号発生から
所定時間以上経過して発生した時、そのうち最初の割込
信号のみを素通しにして状変受付装置に出力すると共に
、それ以後の割込信号に対しては状変カウンタによって
累積状変数をまとめ、所定時間後に一括して出力しよう
とするものである。
In the present invention, an interrupt integration device is provided between the DMA and the status change reception device, and the generation of an interrupt signal to the status change reception device is controlled based on the relationship between the elapsed time since the previous interrupt occurrence and the cumulative state variable. It is. In other words, if one condition has changed after a predetermined period of time has elapsed since the previous interrupt signal was generated, the interrupt signal is output to the condition change acceptance device without any change, and in the case of multiple condition changes, the first When an interrupt signal is generated after a predetermined time has elapsed since the previous interrupt integrated signal was generated, only the first interrupt signal is passed through and output to the status change acceptance device, and the interrupt signal after that is In other words, cumulative variables are collected using a state change counter and output at once after a predetermined period of time.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して実施例を説明する。第4図は本発明
による割込統合装置の一実施例構成図である。図中の符
号1ないし11及び13は第1図に対応している。14
は割込統合装置であってDMA 5とCPU 7内の状
変受付装置13との一間にもうけられ、前回割込発生か
らの経過時間と累積状変数(未処理の状変数)との関係
により(結果的に状変受伺装H9−の負荷に応じて)割
込信号の発生を制御する。この点については後述する。
Examples will be described below with reference to the drawings. FIG. 4 is a block diagram of an embodiment of the interrupt integration device according to the present invention. Reference numerals 1 to 11 and 13 in the figure correspond to those in FIG. 14
is an interrupt integration device that is provided between the DMA 5 and the status change reception device 13 in the CPU 7, and is used to calculate the relationship between the elapsed time since the previous interrupt occurrence and the cumulative status variable (unprocessed status variable). (as a result, depending on the load on the status change monitoring device H9-) controls the generation of an interrupt signal. This point will be discussed later.

そして割込統合装置14は状変カウンタ15.閾値発生
装置16及び比較器17とから構成される。状変カウン
タ15はDMA 5からの割込信号18をカウントし、
初期状態からの割込信号の数を累積状変数19として比
較器17へ出力する。厭1値発生装置I6は初期状態か
らの時間経過と共に漸減する閾値20を発生して比較器
17へ出力する。
The interrupt integration device 14 then uses the status change counter 15. It is composed of a threshold value generator 16 and a comparator 17. The status change counter 15 counts the interrupt signal 18 from the DMA 5,
The number of interrupt signals from the initial state is output to the comparator 17 as a cumulative variable 19. The negative value generator I6 generates a threshold value 20 that gradually decreases with time from the initial state and outputs it to the comparator 17.

第5図は閾値発生装置の模能を示す特性図である。なお
実際には第5図のように滑らかな曲線ではなく、第6図
に示すように時間tの経過と共に階段状に変化する。
FIG. 5 is a characteristic diagram showing the functionality of the threshold value generating device. In reality, the curve is not smooth as shown in FIG. 5, but changes stepwise as time t passes, as shown in FIG. 6.

第7図は動作説明のためのフローチャートである。プロ
セス情報1の状態を示す情報は、従来と同様にCDT子
局2.伝送路3及びCDT親局4を経由してDMA 5
に入力される。カおりMA 5の状変検出方法も従来と
同様である。
FIG. 7 is a flowchart for explaining the operation. Information indicating the status of process information 1 is stored in the CDT slave station 2. DMA 5 via transmission line 3 and CDT master station 4
is input. The method for detecting changes in the condition of the fog MA 5 is also the same as the conventional method.

先ずステップS1においてはCDTデータの受信と共に
CDTデータ旧値二値エリア8の対応データ9の取出し
が行なわれ、ステップs2において比較される。この結
果、等しければステップslに戻り、異なっていればス
テップs3に移って割込信号ts6割込統合装置14に
出力すると共に、CDTデータ6を状変データ1oとし
て状変りスト11に書込む。ステップs4においては割
込統合装置14内の状変カウンタによって割込信号18
をカウントアツプする。ステップS5においては状変カ
ウンタ15からの累積状変数19と閾値発生装置16か
らの閾値2oとが比較され、累積状変数19が閾値20
より大きいか、等しし場合はステップS6へ移ってiσ
ちに割込統合信号21を出力して状変受付装置13へ与
えると共に、状変カウンタ15とfll光発生装置61
6初期化する。
First, in step S1, the CDT data is received and the corresponding data 9 of the CDT data old value binary area 8 is taken out, and compared in step s2. As a result, if they are equal, the process returns to step s1, and if they are different, the process proceeds to step s3 where the interrupt signal ts6 is output to the interrupt integration device 14 and the CDT data 6 is written to the status change list 11 as the status change data 1o. In step s4, the interrupt signal 18 is detected by the state change counter in the interrupt integration device 14.
count up. In step S5, the cumulative variable 19 from the condition change counter 15 and the threshold value 2o from the threshold value generator 16 are compared, and the cumulative variable 19 is equal to the threshold value 2o.
If it is greater than or equal to iσ, proceed to step S6 and iσ
Immediately, the interrupt integration signal 21 is outputted and given to the status change reception device 13, and the status change counter 15 and the full light generation device 61 are output.
6 Initialize.

このJlμ合、状変カウンタ15の出力である累積状変
iIは初期化によりゼロとなり、同じく閾値発生装置1
6の出力である閾値シよ無限大になる。なおステップS
7ではステップ5elCよる割込統合信号21を受けて
CI)Tデータ+11−1値エリア8内に新しいCDT
データに’A込み・ステップS1に戻る0状変受伺装置
13は割込統合イ^゛号21により駆動され、状変りス
ト11が窒になる寸で状変に対する処理を行なう。なお
、状変に対する処理とは、従来と同様に系統監視盤のラ
ンプ表示及びベル警報などである。
In this case, the cumulative state change iI, which is the output of the state change counter 15, becomes zero due to initialization, and the threshold value generator 1
The threshold value S, which is the output of 6, becomes infinite. Note that step S
In step 7, in response to the interrupt integration signal 21 from step 5elC, a new CDT is placed in the CI) T data + 11-1 value area 8.
The data includes 'A' and the process returns to step S1. The status change inquiring device 13 is driven by the interrupt integrated signal 21 and performs processing for the status change when the status change list 11 is about to become exhausted. It should be noted that the processing for a change in status includes a lamp display on the system monitoring panel, a bell alarm, etc., as in the past.

ここで閾値発生装置16は初期状k(]からの時間の経
過と共に漸減するli!f:I饋20を発生することは
前記した通りである。したがって前回の割込統合信号2
1の発生から十分なI+、′I′間が経過している場合
、即ち、割込信号18が第5図のaよりも太きな時間間
隔をおいて入力された場合は、例え状変カウンタ15か
らの累積状変数が1であっても閾値が1であるため、ス
テップS9へ移って直ちに割込統合信号21を出力する
As described above, the threshold value generator 16 generates the li!f:I signal 20 which gradually decreases with the passage of time from the initial state k(]. Therefore, the previous interrupt integrated signal 2
If a sufficient period of time between I+ and 'I' has passed since the occurrence of 1, that is, if the interrupt signal 18 is input at a time interval wider than a in FIG. Even if the cumulative variable from the counter 15 is 1, the threshold value is 1, so the process moves to step S9 and immediately outputs the interrupt integration signal 21.

次に多重状変の発生時について説明する。この場合もD
MA 5からの最初の割込信号18が前回割込統合信号
発生から時間a以上経過している場合であれば、前記同
様直ちに割込統合信号21を発生する。しかし、その時
に閾値発生装置16が初期化されて閾値20が無限大と
なるため、最初以外の2個目以降の割込信号は状変カウ
ンタ15へ貯えられる。そして次に割込統合信号21が
発生するのは、累積状変数が時間経過により閾値を上ま
わった場合、又は時間経過により閾値が累積状変を下ま
わった場合のいずれかである。
Next, the occurrence of multiple deterioration will be explained. In this case also D
If the first interrupt signal 18 from MA 5 is more than a time elapsed since the previous generation of the interrupt integrated signal, the interrupt integrated signal 21 is immediately generated as described above. However, at that time, the threshold value generator 16 is initialized and the threshold value 20 becomes infinite, so that the second and subsequent interrupt signals other than the first are stored in the state change counter 15. Next, the interrupt integrated signal 21 is generated either when the cumulative variable exceeds the threshold value over time, or when the threshold value falls below the cumulative change over time.

先ずステップS 1.においてはその後の累積状変数を
カウントし、この累積状変数が閾値よシ大であればステ
ップSllからステップS12へ移シ、累積状変数が閾
値上り大きくなるのに必要とした時間後に割込統合信号
を発生する。同様にしてステップS+3においてはMを
1値の低下する時間をカウントし、閾値が累積状変数を
T1わるまでに要した時間後にステップS14からステ
ップ81Bへ移って割込統合信号を発生する。この場合
もCDTデータ旧値二値エリア宜込みが行なわれ、その
後ステップS1へ戻ることは前記同様である。
First, step S1. , the subsequent cumulative variable is counted, and if the cumulative variable is larger than the threshold, the process moves from step Sll to step S12, and the interrupt is integrated after the time required for the cumulative variable to rise above the threshold. Generate a signal. Similarly, in step S+3, the time during which M decreases by 1 is counted, and after the time required for the threshold value to divide the cumulative variable by T1, the process moves from step S14 to step 81B, and an interrupt integration signal is generated. In this case as well, the CDT data old value binary area is included, and then the process returns to step S1, as described above.

ここで閾値が初期状態から1(状変)までに漸減する時
間aはCDTの伝送ザイクル時間よりも短かくなくては
ならない。又、それ以外に閾値と時間との関係は、状変
受付装置又はCPUの処理能力によって決定される。即
ち、処理能力が充分であれば、1.iξ1値は時間の経
過とともに急速に下がってよい。逆に処理能力が不充分
であれば、閾値はよシ、ゆっくりと下がってゆく様に関
係を決定しなければならない。
Here, the time a during which the threshold gradually decreases from the initial state to 1 (state change) must be shorter than the transmission cycle time of the CDT. In addition, the relationship between the threshold value and time is determined by the processing capacity of the status change reception device or the CPU. That is, if the processing capacity is sufficient, 1. The iξ1 value may drop rapidly over time. On the other hand, if the processing capacity is insufficient, the relationship must be determined so that the threshold value decreases slowly.

第8図は従来方式と本発明方式による割込発生の差異を
示すタイムチャートである。
FIG. 8 is a time chart showing the difference in interrupt generation between the conventional method and the method of the present invention.

■は従来の状変発生が直ちに割込発生となる方式の場合
の割込発生の様子である。この方式では状変発生から割
込発生までの間にタイムラグがないため、状変の発生を
速やかに知ることができるが、多重状変時にはシステム
のオーバーヘッドが増す欠点がある。
(2) shows how an interrupt occurs in a conventional method in which an interrupt occurs immediately upon occurrence of a status change. In this method, since there is no time lag between the occurrence of a state change and the occurrence of an interrupt, the occurrence of a state change can be quickly known, but it has the disadvantage that system overhead increases when multiple state changes occur.

■は従来の別な方式であって割込発生は定期的に行なわ
れる。この方式では多重状変時にもシステムのオーバー
ヘッドは増さないが、状変の発生から割込発生(処理)
までにタイムラグがある。
(2) is a different conventional method in which interrupts are generated periodically. This method does not increase system overhead even when multiple conditions change, but interrupts are generated (processed) from the occurrence of a condition change.
There is a time lag.

これは事故等による多重状変発生を考える場合に致命的
な欠点となる。
This is a fatal drawback when considering the occurrence of multiple situations due to accidents, etc.

■は本発明による場合の割込発生の様子である。(2) shows how an interrupt occurs in the case according to the present invention.

平常時の散発的な状変の発生に対しては、割込みは直ち
に発生(処理)される。又、事故等による多重状変の発
生では、事故等の発生を知らせる(あるいは暗示する)
第1の状変については直ちに割込が発生(処理)され、
引続く複数の状変についてはシステムのオーバーヘッド
が増さないように、適宜統合された形で割込が発生して
処理される。
For sporadic occurrences of status changes during normal times, interrupts are immediately generated (processed). In addition, in the case of multiple occurrences due to accidents, etc., it is necessary to notify (or hint) of the occurrence of accidents, etc.
For the first situation, an interrupt is immediately generated (processed),
For multiple subsequent conditions, interrupts are generated and processed in an appropriately integrated manner so as not to increase system overhead.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば散発的に発生する状
変については時間遅れなしに処理し、事故等による多重
状変発生には多重状変のうちの第1の状変について直ち
に処理を行ない、引続ぐ状変については複数個の状変を
まとめて処理するよう構成したので、状変受付装置内の
オーバーヘッドが小さくなるばかりか、状変発生から状
変処理までの時間も定周期方式に比べて短かくでき、し
かも多重状変時に速やかに第1報を知ることの可能な割
込統合装置を提供できる。
As explained above, according to the present invention, sporadically occurring conditions are handled without time delay, and when multiple conditions occur due to an accident, the first of the multiple conditions is immediately treated. Since the system is structured so that multiple status changes are processed at the same time for subsequent status changes, not only does the overhead within the status change reception device become smaller, but the time from the occurrence of a status change to the status change processing is also fixed periodic. It is possible to provide an interrupt integration device that can be made shorter than that of , and that can quickly receive the first report in the event of a multiplex event.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来システムの説明図、第2図はCDTデータ
の構成図、第3図はCDTデータに対応したCDT旧値
二値成図、第4図は本発明による割込統合装置の一実施
例構成図、第5図及び第6図は閾値発生装置の機能を示
す特性図、第7図はfJ’+1を作説明のためのフロー
チャート、第8図は従来方式と本発明方式による割込発
生の差異を対比して示したタイムチャートである。 ■・・・プロセス情報、 2・・・CDT子局、3・・
・伝送路、 4・・・CDT親局、5・・・DMA 、
 6・・・CDTデータ、7・・・CPU 、 8・・
・CDTデータ旧値二値エリア・・・対応データ、 1
0・・・状変データ、11・・・状変リスト、12.1
8・・・割込信号、13・・・状変受付装置、14・・
・割込統合装置、15・・・状変カウンタ、16・・・
閾値発生装置、17・・・比較器、 19・・・累積状
変数、20・・・閾値、 21・・・割込統合信号。 特許出願人 東京芝浦屯気株式会社 代理人 弁理士 石 井 紀 男 屯7図 范6図
Fig. 1 is an explanatory diagram of a conventional system, Fig. 2 is a configuration diagram of CDT data, Fig. 3 is a CDT old value binary composition corresponding to CDT data, and Fig. 4 is an illustration of an interrupt integration device according to the present invention. Embodiment configuration diagram, FIGS. 5 and 6 are characteristic diagrams showing the functions of the threshold value generating device, FIG. 7 is a flowchart for explaining fJ'+1, and FIG. 8 is a diagram showing the distribution by the conventional method and the present invention method. This is a time chart that compares and shows differences in the occurrence of such charges. ■...Process information, 2...CDT slave station, 3...
・Transmission path, 4...CDT master station, 5...DMA,
6...CDT data, 7...CPU, 8...
・CDT data old value binary area...corresponding data, 1
0... Condition change data, 11... Condition change list, 12.1
8... Interrupt signal, 13... Status change reception device, 14...
- Interrupt integration device, 15... Status change counter, 16...
Threshold generator, 17... Comparator, 19... Cumulative variable, 20... Threshold, 21... Interrupt integrated signal. Patent applicant: Tokyo Shibaura Tunke Co., Ltd. Agent: Patent attorney Nori Ishii

Claims (1)

【特許請求の範囲】[Claims] 情報伝送装置からの入力情報を計算機に導入し、前記入
力情報の状変時に割込信号による割込処理を行なう割込
装置において、入力された割込信号をカウントする状変
カウンタと、初期状態からの時間経過とともに漸減する
閾値を発生する閾値発生装置と、前記状変カウンタの出
力と閾値発生装 1置の出力とを比較する比較器とを夫
々そなえ、前記状変カウンタからの出力が前記閾値発生
装置からの出力より大きい場合に割込統合信号を出力す
るとともに、前記状変カウンタと閾値発生装置とを初期
化することを特徴とする割込統合装置。
An interrupt device that introduces input information from an information transmission device into a computer and performs interrupt processing using an interrupt signal when the state of the input information changes, includes a state change counter that counts input interrupt signals, and an initial state. and a comparator that compares the output of the condition change counter with the output of the threshold value generation device 1, respectively. An interrupt integration device characterized by outputting an interrupt integration signal when the output is larger than an output from a threshold value generation device, and initializing the state change counter and the threshold value generation device.
JP17810483A 1983-09-28 1983-09-28 Interruption unifying device Pending JPS6072051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17810483A JPS6072051A (en) 1983-09-28 1983-09-28 Interruption unifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17810483A JPS6072051A (en) 1983-09-28 1983-09-28 Interruption unifying device

Publications (1)

Publication Number Publication Date
JPS6072051A true JPS6072051A (en) 1985-04-24

Family

ID=16042714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17810483A Pending JPS6072051A (en) 1983-09-28 1983-09-28 Interruption unifying device

Country Status (1)

Country Link
JP (1) JPS6072051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221792A (en) * 1990-01-29 1991-09-30 Fuji Electric Co Ltd Heat exchanger of cooling water supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221792A (en) * 1990-01-29 1991-09-30 Fuji Electric Co Ltd Heat exchanger of cooling water supply device

Similar Documents

Publication Publication Date Title
US6670839B2 (en) Clock monitoring apparatus
US5132991A (en) Frame error detection system
JPS6072051A (en) Interruption unifying device
JPH1153201A (en) Method and device for processing plural interruptions
EP0069382B1 (en) Loop type data highway system
US5235603A (en) System for determining loss of activity on a plurality of data lines
JPS63220329A (en) Interruption integrating device
JPS5992678A (en) Key signal detector
SU978151A2 (en) Electric device checking system
JP3252345B2 (en) Processing signal protection circuit
JP2752814B2 (en) Watchdog disconnection alarm processing device
SU949557A1 (en) Device for checking electronic circuit electric parameters
JPH10207718A (en) Interruption processor and processing method
JPS6188355A (en) Data processor
JPS6367379B2 (en)
SU942029A1 (en) Device for checking control unit
SU641436A1 (en) Channel control device
US5953349A (en) Data variation detecting system
JPS58107932A (en) Common bus failure check system
SU1444827A1 (en) Arrangement for monitoring the dynamic of controllable processes of digital systems
JPH02195745A (en) Serious line error rate detection circuit
JPH05100764A (en) Low power transmitter
JPH03214254A (en) Method and device for monitoring processing delay of multiprocessor system
JPH05191406A (en) Prevention method for two-word counter error read
JPS6045866A (en) Interruption control system