JPS6071954A - Reaction method by immobilizing solid layer - Google Patents

Reaction method by immobilizing solid layer

Info

Publication number
JPS6071954A
JPS6071954A JP17993083A JP17993083A JPS6071954A JP S6071954 A JPS6071954 A JP S6071954A JP 17993083 A JP17993083 A JP 17993083A JP 17993083 A JP17993083 A JP 17993083A JP S6071954 A JPS6071954 A JP S6071954A
Authority
JP
Japan
Prior art keywords
layer
reaction
antibody
antigen
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17993083A
Other languages
Japanese (ja)
Inventor
Yasuo Yonezawa
米澤 保雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Zenyaku Kogyo Co Ltd
Original Assignee
Nippon Zenyaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zenyaku Kogyo Co Ltd filed Critical Nippon Zenyaku Kogyo Co Ltd
Priority to JP17993083A priority Critical patent/JPS6071954A/en
Publication of JPS6071954A publication Critical patent/JPS6071954A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Abstract

PURPOSE:To simplify an operation for analysis by fractionating and measuring the resultant product of reaction by the respective superposed medium layers contg. reactive reagents. CONSTITUTION:An antibody 7 is coated on the 1st layer 11, from above, an enzyme immobilizing antibody 8 on the 2nd layer and an enzyme reaction substrate 9 on the 3rd layer, respectively. Gelatin, ''Ficoll'', etc. are used for the media to be coated on the respective layers. The 1st layer 11 is adjusted to the coefft. of buoyant density of the antibody 7, the 2nd layer 2 to the coefft. of buoyant density of the antibody 8 and the 3rd layer 13 to the coefft. slightly higher than the coefft. of the buoyant density of the combined matter 10 of an antigen 6 such as virus, the antibody 7 and the antibody 8. If the antigen 6 is contained in a specimen (for example, serum), the antigen 6 increases molecular weight by reacting and combining with the antibody 7 and settles quickly in the 2nd layer 12. The antigen increases further its molecular weight by reacting and combining with the antibody 8 in the 2nd layer 12 and settles in the 3rd layer 13. The antigen causes an enzyme-substrate reaction and the ELISA method is thus automatically executed.

Description

【発明の詳細な説明】 本発明は逐次的に添加する反応試薬を含む各媒体を重層
すると共に該媒体により反応生成物を分別し測定するよ
うにした固層固定化反応法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid phase immobilization reaction method in which media containing reaction reagents added sequentially are layered, and reaction products are separated and measured using the media.

各種の゛定性的、定量的測定に於いて、段階的に反応を
進行させる為には、順次その反応試薬を添加していかな
ければならない。又、反応の段階が多い場合には、その
添加順序の繁雑性や反応系によっては一時的な反応の停
止、反応液の除去等も必要とすることから、その反応系
を良く理解し習熟している操作者が必要となる。
In various qualitative and quantitative measurements, reaction reagents must be added sequentially in order to cause the reaction to proceed stepwise. In addition, if there are many reaction steps, it may be necessary to temporarily stop the reaction or remove the reaction solution depending on the complexity of the order of addition and the reaction system, so it is important to understand and familiarize yourself with the reaction system. requires an operator who is familiar with the

このことは、一般的にその反応系を利用し、且つ汎用性
を持たせる際に大きな障害となる。
This generally poses a major obstacle when utilizing the reaction system and providing versatility.

例えば、酵素免疫測定法(E nzyn+e L 1n
kedI mmunosorbent A 5saV 
: E L I S A )は、抗原を測定する場合に
は、抗体の固層への添加及びコーティングの後の洗浄、
抗原を含む検体の添加及びその反応後の洗浄、酵素固定
化抗体の添加及びその反応後の洗浄、更に基質溶液の添
加と、添加操作4回、洗浄操作3回の47回の操作が必
要とされる。
For example, enzyme immunoassay (Enzyn+e L 1n
kedI mmunosorbent A 5saV
: ELISA), when measuring antigen, addition of antibody to the solid phase and washing after coating;
A total of 47 operations are required: addition of a sample containing an antigen and washing after the reaction, addition of an enzyme-immobilized antibody and washing after the reaction, addition of a substrate solution, 4 addition operations, and 3 washing operations. be done.

又、キレート剤添加でのキレート化合物の測定の際には
、例えば水の硬度測定をエチレンジアミン4酢酸(ED
TA)の滴定で行なうのに、検水にシアン化カリウム溶
液(10%)を添加、緩衝液を添加し、エリオフロムブ
ラック(EB)T指示溶液を添加し、EDTAで滴定し
なければならないといように、4段階の操作を必要とす
る。
In addition, when measuring chelate compounds by adding a chelating agent, for example, the hardness of water can be measured using ethylenediaminetetraacetic acid (ED
To titrate TA), you must add potassium cyanide solution (10%) to the sample water, add a buffer solution, add Eliofrom Black (EB) T indicator solution, and titrate with EDTA. , requires a four-step operation.

本発明者は、これらのように段階的に反応を進行させる
ことによる操作の繁雑性を解消することを目的とし、鋭
意研究を重ねた結果、何層かに反応試薬をコーティング
又は段層化することにより、逐次反応を進行せしめ得る
こと、及び反応によって起こる反応物質の分子量変化を
利用して分別することにより順次反応を進行させ得るこ
とを見出し、本発明を完成した。
The inventor of the present invention has conducted extensive research with the aim of eliminating the complexity of operations caused by proceeding the reaction stepwise as described above, and as a result of extensive research, the inventor has developed a method of coating or layering the reaction reagent in several layers. The inventors have completed the present invention by discovering that the reactions can proceed sequentially, and that the reactions can proceed sequentially by fractionating the reactants by utilizing changes in the molecular weight of the reactants caused by the reaction.

即ち、本発明の基本は、−に連のように反応順序に従っ
て試薬を逐次反応毎に媒体に分散したものをコーティン
グ又は段層化し、経時的に反応を進行せしめることと、
又、反応によって反応生成物の分子量が変化することを
利用し、その分子量変化が、次の反応へ移行する場合の
一定時間内に於ける反応速度律速となるように、前記媒
体の処方を組むことにある。更に詳細には、第1次、第
2次、第3次生成物で分子間が増大していく場合は、そ
の反応過程にて、第1次、第2次、第3次生成物は、沈
降定数、浮遊密度係数等が変化すると共に、固定化媒体
として分子フルイ効果を有する物質を使用した時の沈降
速度による分別ができること或は浮遊密度係数の差によ
る分別ができることを利用し、一定時間内での反応系の
逐次反応を律速することにより、その反応系の多くを固
層固定化反応系に帰することにある。
That is, the basis of the present invention is to coat or stratify a medium in which reagents are dispersed in a medium for each successive reaction according to the reaction order as shown in the following, and to allow the reaction to proceed over time.
Also, by taking advantage of the fact that the molecular weight of the reaction product changes due to the reaction, the medium is formulated so that the change in molecular weight becomes the rate-determining reaction rate within a certain period of time when moving on to the next reaction. There is a particular thing. More specifically, when the intermolecular distance between the primary, secondary, and tertiary products increases, in the reaction process, the primary, secondary, and tertiary products become Taking advantage of the fact that sedimentation constants, buoyant density coefficients, etc. change, and that it is possible to differentiate by sedimentation rate when using a substance with a molecular sieve effect as an immobilization medium, or by the difference in buoyant density coefficients, By controlling the rate of sequential reactions within the reaction system, most of the reaction system is reduced to a solid-phase immobilized reaction system.

例えば、前記浮遊密度係数の差を利用して分別する方法
としては、第1図に示すようにゼラチン、フィコール等
その濃度を調整することにより任意の浮遊密度とし得る
媒体を使用し、上層の第一層の浮遊密度を反応物質(例
えば抗体)3の浮遊密度係数と同じに、下層の第二層2
の浮遊密度係数を反応物質3よりも大きく■つ反応物質
3と反応物質(例えば抗原)4との結合物5よりも小さ
く設定する。第一層1に予め反応物質3を加えておくが
、反応物質3の浮遊密度係数は第一層1と同じであり且
つ第二層2よりも小さいので、反応物質3は第二層2に
拡散することなく第一層1にとどまる。これに反応物質
4を加えると、反応物質3,4が反応して結合物5が生
成し、分子量の増大により浮遊密度係数が第一層1及び
第二層2よりも大きくなるため沈降し、結合物5は第二
層2に移行する。
For example, as shown in Figure 1, a method of fractionation using the difference in buoyant density coefficients uses a medium such as gelatin or Ficoll that can have an arbitrary buoyant density by adjusting its concentration. The buoyant density of one layer is the same as the buoyant density coefficient of the reactant (e.g. antibody) 3, and the second layer 2 of the lower layer is
The buoyant density coefficient is set to be larger than that of the reactant 3 and smaller than that of the bond 5 of the reactant 3 and the reactant (eg, antigen) 4. The reactant 3 is added to the first layer 1 in advance, but since the buoyant density coefficient of the reactant 3 is the same as that of the first layer 1 and smaller than that of the second layer 2, the reactant 3 is added to the second layer 2. It stays in the first layer 1 without spreading. When the reactant 4 is added to this, the reactants 3 and 4 react to form a bond 5, which settles because the buoyant density coefficient becomes larger than that of the first layer 1 and the second layer 2 due to the increase in molecular weight. The bond 5 transfers to the second layer 2.

又、分子量の差を利用して分別する方法としては第2図
に示すようにデキストラン架橋体、多孔性樹脂等を利用
し、上層の第一層1′を反応物質3の分子量のものを吸
着又は保持し得るものを使用し、下層の第二層2′は反
応物質3と反応物質4との結合物5の分子量のものを吸
着又は保持し得るものを使用する。第一層1′中に吸着
又は保持され反応物質3は、加えられる反応物質4と反
応して分子量の大きな結合物5となり、第二層2′に沈
降保持される。
Furthermore, as shown in Figure 2, a method for fractionating using the difference in molecular weight uses a cross-linked dextran, porous resin, etc., and the upper first layer 1' adsorbs the molecular weight of the reactant 3. The lower second layer 2' is a material capable of adsorbing or retaining a compound having a molecular weight of 5 of the reactant 3 and the reactant 4. The reactant 3 adsorbed or retained in the first layer 1' reacts with the added reactant 4 to form a bond 5 with a large molecular weight, which is then sedimented and retained in the second layer 2'.

本発明を、前述したELISA法及びキレ−5− ト滴定法に適用して、説明を更に行なうと、ELISA
法で、例えば前述の様に抗原を測定する場合には、通常
7回の操作を必要とするが、本発明による固層固定化反
応法を使用すると、以下の様にその繁雑性を軽減するこ
とができる。
To further explain the present invention by applying it to the above-mentioned ELISA method and chelate titration method, ELISA
For example, when measuring an antigen as described above, seven operations are normally required, but when the solid phase immobilization reaction method of the present invention is used, the complexity is reduced as follows. be able to.

即ち、第3図に示すように上層より、第一層11に抗体
7を]−ティングし、第二層12に酵素固定化抗体8を
コーティングし、そして第三層13に酵素反応基質9を
コーティングする。この時の各層のコーティングの媒体
はゼラチン、フィコール等を使用して、第一層11は抗
体7の浮遊密度係数に、第二層12は酵素固定化抗体8
の浮遊密度係数に、そして第三層13はウィルス等の抗
原6と抗体7と酵素固定化抗体8の結合物10の浮遊密
度係数より若干高めに調整することにより、もし検体(
例えば血清)に抗原6が含有されていれば、第一層11
で抗体7と反応結合し、分FWiが増大し、速やかに第
二層12に沈降し、第二層12で更に酵素固定化抗体8
と反応結合し、分子量が増大し、第三層13に沈降し、
酵素−基6− 質反応を起こし、ELISA法が行ない得、操作は1回
に軽減できる。ここにおいて、媒体として浮遊密度差を
利用するゼラチン、フィコールの代わりに、分子量によ
るフルイ効果を有する、例えば架橋体デキストラン等を
用いても、同様な原理によって、ELISA法が行ない
得る。
That is, as shown in FIG. 3, the first layer 11 is coated with the antibody 7, the second layer 12 is coated with the enzyme-immobilized antibody 8, and the third layer 13 is coated with the enzyme reaction substrate 9. Coat. At this time, the coating medium for each layer is gelatin, Ficoll, etc., and the first layer 11 has a buoyant density coefficient of antibody 7, and the second layer 12 has an enzyme-immobilized antibody 8.
By adjusting the buoyant density coefficient of the third layer 13 to be slightly higher than the buoyant density coefficient of the conjugate 10 of the antigen 6 such as a virus, the antibody 7, and the enzyme-immobilized antibody 8, if the sample (
For example, if antigen 6 is contained in serum), first layer 11
The enzyme-immobilized antibody 8 reacts with the antibody 7, increases the FWi, and quickly precipitates in the second layer 12.
It reacts with the compound, increases its molecular weight, and precipitates in the third layer 13.
An enzyme-group 6-substance reaction is caused, and an ELISA method can be performed, and the number of operations can be reduced to one. Here, the ELISA method can be performed according to the same principle by using, for example, crosslinked dextran, which has a sieving effect depending on molecular weight, as a medium instead of gelatin or Ficoll, which utilizes a difference in buoyant density.

次に、キレート滴定法、例えば水の硬度測定の場合には
、前述のように4回の操作を必要とするが、本発明によ
るど、上層より第一層はEDTAをコーティングし、第
二層に緩衝液組成とシアン化カリウムをコーティングし
、更に第三層にEBTをコーティングした重層体を作成
することにより行ない得る。即ち、この重層体に検体水
を一定量添加すると、先ず第一層で検体中のCa−イオ
ンとEDTAが反応し、キレート化合物を形成して分子
量が増大し、第2層へと進み、第2層でpH調整等が行
なわれ、第3層へ更に進行しEBTによる呈色が行なわ
れる。この場合、滴定とは異なり、その量的測定は希釈
を段階的に行なった検体の反応が必要となるが、操作は
1回の添加となり極めて容易に行なうことが可能である
Next, in the case of chelate titration, for example, water hardness measurement, four operations are required as described above, but according to the present invention, the first layer is coated with EDTA and the second layer is coated with EDTA. This can be carried out by preparing a multilayer body in which a buffer solution composition and potassium cyanide are coated on the first layer, and a third layer is further coated with EBT. That is, when a certain amount of sample water is added to this multilayer body, Ca- ions in the sample and EDTA react in the first layer, forming a chelate compound and increasing the molecular weight, which advances to the second layer and then to the second layer. pH adjustment and the like are performed in the second layer, and the process progresses further to the third layer, where coloration by EBT is performed. In this case, unlike titration, the quantitative measurement requires reaction of the sample diluted in stages, but the operation is extremely easy as it only requires one addition.

なお、本発明の固層固定化反応法は上述の実施例のみに
限定されるものではなく、第4図に示すように第一層1
1′及び第二層12′の各媒体14.15 (例えば多
孔性吸着樹脂)に抗体16、酵素固定化抗体17を夫々
吸着せしめておき、抗原18と第一層11′の媒体14
に吸着されている抗体16とを反応させると、抗原抗体
反応による分子量増大により抗原抗体結合物19が媒体
14から脱離し、第二層12′へ移行して第二層12′
 に吸着されている酵素固定化抗体15と反応し、同様
に分子量の増大により再び脱離し、第三層13′ に移
行して基質20と反応し呈色させることにより検出する
ことも可能であること等本発明の要旨を逸脱しない範囲
内に於いて種々変更を加え得ることは勿論である。
It should be noted that the solid phase immobilization reaction method of the present invention is not limited to the above-mentioned embodiments, and as shown in FIG.
Antibody 16 and enzyme-immobilized antibody 17 are adsorbed to each medium 14.15 (for example, porous adsorption resin) of 1' and second layer 12', and antigen 18 and medium 14 of first layer 11' are adsorbed.
When the antibody 16 adsorbed on the medium 14 is reacted with the antibody 16, the antigen-antibody conjugate 19 is detached from the medium 14 due to an increase in molecular weight due to the antigen-antibody reaction, moves to the second layer 12', and is transferred to the second layer 12'.
It is also possible to detect it by reacting with the enzyme-immobilized antibody 15 adsorbed on the substrate, desorbing again due to an increase in molecular weight, moving to the third layer 13', reacting with the substrate 20, and causing coloration. Of course, various changes may be made without departing from the gist of the present invention.

以上述べた如く本発明の固層固定化反応法によれば、逐
次的に行なう定性又は定量反応操作に於いて、各反応試
薬を含有する媒体を層状に順次固定し、反応に基づく分
子量変化を利用して分別し測定するようにしたので、反
応操作が一段階ですみ、従来のような繁雑な試薬の添加
操作、洗浄操作が不要となって、著しく簡便となり、且
つ汎用性も向上する等積々の優れた効果を発揮する。
As described above, according to the solid phase immobilization reaction method of the present invention, in sequential qualitative or quantitative reaction operations, the medium containing each reaction reagent is sequentially immobilized in a layered manner, and changes in molecular weight due to the reaction are controlled. Since the reaction is carried out in one step and the complicated reagent addition and washing operations required in the past are unnecessary, it is significantly simpler and has improved versatility. Demonstrates excellent cumulative effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は本発明の
他の実施例の説明図、第3図は本発明の更に他の実施例
の説明図、第4図は本発明の詳細な説明図である。 1.1’、 11は第一層、2.2’、 12は第二層
、3.4は反応物質、5.10は結合物、6は抗原、7
は抗体、8は酵素固定化抗体を示す。 −〇−
FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIG. 2 is an explanatory diagram of another embodiment of the present invention, FIG. 3 is an explanatory diagram of yet another embodiment of the present invention, and FIG. 4 is an explanatory diagram of another embodiment of the present invention. FIG. 2 is a detailed explanatory diagram of the invention. 1.1', 11 is the first layer, 2.2', 12 is the second layer, 3.4 is the reactant, 5.10 is the conjugate, 6 is the antigen, 7
8 indicates an antibody, and 8 indicates an enzyme-immobilized antibody. −〇−

Claims (1)

【特許請求の範囲】 1) 逐次的に添加すべき反応試薬を含む各媒体を順次
重層し、検体を添加して一段の反応操作で反応させるこ
とを特徴とする固層固定化反応法。 2) 反応による反応物質の分子量変化を利用して分別
し測定することを特徴とする固層固定化反応法。 3)逐次的に添加すべき反応媒薬を含む各媒体を順次重
層し、検体を添加して反応させることにより分子量変化
を生ぜしめ、分子量の変化した反応生成物を分別し測定
することを特徴とする固層固定化反応法。
[Scope of Claims] 1) A solid-phase immobilization reaction method, characterized in that each medium containing a reaction reagent to be added sequentially is layered one after another, a sample is added, and the reaction is carried out in one reaction operation. 2) A solid phase immobilization reaction method characterized by fractionation and measurement using changes in the molecular weight of reactants due to reaction. 3) The method is characterized in that each medium containing a reaction medium to be added sequentially is layered one after another, a sample is added and reacted to cause a change in molecular weight, and the reaction product with a changed molecular weight is separated and measured. Solid phase immobilization reaction method.
JP17993083A 1983-09-28 1983-09-28 Reaction method by immobilizing solid layer Pending JPS6071954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17993083A JPS6071954A (en) 1983-09-28 1983-09-28 Reaction method by immobilizing solid layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17993083A JPS6071954A (en) 1983-09-28 1983-09-28 Reaction method by immobilizing solid layer

Publications (1)

Publication Number Publication Date
JPS6071954A true JPS6071954A (en) 1985-04-23

Family

ID=16074411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17993083A Pending JPS6071954A (en) 1983-09-28 1983-09-28 Reaction method by immobilizing solid layer

Country Status (1)

Country Link
JP (1) JPS6071954A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633263A (en) * 1986-06-18 1988-01-08 マイルス・インコーポレーテッド Multiple zone or multilayer testing tool reversibly fixing measuring reagent
JPS63205566A (en) * 1987-02-17 1988-08-25 ジエネシス・ラブス・インコ−ポレ−テツド Immunoanalytic test piece
JP2005530608A (en) * 2002-06-24 2005-10-13 ビヨメリユー Hydraulic device for thermopneumatic isolation and optional agitation of the contents of the working cavity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633263A (en) * 1986-06-18 1988-01-08 マイルス・インコーポレーテッド Multiple zone or multilayer testing tool reversibly fixing measuring reagent
JPS63205566A (en) * 1987-02-17 1988-08-25 ジエネシス・ラブス・インコ−ポレ−テツド Immunoanalytic test piece
JP2005530608A (en) * 2002-06-24 2005-10-13 ビヨメリユー Hydraulic device for thermopneumatic isolation and optional agitation of the contents of the working cavity

Similar Documents

Publication Publication Date Title
EP1075661B1 (en) Ligand binding assay and kit with a separation zone for disturbing sample components
CA1267082A (en) Carrier material for use in immune determinations
IE820998L (en) Immunological analysis
JPH0346561A (en) Method, reagent and test strip for detecting article to be analyzed
JPS62501989A (en) Measuring method of clinical parameters by enzyme immunoassay
JPS6071954A (en) Reaction method by immobilizing solid layer
US6410251B2 (en) Method for detecting or assaying target substance by utilizing oxygen electrode
US6270983B1 (en) Surfaces coated with streptavidin/avidin
JPH01209370A (en) Method and apparatus for measuring immunologically active substance
CN113607950A (en) Simoa kit of biomarker FOLR1 and use method thereof
Schramm et al. Enzyme-analyte conjugates as signal generators for amperometric immunosensors: immunochemical phenomena related to the detection of hapten molecules
AU703940B2 (en) Regenerable solid phase for carrying out specific binding reactions
Matson Elisa essentials: surfaces, antibodies, enzymes, and substrates
JPS59206761A (en) Enzyme immunomeasuring method
JPH032662A (en) Immunity measuring system, method of measuring immunity, washing solution reagent and enzyme substrate organic chemistry compound
EP0903582B1 (en) Ligand binding surfaces
JPH04203967A (en) Rapid measurement method of small amount of constituent
JP2714143B2 (en) Immunological measurement method
JPS6318704B2 (en)
JPS60127462A (en) Enzymatic immune measuring method
JPH04216465A (en) Method and reagent for immunologically measuring ligand
JPS63222257A (en) Immunosensor for simultaneous measurement of multiple antigen
Bonen et al. Silver ion microplates for immunoassays
Meyer et al. Comparison of different types of immunoaffinity reactors in an electrochemical flow injection immunoanalysis system developed for residue analysis
JPH0273158A (en) Measuring method for material in sample