JPS607170B2 - Water supply flow control device - Google Patents

Water supply flow control device

Info

Publication number
JPS607170B2
JPS607170B2 JP10257877A JP10257877A JPS607170B2 JP S607170 B2 JPS607170 B2 JP S607170B2 JP 10257877 A JP10257877 A JP 10257877A JP 10257877 A JP10257877 A JP 10257877A JP S607170 B2 JPS607170 B2 JP S607170B2
Authority
JP
Japan
Prior art keywords
bfp
water supply
flow rate
signal
supply flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10257877A
Other languages
Japanese (ja)
Other versions
JPS5436401A (en
Inventor
隆志 蒲原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10257877A priority Critical patent/JPS607170B2/en
Publication of JPS5436401A publication Critical patent/JPS5436401A/en
Publication of JPS607170B2 publication Critical patent/JPS607170B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明は負荷ランバック時にタービン駆動給水ポンプか
らモータ駆動給水ポンプへ切替えるようにした給水流量
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water supply flow rate control device that switches from a turbine-driven water supply pump to a motor-driven water supply pump during load runback.

貫流ボィラを備えた火力発電所における自動プラント制
御装置(以下APCと略す)は第1図に示す如く負荷設
定器の設定値によ給水、燃料、空気量、タービン入口加
減弁の制御を協調をとりらがら行なわれているが、通常
運転中補機類のトリップ時、残る補機の容量迄、許容時
間内に負荷を急激に下げるべき負荷ランバックシステム
を備えているが、急激なる負荷変化又は低負荷迄のラン
バックを要求される関係上ボィラの追従性等が問題とな
り負荷ランバックの成功率が非常に少ない。
The automatic plant control system (hereinafter abbreviated as APC) in a thermal power plant equipped with a once-through boiler coordinates the control of water supply, fuel, air volume, and turbine inlet control valve according to the set values of the load setting device, as shown in Figure 1. Although this is being done in a timely manner, when an auxiliary equipment trips during normal operation, the system is equipped with a load runback system that rapidly reduces the load to the capacity of the remaining auxiliary equipment within an allowable time. Alternatively, since runback is required to a low load, followability of the boiler becomes a problem, and the success rate of load runback is very low.

特に給水流量制御において、ボィラ側にて要求される最
少流量との兼ね合いで流量のいまりすぎによるボィラ停
止からプラント停止へと至る場合が多いo現状における
給水流量制御方法は、図2に示す如く一般的に低負荷時
は25%容量を備えたモータ駆動給水ポンプ(以下M・
BFPと略す)を用い絵水はFWBによって制御され高
負荷時には50%容量を備えた2台のタービン駆動給水
ポンプ(以下T・BFPと略す)を用い、タービンのス
ピードコントロール弁によって制御される。
In particular, in water supply flow rate control, there are many cases where the boiler stops due to excessive flow due to the minimum flow rate required on the boiler side, which leads to plant shutdown.The current water supply flow rate control method is as shown in Figure 2. Generally, during low load, a motor-driven water supply pump (hereinafter referred to as M・
The water supply is controlled by the FWB, and at high loads two turbine-driven water pumps (hereinafter referred to as T-BFP) with 50% capacity are used and controlled by the speed control valve of the turbine.

図中LPHは低圧ヒータ、HPH‘ま高圧ヒータである
。高負荷時における運転時負荷ランバツク信号が発生す
ると、AP〇こおける負荷設定値、負荷変化率設定値が
定まり、流量制御においてはT・BFPのスピードコン
トロール弁を操作することにより給水流量をランバック
負荷設定に見合う値迄下げていくが、T・BFPの駆動
源となる蒸気の取出しが通常運転時のタービン低圧部で
あり、ランバック時に蒸気条件が悪化し、タービン低圧
部からの高圧部又は補助蒸気ラインからの供給に切替え
ねばならないが、切替操作が困難なことと時間的制約か
らT・BFPにおけるランバツク時の給水流量制御が結
果的にうまくいかない。本発明は上記問題点に鑑み、負
荷ランバック時自動的にモータ駆動給水ポンプを駆動し
、自動プラント制御装置よりの給水制御をタービン駆動
給水ポンプからモータ駆動給水ポンプに切替え安定した
給水流量制御を行えるようにした給水流量制御装置を得
ることを目的とするものである。
In the figure, LPH is a low pressure heater, and HPH' is a high pressure heater. When a load runback signal occurs during operation under high load, the load setting value and load change rate setting value at AP〇 are determined, and in flow control, the water supply flow rate is runback by operating the speed control valve of T/BFP. Although the value is lowered to a value commensurate with the load setting, the steam that is the driving source for the T/BFP is taken out from the low pressure part of the turbine during normal operation, and the steam conditions deteriorate during runback, causing the steam to be taken out from the low pressure part of the turbine to the high pressure part or It is necessary to switch to the supply from the auxiliary steam line, but due to the difficulty of the switching operation and time constraints, the water supply flow rate control during runback in the T-BFP does not work as a result. In view of the above problems, the present invention automatically drives the motor-driven water supply pump during load runback, and switches the water supply control from the automatic plant control device from the turbine-driven water pump to the motor-driven water supply pump to achieve stable water supply flow rate control. The object of the present invention is to obtain a water supply flow rate control device that can control the flow rate of water.

第3図は負荷ランバック時のM・BFP駆動迄のフロー
チャートであり、負荷ランバック信号発生によりM・B
FP補助油ポンプ駆動、M・BFP入口弁開操作を行い
、軸受油圧確立でM・BFPの駆動を行い、更にM・B
FP出口弁を開に制御することを示す。第4図は本発明
による給水流量制御ブロック図であり、30‘まT・B
FPの設定器であり、その出力信号は切換器43×のa
,接点を通してT・BFPコントローラ31へ供給され
る。
Figure 3 is a flowchart up to M/BFP driving during load runback.
Drive the FP auxiliary oil pump, open the M/BFP inlet valve, establish the bearing oil pressure, drive the M/BFP, and then
Indicates that the FP outlet valve is controlled to be open. FIG. 4 is a block diagram of water supply flow rate control according to the present invention.
It is a setting device for FP, and its output signal is a of switch 43
, are supplied to the T-BFP controller 31 through contacts.

M・BFP流量信号(マイナス極性)、APCからの給
水流量信号は夫々接点b,,b2を介して比較器32で
比較これ、偏差を前記T・BFPコントローラ31に入
力する。このコントローラ31の出力は夫々T・BFP
桝設定器33、T・BFP{B}設定器34に入力され
、T・BFP風制御弁35、T・BFP側制御弁36を
制御する。一方前記APCからの給水流量信号は、T・
BFP流量信号と比較器37で比較され、偏差をM・B
FPコントローラ38に入力する。
The M.BFP flow rate signal (negative polarity) and the water supply flow rate signal from the APC are compared by a comparator 32 via contacts b, b2, respectively, and the deviation is input to the T.BFP controller 31. The output of this controller 31 is T/BFP, respectively.
It is input to the box setting device 33 and the T/BFP {B} setting device 34, and controls the T/BFP wind control valve 35 and the T/BFP side control valve 36. On the other hand, the water supply flow rate signal from the APC is T.
The BFP flow rate signal is compared with the comparator 37, and the deviation is calculated as M・B.
Input to FP controller 38.

各種ランバック信号1〜3は夫々設定器RH2〜R比で
所定の大きさの信号に変えられた後、接点広を介して前
記M・BFPコントローラ38に入力される。M・BF
P起動信号は設定点増信号となり、設定器Rはの設定値
を高くする。前記コントローラ38の出力は夫々M・B
FP■設定器39、M・BFP{B}設定器401こ入
力され、夫々M・BFP風制御弁41、M・BFP■制
御弁42を制御する。第4図において、各種ランバック
信号により、M・BFPコント。
The various runback signals 1 to 3 are changed into signals of predetermined magnitude by the setting devices RH2 to R, respectively, and then inputted to the M/BFP controller 38 through the wide contacts. M・BF
The P start signal becomes a set point increase signal, and the set value of the setter R is increased. The outputs of the controller 38 are M and B, respectively.
The FP■ setting device 39 and the M.BFP{B} setting device 401 are inputted to control the M.BFP wind control valve 41 and the M.BFP■ control valve 42, respectively. In FIG. 4, M/BFP control is performed by various runback signals.

ーラの設定器を各種最終ランバック値に相当する値以下
に初期設定を行い、M・BFP駆動完了後M・BFPコ
ントローラの設定値を設定点増信号により徐々に増加す
ることにより、強制的にM・BFP流量を増加する。一
方、T・BFPはAPC側からの信号で制御されている
が、M・BFP駆動開始と同時にM・BFP出口流量を
APC信号から減算を行い、T・BFPコントローラの
設定値への制御信号とする。M・BFPの流量が徐々に
増加することにより、T・BFP流量を上廻った時点で
切替用継電器43×を動作させ、APC信号をM・BF
Pコントローラ側に移しT・BFP流量を一定比率で雫
方向の操作を行う。
By initializing the controller setting device to a value below the value corresponding to each final runback value, and gradually increasing the set value of the M-BFP controller with a set point increase signal after the M-BFP drive is completed, Increase the M・BFP flow rate. On the other hand, the T-BFP is controlled by a signal from the APC side, but at the same time as the M-BFP starts driving, the M-BFP outlet flow rate is subtracted from the APC signal, and the control signal is sent to the set value of the T-BFP controller. do. By gradually increasing the flow rate of M・BFP, when it exceeds the flow rate of T・BFP, the switching relay 43× is operated, and the APC signal is switched to M・BF.
Move to the P controller side and operate the T/BFP flow rate in the drop direction at a constant ratio.

M・BFPにAPC信号が移した場合、T・BFP・流
量をAPC信号より減算を行い、M・BFPのコントロ
−ラ入力信号とする。
When the APC signal is transferred to the M.BFP, the T.BFP.flow rate is subtracted from the APC signal and used as the controller input signal for the M.BFP.

上記の如き方法によりランパツク点に至る以前にM・B
FPによる制御に切り替え安定した流量制御を行うこと
が可能となり、低負荷運転の継続、再起勤時間の短縮、
ひいては、系統安定度の向上に役立つことができる。
By the above method, M・B
Switching to FP control enables stable flow control, allowing continued low-load operation and shortening the time required to return to work.
In turn, this can help improve system stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自動プラント制御装置の概略図、第2図は給水
流量系統図、第3図は負荷ランバック時のM・BFP駆
動迄のブロック図、第4図は本発明による給水流量制御
ブロック図である。 35,36,41,42・・…・制御弁、RH,〜Rは
・・・・・・設定器、43×・・・・・・切替開閉器、
31・・・.・・T・BFPコントローラ、38.・…
・M・BFPコントローラ、33,34,39,40・
・・・・・設定器。 第1図第2図 第3図 第4図
Figure 1 is a schematic diagram of the automatic plant control device, Figure 2 is a water supply flow rate system diagram, Figure 3 is a block diagram up to M/BFP drive during load runback, and Figure 4 is a water supply flow rate control block according to the present invention. It is a diagram. 35, 36, 41, 42... control valve, RH, ~R... setting device, 43×... switching switch,
31... ...T.BFP controller, 38.・…
・M・BFP controller, 33, 34, 39, 40・
...Setting device. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 貫流ボイラを備えた火力発電所において、負荷ラン
バツク信号にてモータ駆動給水ポンプを駆動し、強制的
にモータ駆動給水ポンプ側流量を徐々に増加し、タービ
ン駆動給水ポンプ流量を上廻った点でモータ駆動給水ポ
ンプ側に自動プラント制御装置からの信号をランバツク
点以前に切替えるようにした給水流量制御装置。
1 In a thermal power plant equipped with a once-through boiler, the motor-driven feed water pump is driven by a load runback signal, and the flow rate on the motor-driven feed water pump side is gradually increased to the point where it exceeds the flow rate of the turbine-driven water feed pump. A water supply flow rate control device that switches the signal from the automatic plant control device to the motor-driven water pump side before the runback point.
JP10257877A 1977-08-29 1977-08-29 Water supply flow control device Expired JPS607170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10257877A JPS607170B2 (en) 1977-08-29 1977-08-29 Water supply flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10257877A JPS607170B2 (en) 1977-08-29 1977-08-29 Water supply flow control device

Publications (2)

Publication Number Publication Date
JPS5436401A JPS5436401A (en) 1979-03-17
JPS607170B2 true JPS607170B2 (en) 1985-02-22

Family

ID=14331099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10257877A Expired JPS607170B2 (en) 1977-08-29 1977-08-29 Water supply flow control device

Country Status (1)

Country Link
JP (1) JPS607170B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072935B2 (en) * 2009-10-14 2012-11-14 中国電力株式会社 Thermal power generation facility and operation method of thermal power generation facility

Also Published As

Publication number Publication date
JPS5436401A (en) 1979-03-17

Similar Documents

Publication Publication Date Title
US4468171A (en) Method of controlling air flow rate of fan
JPS607170B2 (en) Water supply flow control device
JP2698141B2 (en) Water supply control device for FCB of drum boiler
JP2699797B2 (en) Control method and apparatus for pressurized fluidized-bed boiler combined cycle power plant
JP3772295B2 (en) Load control method at the time of water pump backup start-up
JPH0623683Y2 (en) Controller for power plant equipped with co-firing boiler
JP2613248B2 (en) Load control device for single shaft combined cycle power plant
JP2885346B2 (en) Combined plant control method and apparatus
JPS6025685B2 (en) Automatic operation method of steam turbine for driving boiler feed water pump
JP2531755B2 (en) Water supply control device
JP2659779B2 (en) Boiler feedwater flow control device
JPH0726722B2 (en) Operation control method for thermal power plant
JPS59201638A (en) Output controller of composite generating plant
JPH059682B2 (en)
JP2806931B2 (en) Governor for water turbine
JP2559965Y2 (en) Pelton turbine driving equipment
JPH0641804B2 (en) Auxiliary steam pressure controller
JPS63302201A (en) Feedwater controller
JPH01263598A (en) Switching of water supply pump
JPH06257713A (en) Load control system in pressurized fluidized bed type boiler complex power generating plant
JPS60174405A (en) Feed pump driving turbine driving steam changeover device
JPH0643803B2 (en) Steam turbine controller
JPS5929704A (en) Controller of turbine driving feed water pump
JPS62196505A (en) Feedwater flow controller
JPH0792203B2 (en) Boiler water supply control method and device