JPS6071528A - Manufacture of m-phase type hexagonal ferrite particle - Google Patents

Manufacture of m-phase type hexagonal ferrite particle

Info

Publication number
JPS6071528A
JPS6071528A JP58148003A JP14800383A JPS6071528A JP S6071528 A JPS6071528 A JP S6071528A JP 58148003 A JP58148003 A JP 58148003A JP 14800383 A JP14800383 A JP 14800383A JP S6071528 A JPS6071528 A JP S6071528A
Authority
JP
Japan
Prior art keywords
carbonate
phase
oxide
hexagonal ferrite
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58148003A
Other languages
Japanese (ja)
Other versions
JPS6253443B2 (en
Inventor
Takafumi Sato
隆文 佐藤
Hiroshi Kojima
浩 小島
Choji Miyagawa
宮川 長二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP58148003A priority Critical patent/JPS6071528A/en
Publication of JPS6071528A publication Critical patent/JPS6071528A/en
Publication of JPS6253443B2 publication Critical patent/JPS6253443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled uniform and fine particles without carrying out mechanical mixing or grainding by adding the chloride of a specified bivalent metal to an aqueous mixture of Na carbonate with fine Fe oxide to precipitate the carbonate of the bivalent metal, carrying out uniform mixing, separating the solid phase, and calcining it after washing and drying. CONSTITUTION:To an aqueous soln. of Na2CO3 is added Fe oxide or hydroxide such as needlelike gamma-Fe2O3, and they are mixed. An aqueous soln. of the chloride of R<2+> (R is one or more among Ba, Sr, Pb and Ca) such as BaCl2.2H2O is added to the aqueous mixture to precipitate BaCO3. This BaCO3 is uniformly mixed with the gamma-Fe2O3 in the aqueous mixture by stirring the mixture. The solid phase is separated, washed, dried, and calcined at 800-1,400 deg.C in the air. The resulting M-phase type hexagonal ferrite particles have a small particle size such as about 0.1-0.3mum.

Description

【発明の詳細な説明】 本発明は、酸化物磁性粒子およびその製造方法に関する
もので1%に2M相星型六方晶フェライト子の製造を目
的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to oxide magnetic particles and a method for producing the same, and its purpose is to produce 1% to 2M star-type hexagonal ferrite particles.

M相型六方晶フェライト(以下単にM相フェライトと呼
ぶ)は、現在、BaおよびSr系の永久磁石材料に代表
されるように、低価格、高性能を有する異方性磁石とし
て他の磁石にまさるとも劣らないものとなっている。
M-phase hexagonal ferrite (hereinafter simply referred to as M-phase ferrite) is currently used in other magnets as an anisotropic magnet with low cost and high performance, as represented by Ba and Sr-based permanent magnet materials. It is as good as anything.

一方、近年、高密度な磁気記録として、垂直磁気記録方
式が提案され、その磁気媒体として2M相星型六方晶フ
ェライト子が磁気テープやディスク用材料として要求さ
れている。
On the other hand, in recent years, a perpendicular magnetic recording system has been proposed as a high-density magnetic recording method, and a 2M phase star hexagonal ferrite element is required as a material for magnetic tapes and disks as its magnetic medium.

磁気配向させながらペース・テープに塗布すれば。Apply it to the pace tape while magnetically aligning it.

テープ面に垂直な一軸異方性をとることができる◇とこ
ろで1M相フェライトは、従来、R(ただしRはBa 
、Sr 、PbおよびCaの少なくとも一種)の炭酸塩
とα−Fe205とを?−ル・ミ゛ルあるいはライカイ
機によシ機械的混合し、1100℃以上の大気中で焼成
して得ている。なお、その後が一ル・ミルあるいは振動
ミルにょシ機械的粉砕を行い、0.5〜2.Ottm程
度の粒子とするのが通常の方法である。
Uniaxial anisotropy perpendicular to the tape surface can be achieved
, at least one of Sr, Pb and Ca) and α-Fe205? - It is obtained by mechanically mixing in a Lemile or Raikai machine and firing in the atmosphere at a temperature of 1100°C or higher. In addition, after that, mechanical crushing is carried out in a mill or a vibration mill, and 0.5 to 2. The usual method is to form particles of about Ottm.

しかし、上述した従来の機械的混合方法では。However, in the conventional mechanical mixing method mentioned above.

Rの炭酸塩とα−Fe20.とが十分に混合せず2反応
の過程で均一なM相が得に<<、またその後の機械的粉
砕では、均一で粒度分布の狭いかつ細かい粒子を得るこ
とができない欠点があった。
R carbonate and α-Fe20. There was a drawback that a uniform M phase was not obtained during the course of the two reactions due to insufficient mixing between the two, and subsequent mechanical crushing was unable to obtain uniform, fine particles with a narrow particle size distribution.

本発明の目的は、このような点に鑑み2機械的混合を行
なわず、また機械的粉砕を必要とせずに均一で、かつ細
かいM相フェライト粒子を得る製造方法を提供すること
にある。
In view of these points, it is an object of the present invention to provide a manufacturing method for obtaining uniform and fine M-phase ferrite particles without mechanical mixing or mechanical pulverization.

本発明の方法は、出発原料として、 Naの炭酸塩と非
常に細かいFeの酸化物あるいは水酸化物を水中にて混
ぜ合わせ、その水溶液中にR2+(ただしRはBa、S
r、Pbおよ゛びCaの少なくとも一種)の塩化物を加
えてR2+の炭酸塩を沈澱させ、該水溶液を攪拌して、
R2+の炭酸塩とFeの酸化物あるいは水酸化物とを均
一に混合し、その後固相を分離、洗浄。
In the method of the present invention, Na carbonate and very fine Fe oxide or hydroxide are mixed in water as starting materials, and R2+ (where R is Ba, S
Adding a chloride of R, Pb and at least one of Ca) to precipitate a carbonate of R2+, stirring the aqueous solution,
R2+ carbonate and Fe oxide or hydroxide are mixed uniformly, and then the solid phase is separated and washed.

乾燥、焼成して2M相のフェライト粒子を得ることを特
徴としたM相型六方晶フェライト粒子の製造方法である
This is a method for producing M-phase hexagonal ferrite particles characterized by drying and firing to obtain 2M-phase ferrite particles.

ここで、焼成上がりのM相フェライト粒子の大きさを0
.1〜0.3μm程度に細かく、かつ粒度分布を狭くす
るには、よシ低温(900℃前後)で。
Here, the size of M phase ferrite particles after firing is set to 0.
.. To make the particles as fine as 1 to 0.3 μm and to narrow the particle size distribution, use a low temperature (around 900°C).

焼結することなく焼成することが望ましく、実用的には
焼成は800℃〜1400 ℃の温度で、数分から数1
0時間の範囲て選択すれば良い。
It is desirable to perform firing without sintering, and in practical terms, firing is performed at a temperature of 800°C to 1400°C, ranging from several minutes to several centimeters.
It is sufficient to select within the range of 0 hours.

以下1本発明の実施例について詳細に説明する。Hereinafter, one embodiment of the present invention will be described in detail.

実施例−1 出発原料として炭酸ナトリウムNa 2CO3の0.0
75モルを450CCの水中に溶がし、これをA液とし
Example-1 0.0 of sodium carbonate Na2CO3 as starting material
Dissolve 75 mol in 450 cc of water and use this as solution A.

A液中に針状の酸化鉄r−Fe2o3(長軸0.281
1m。
Acicular iron oxide r-Fe2o3 (long axis 0.281
1m.

短軸0.03μm)をそれぞれ0.30モル、0.27
5モル、0.25モル、o’、225モルの4条件で秤
量して加えた。また塩化バリウムBaCt2・2H20
(2水和物)の0.05モルを200CCの水中に溶が
し、B液とした。A液にB液(50℃)を室温中で滴下
し。
0.30 mol and 0.27 mol, respectively (minor axis 0.03 μm)
It was weighed and added under four conditions: 5 mol, 0.25 mol, o', and 225 mol. Also, barium chloride BaCt2・2H20
0.05 mol of (dihydrate) was dissolved in 200 cc of water to prepare B solution. Add solution B (50°C) dropwise to solution A at room temperature.

炭酸バリウムB a CO5を沈澱させ、r−Fe20
5と攪拌中焼成した。焼成したフェライト粒子の単位重
量当りの飽和磁化モーメントσ8と保磁力XHcを逐次
振動磁力計で測定した。さらに走査電子顕微鋺によシ粒
径の大きさおよび分布状態を観察し、またX線回折によ
る相変化を調査した。それらの結果を第1表に示す。
Precipitate barium carbonate B a CO5, r-Fe20
5 and baked while stirring. The saturation magnetization moment σ8 and coercive force XHc per unit weight of the fired ferrite particles were measured using a sequential vibrating magnetometer. Furthermore, the grain size and distribution state were observed using a scanning electron microscope, and phase changes were investigated using X-ray diffraction. The results are shown in Table 1.

第1表から明らかなように、焼成温度を上げると単位重
量当シの飽和磁化σBは増加し、最高値は0.25モル
の時1100℃で3時間の条件下で60.7 emu/
gr得られた。又、保磁力I’Hcは温度を上げると粒
の成長が起り粒径が大きくなるため減少してくる。粒子
の大きさは、 r−Fe203が0.25モルの時90
0℃、1000℃付近では焼結が起らないので1粒成長
の粗大化はな(,0,1〜0.3μmと微細で分布幅の
小さい粒子が得られた。X線回折によれば900℃では
まだ未反応のFe2O3が残っており、1000℃では
ほとんどなくなり、1100℃で完全な角板状のM相で
あった。以上よシ。
As is clear from Table 1, the saturation magnetization σB per unit weight increases as the firing temperature increases, and the maximum value was 60.7 emu/at 1100°C for 3 hours at 0.25 mol.
gr was obtained. Furthermore, as the temperature increases, the coercive force I'Hc decreases because grain growth occurs and the grain size increases. The particle size is 90 when r-Fe203 is 0.25 mol.
Since sintering does not occur near 0°C and 1000°C, single grain growth does not become coarse (0.1 to 0.3 μm, fine particles with a narrow distribution width were obtained. According to X-ray diffraction At 900°C, unreacted Fe2O3 still remained, but at 1000°C it almost disappeared, and at 1100°C it was a complete square plate-shaped M phase.

1000℃で3時間の条件下で0.2〜0.3μmの微
細で均一なM相単−相の理想的な粒子が得られた。
Under conditions of 1000° C. for 3 hours, ideal particles of fine and uniform M phase single phase of 0.2 to 0.3 μm were obtained.

実施例−2 出発原料として炭酸ナトリウムNa2CO3の0.05
5モルを450ccの水中に溶かし、これをA液とし。
Example-2 0.05 of sodium carbonate Na2CO3 as starting material
Dissolve 5 moles in 450 cc of water and use this as Solution A.

A液中に針状のゲーサイトα−FeOOH(長軸0.5
0μm。
Acicular goethite α-FeOOH (long axis 0.5
0μm.

短軸0.07μm)を0.60モル、 0.55モ/I
/、0.50モル、0.45モルの4条件秤量し加えた
。また塩化バリウムBaC62・2H20(2水和物)
の0.05モルを200CCの水中に溶かしB液とした
。A液にB液(50℃)を室温中で滴下して炭酸ノ々リ
ウムnaco5ヲ沈澱させ、m−−■この水溶液を攪拌
し”’(BaCO3とα−FeOOHとを十分に混合さ
せた。その後、固液分離、水洗、乾燥を行い900℃〜
1100辷て3時間、大気中で焼成した。こうして得た
粉子について、実施例−1と同様に、磁気測定、走査電
子顕微鏡観察、およびX線回折を行った。その結果を第
2表に示す。
0.60 mole (minor axis 0.07 μm), 0.55 mo/I
/, 0.50 mol, and 0.45 mol were weighed and added under four conditions. Also, barium chloride BaC62・2H20 (dihydrate)
0.05 mol of the solution was dissolved in 200 cc of water to prepare solution B. Solution B (50°C) was added dropwise to solution A at room temperature to precipitate Norium carbonate naco5, and this aqueous solution was stirred to thoroughly mix BaCO3 and α-FeOOH. After that, solid-liquid separation, water washing, and drying are performed at 900℃~
It was baked in the air for 3 hours at a temperature of 1,100 mm. The thus obtained powder was subjected to magnetic measurement, scanning electron microscopy, and X-ray diffraction in the same manner as in Example-1. The results are shown in Table 2.

第2表から明らかなように、焼成温度を上げるとσSは
増加し、9.50モルの時、、1100℃で3時間のと
き最高値の63.Oemu/grが得られ九〇一方粒径
は、温度の上昇とともに大きくなシ。
As is clear from Table 2, σS increases as the calcination temperature increases, reaching a maximum value of 63.0 at 9.50 mol and 3 hours at 1100°C. Oemu/gr was obtained at 90. On the other hand, the particle size increased with increasing temperature.

M相の粒子が、また900℃、1000℃付近では比較
的粒径の小さな粒度分布の狭い粒子が得られた。
M-phase particles were obtained, and particles with a relatively small particle size and narrow particle size distribution were obtained near 900°C and 1000°C.

X線回折によれば、900℃でほんの少し未反応のFe
2O3が残っている程度でそれ以上の温度では完全4M
相であった。
According to X-ray diffraction, only a small amount of unreacted Fe was found at 900°C.
If the temperature is higher than 2O3, it will be completely 4M.
It was phase.

以上よシ900℃で3時間の条件下で0.2〜0.3μ
m程度の微細で均一性に富むM相微粒子が得られた。
0.2-0.3μ under the condition of 900℃ for 3 hours.
M-phase fine particles with a fineness of about 100 m and high uniformity were obtained.

以下余白 上記実施例から明らかなように2本発明の方法によれば
 12+の塩化物をNaの炭酸塩と化学的に反応させて
R2+の炭酸塩を沈澱させ、非常に細かいFeの酸化物
あるいは水酸化物と混ぜ合わせることによって均一な細
かいM相型六方晶フェライト粒子を得ることができる。
2 As is clear from the above examples, according to the method of the present invention, 12+ chloride is chemically reacted with Na carbonate to precipitate R2+ carbonate, and very fine Fe oxide or By mixing with hydroxide, uniform fine M-phase hexagonal ferrite particles can be obtained.

従って9本発明の方法によって得たフェライト粒子と従
来の機械的粉砕によって得られたフェライト粒子とを異
方性磁石で比較すると、プレス性が粒子が均一な為曳く
なシ、密度、磁気特性(Br、’tic )とも、5チ
以上の改善を図ることができた。
Therefore, when comparing the ferrite particles obtained by the method of the present invention with the ferrite particles obtained by conventional mechanical crushing using an anisotropic magnet, it is found that the pressability is not good because the particles are uniform, the density, and the magnetic properties ( Br, 'tic) were both improved by more than 5 inches.

Claims (1)

【特許請求の範囲】 1、 出発原料として、 Naの炭酸塩と非常に細かい
Feの酸化物あるいは水酸化物とを水中にて混ぜ合わせ
、その溶液中にR2+(ただしRはBa、Sr。 pbおよびCaの少なくとも一種)の塩化物を加えてR
2+の炭酸塩を沈澱させ、該水溶液を攪拌してR8+の
炭酸塩とFeの酸化物あるいは水酸化物とを均一に混合
し、その後、固相を分離、洗浄、乾燥。 焼成することによシ細かい均一なM相のフェライト粒子
を得ることを特徴とし九M相型六方晶フェライト粒子の
製造方法。
[Claims] 1. As a starting material, Na carbonate and very fine Fe oxide or hydroxide are mixed in water, and R2+ (where R is Ba, Sr. pb) is added to the solution. and at least one type of Ca) and R
2+ carbonate is precipitated, the aqueous solution is stirred to uniformly mix R8+ carbonate and Fe oxide or hydroxide, and then the solid phase is separated, washed, and dried. A method for producing nine M-phase hexagonal ferrite particles, characterized by obtaining fine and uniform M-phase ferrite particles by firing.
JP58148003A 1983-08-15 1983-08-15 Manufacture of m-phase type hexagonal ferrite particle Granted JPS6071528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58148003A JPS6071528A (en) 1983-08-15 1983-08-15 Manufacture of m-phase type hexagonal ferrite particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58148003A JPS6071528A (en) 1983-08-15 1983-08-15 Manufacture of m-phase type hexagonal ferrite particle

Publications (2)

Publication Number Publication Date
JPS6071528A true JPS6071528A (en) 1985-04-23
JPS6253443B2 JPS6253443B2 (en) 1987-11-10

Family

ID=15442933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58148003A Granted JPS6071528A (en) 1983-08-15 1983-08-15 Manufacture of m-phase type hexagonal ferrite particle

Country Status (1)

Country Link
JP (1) JPS6071528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268249A (en) * 1992-10-29 1993-12-07 Eastman Kodak Company Magnetic carrier particles
US5306592A (en) * 1992-10-29 1994-04-26 Eastman Kodak Company Method of preparing electrographic magnetic carrier particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268249A (en) * 1992-10-29 1993-12-07 Eastman Kodak Company Magnetic carrier particles
US5306592A (en) * 1992-10-29 1994-04-26 Eastman Kodak Company Method of preparing electrographic magnetic carrier particles

Also Published As

Publication number Publication date
JPS6253443B2 (en) 1987-11-10

Similar Documents

Publication Publication Date Title
JP5445843B2 (en) Magnetic iron oxide particles, magnetic material, and electromagnetic wave absorber
JP5521287B2 (en) Ferrite particles for magnetic recording media
JPH0725553B2 (en) Method for producing plate-like magnetic powder
CN102260072A (en) Method for synthesizing high-performance barium ferrite by using molten salt as flux and reaction medium
US3425666A (en) Process for producing ferrimagnetic materials
US3535245A (en) Metal-oxide coated ferrimagnetic particles
JPS6071528A (en) Manufacture of m-phase type hexagonal ferrite particle
JPS60245704A (en) Manufacture of ferromagnetic cubic needle-like crystal ferrite powder
JP3115466B2 (en) Method for producing hexagonal ferrite particles
JPH0317774B2 (en)
JP2610445B2 (en) Method for producing soft magnetic hexagonal ferrite
JP2001093716A (en) Powder for magnetic recording medium and method for manufacturing thereof
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
US5487878A (en) Method for preparing perpendicularly magnetizable material usable on magnetic recording media
JP2687124B2 (en) Powder for magnetic shield and magnetic shield material
JPS5841728A (en) Manufacture of fine ferrite powder
JPS60255629A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JPS6343359B2 (en)
JPH01119521A (en) Magnetic powder for magnetic recording
JP4529310B2 (en) Method for producing anisotropic oxide magnetic material
KR970002098B1 (en) Method of barium ferrite powder
JPH0618073B2 (en) Magnetic powder for magnetic recording
JPS59207604A (en) Manufacture of powder for magnetic recording
KR960002036B1 (en) Producing method of magnetic recording medium
JPH0615411B2 (en) Method for producing magnetoplumbite-type fine ferrite powder