JPS6071527A - Method for recovering vanadium from ash after burning or unburned carbon - Google Patents

Method for recovering vanadium from ash after burning or unburned carbon

Info

Publication number
JPS6071527A
JPS6071527A JP58179305A JP17930583A JPS6071527A JP S6071527 A JPS6071527 A JP S6071527A JP 58179305 A JP58179305 A JP 58179305A JP 17930583 A JP17930583 A JP 17930583A JP S6071527 A JPS6071527 A JP S6071527A
Authority
JP
Japan
Prior art keywords
vanadium
soln
ash
unburned carbon
burning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58179305A
Other languages
Japanese (ja)
Inventor
Kohei Ninomiya
康平 二宮
Toshihide Sakurai
俊秀 桜井
Tetsuo Kato
哲男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP58179305A priority Critical patent/JPS6071527A/en
Publication of JPS6071527A publication Critical patent/JPS6071527A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover very efficiently V from ash contg. V after burning or unburned carbon by adding an extracting soln. forming each ion pair with a complex ion of V to an aqueous alkali soln. contg. V leached from the ash or carbon to transfer the V component to the phase of the extracting soln. CONSTITUTION:Ash contg. V and other metals produced by burning or gasifying heavy oil, residual oil, coal or the like or unburned carbon (they are generically named combustion residue) is brought into contact with an aqueous soln. of an alkali such as NaOH at ordinary temp. of above, especially 80-200 deg.C in an apparatus in which solid materia is leached. Most of the V and small amounts of Ca, iron, etc. are leached into the alkali soln. To the resulting soln. is added an extracting soln. forming each ion pair with a complex ion of V, e.g., a soln. of tri-n-octylamine dilute with kerosene, and the V component is extracted at 1-4 pH. After transferring only V to the phase of the extracting soln. by the formation of each ion pair, liq. separation is carried out to recover selectively only V which is a metal having the highest utility value in the combustion residue.

Description

【発明の詳細な説明】 本発明は、燃焼灰または未燃カーボン中のノ(ナジウム
を回収する新規方法に関するものである。 なお本明細書において、燃焼灰と未燃カーボンを総称し
て、燃焼残渣と呼ぶことがある。 石油9石炭などの燃焼あるいはガス化において。 多量に発生する燃焼残渣中には9通常、)<ナジウム、
ニッケル、カルシウム、鉄など多くの金属を含んでいる
。例えば、ボイラー、ガス化炉あるいは熱交換器などの
高温部には、バナジウムなどの金属が著しく濃縮された
燃焼灰が融着し、煙道や電気集塵機などの低温部には、
バナジウムなどの金属の含量は比較的少ないが、その反
面未燃カーボンや硫酸分を多量に含有している燃焼灰が
堆積してくる。さらにガス化炉からは、バナジウムなど
の金属を含有している未燃カーボンが多量排出される。 近年、良質な燃料の枯渇および価格の高騰などの理由に
よシ、バナジウムなどの金属含量の高い劣質な燃料が使
用されるにつれて、燃焼残渣中に含まれる種々金属の量
も、益々多くなっている。 このような金属を含有する燃焼残渣を廃棄することは、
公害発生の要因となり、また有価金属の損失にもなる。 従来、これらの理由によシ、燃焼残渣に含まれる金属を
回収する方法につき1種々提案がなされている。それら
のうち、バナジウムの回収を対象とした代表的方法とし
ては・酸浸出法あるいはン−ダ焙焼法を挙げることがで
きる。 酸浸出法は、燃焼残渣を硫酸などの強酸水溶液と接触さ
せ、バナジウムを酸水溶液中に溶出させる方法である。 該方法では、バナジウムは強酸として硫酸を用いた場合
には硫酸バナジウムとして容易に溶出させることができ
る。しかし、バナジウム以外の多くの金属も酸水溶液中
に溶出してくるため、その中からバナジウムのみを選択
的に回収するには、極めて煩雑な操作を必要とする。ま
た1強酸の使用に伴って、特殊な材質の装置を必要とし
、後工程において中和に多量の塩基を必要とする。など
の欠点も有している。 ソーダ焙焼法は、燃焼灰にソーダを加えて焙焼した後、
温水中でバナジウムをバナジン酸ソーダとして溶出させ
る方法である。該方法では、バナジウム以外の金属の多
くは、水酸化物として沈殿するため、バナジウムを選択
的に回収することは比較的容易であるが、約1000℃
という高温下で焙焼操作が行われるため経済的でない。 また。 バナジウム濃度が低く、未燃カーボンや硫酸分を含有し
ている燃焼残渣などの場合には、ソーダとの反応効率が
悪いためバナジウムの回収率が低く。 また硫酸分の分解によシ、亜硫酸ガスなどの毒性ガスが
発生する。などの欠点がありそのような燃焼残渣には適
用しにくい。 この様に、従来提案がなされている燃焼残渣中のバナジ
ウムを回収する方法は、工業的にみていずれも一長一短
である。 本発明者らは、この実情に鑑み1燃焼残渣中のバナジウ
ムを工業的有利に回収する方法を開発することを目的と
し、鋭意研究を行った。その結果。 バナジウムを含有している燃焼灰または未燃カーボンを
、アルカリ水溶液に接触させ、バナジウム分をアルカリ
水溶液中に溶出させた後、該アルカリ水溶液にバナジウ
ムの錯イオンとイオン対を形成する抽出液を加え、バナ
ジウム分を抽出液相中に移行させる操作を採用すれば、
その目的が達成されること、すなわち極めて効率良く燃
焼残渣からバナジウムを回収できることを見い出し9本
発明を完成するに到った。 本発明は1重油、原油、ナフサ、残渣油、アスファルト
、石油コーク′スさらには石炭などの燃焼ずれも有効に
適用することができる。こ、こて、バナジウム以外の金
属としては、ニッケル、カルシウム、鉄、ナトリウム、
亜鉛などを挙げることができる。その燃焼残渣は、具体
的には、ボイラー。 ガス化炉あるいは熱交換器などに融着されるところのバ
ナジウムなどの金属含量の高い燃焼灰、煙道や電気集塵
機などに堆積するところのバナジウムなどの金属含量が
少ないが未燃カーボンや硫酸分を含んでいる燃焼灰、さ
らにはガス化炉から排出される未燃カーボン、などが挙
げられる。 本発明では、まずこのような燃焼残渣をアルカリ水溶液
に接触させる。使用に供されるアルカリ水溶液としては
、力性ソーダ、炭酸ソーダおよびアンモニアなどの水溶
液を挙げることができ、これらの中でも力性ソーダが特
に効果的である。その濃度および使″用看には、特段の
制限はないが。 通常20wtチ以下、好ましくはo、i〜10Wtq6
の濃度のものを、スラリー濃度が40wt9J以下、好
ましくは5〜3owt%になるように用いられる。 なお燃焼残渣は、その粒径があまり大きいと、バナジウ
ムの溶出率が低下し、またスラリーとしての取扱いが困
難になるため1通常100μm以下であることが好まし
い。 接触処理は、ミキサーセトラー型あるいは段塔型など9
通常面体の浸出に用いられる装置を用いて、常温以上、
好ましくは80〜2oo℃の温度で行うことができる。 該接触処理によシ、燃焼残渣中に含まれている金属のう
ち、大部分のバナジウムと少量のカルシウム、鉄などが
アルカリ水溶液中に溶出し、はとんど全量のニッケル、
亜鉛および大部分の鉄などは溶出することなく燃焼残渣
中に残存したままである。 次いで、濾過、デカンテーションなどの操作を適宜採用
することによって燃焼残渣とアルカリ水溶液とを分離し
、該アルカリ水溶液にバナジウムの錯イオンとイオン対
を形成する抽出液を加え。 バナジウム分の抽出操作を行う。 バナジウムの錯イオンとイオン対を形成する抽出液とし
ては1例えば、−級アミンであるPrimene JM
T (商品名:ロームアントハース社製)、二級アミン
であるAmberlite LA−1+Amber’1
ite LA −2(いずれも商品名:ロームアントハ
ース社製)、三級アミンであるAlaminθ336(
商品名;ヘンケル社製)、トリーn−オクチルアミン、
トリーイソ−オクチルアミンなどの高分子量アミン: 
A11quat 3ろ6(商品名;ヘンケル社製)など
の第4級アンモニウム塩;さらにはト・リーブチルホス
フェートやトリーオクチルホスフィンオキサイドなどの
中性リン化合物;などが有用である。 これら抽出液は、それ単独で使用することができるが、
水への溶解損失を防ぎまた適当な粘度に保持するために
、溶剤で希釈して使用することが好ましい。その溶剤と
しては、一般に有機化合物の溶剤として用いられている
水との溶解度が低い芳香族および脂肪族系の炭化水素、
アルコール。 エーテル、ケトン、エステル、ハロゲン化物、炭化水素
誘導体を挙げることができるが、その性状および毒性な
どの観点から特にケロシンの使用が好ましい。これら溶
剤による希釈は、任意に行うことができるが9通常抽出
液の濃度が1〜10vot係程度になるように希釈する
のが好ましい。 抽出液の使用量は、被処理アルカリ水溶液中に溶存して
いるバナジウムに対し1通常0.1モル倍以上、好まし
くは0.5〜5モル倍である。 抽出操作は、系が液状を保持する温度範囲内で行われる
が9通常、室温下に行うことができる。 なお、該抽出操作に先だち、被処理アルカリ水溶液のp
Hを調節することによって、バナジウムの抽出を一層効
率的に行うことができる。その調節は、抽残水相液のp
Hが1〜4になるように行うことが好ましい。またpH
調節剤としては、硫酸、塩酸、硝酸などの鉱酸を挙げる
ことができるが、これらの中でもカルシウムの分離を考
慮した場合、硫酸の使用が好ましい“。すなわち硫酸を
使用した場合、被処理アルカリ水溶液中に溶存している
カルシウムがセラコラとして析出するため。 抽残水相からの分離が容易となる。 該抽出操作により、被処理アルカリ水溶液中に溶存して
いる金属のうち、バナジウムだけが抽出液とイオン対を
形成し抽出液相中に移行し、カルシウムなどの他の金属
は抽残水相中に残存する。 従って1両者を例えば分液操作を施すことにより。 究極的に燃焼残渣中に含まれている種々金属の中から、
最も利用価値の高いバナジウム分だけを選択的に回収す
ることができる。 なお、バナジウム分を含んでいる抽出液相は。 アンモニア、塩化アンモニウム、硫酸アンモニウムなど
のアンモニア性水溶液と接触させ、バナジウム分を逆抽
出すると共に、メタバナジン酸アンモニウムの沈殿とし
て回収することができる。この際、アンモニア性水溶液
は、バナジウムに対するアンモニアのモル比が2倍以上
、好ましくは4〜10倍モルになるように用いることが
できる。 また該操作は、力性ソーダ、炭酸ソーダの如きアンモニ
ア性水溶液以外のアルカリ性水溶液で行い。 バナジウム分を逆抽出した後、その逆抽出液に前記アン
モニア分を所定量加え、メタバナジン酸アンモニウムの
沈殿を生成させることもできる。 次に1本発明の実施例を挙げる。なお各例中における部
は1重量部を示す。 また、各個で用いた燃焼灰および未燃カーボンの成分を
9次表に示す。  表 実施例1 前記表に示した粒径74μm以下の燃焼灰100部を+
 4wt%力性ソーダ水溶液400部に加え。 160℃で1時間攪拌を行った後、冷却し燃焼灰とバナ
ジウムの溶出液とをF別した。P集した燃焼灰を、20
0部の水で3回洗浄し、その洗浄液は1PKiである溶
出液に加え水溶液量を1000部とした。その水溶液中
の金属濃度を測定した結果。 バナジウム13000ppm(溶出率;82%)。 カルシウム1500ppm、鉄3 ppmであり、ニッ
ケルと亜鉛は全く検出されなかった。 このバナジウムを含む水溶液1000部に、IN硫酸5
00部を加えた後、5wt%) ソーn−オクチルアミ
ンのケロシン希釈液2500部を加え。 室温下に30分間振とり機にかけ、液−液抽出を行った
。抽残水相液および生成したセラコラの沈殿を除去した
。なお、抽残水相液のpHは2.5であり、バナジウム
分の濃度は60ppm(従って。 溶出液から抽出液相中へのバナジウムの抽出率は99.
3係である。)であった。 次いで、この抽出液に0.8モル/Lのアンモニアと2
.8モル/lの塩化アンモニウムを含むアルカリ性水溶
液1000部を加え、室温下に30分間振とり機にかけ
、バナジウム分を逆抽出し、析出したメタバナジン酸ア
ンモニウムの沈殿をF集した。逆抽出液中のナトリウム
は10ppm、カルシウムは1 ppmであり、また抽
出液からメタバナジン酸アンモニウムの回収率は、バナ
ジウムとして99%という極めて高いものであった。 実施例2 前記表に示した粒径10’Oμm以下の未燃カーボン2
00部を、4wt%力性ソーダ水溶液400部に加え、
160℃で1時間攪拌を行った後、冷却し未燃カーボン
とバナジウムの溶出液とを炉別しだ。該溶出液に、前記
表に示した粒径74μm以下の燃焼灰100部を加え、
160℃で1時間攪拌を行った後、冷却し燃焼灰とバナ
ジウムの溶出液とを炉別した。 この溶出液に、未燃カーボンと燃焼灰との洗浄液とを加
え、水溶液量を1000部とした。その水溶液中の金属
濃度を測定した結果、バナジウム13800ppm、(
未燃カーボンからの溶出率;70係、燃焼灰からの溶出
率;82%)、カルシウム1600ppm、鉄3 pp
mであり、ニッケルと亜鉛は全く検出されなかった。 これ以降の操作は、実施例1と同様に処理した結果、実
施例1とほぼ同様の結果を得ることができた。 実施例3 抽出液として、5wt%トリーイソ−オクチルアミンの
ケロシン希釈液を用いた他は、実施例1と同様の操作で
実験を行った。 その結果、抽残水相液のpHは2.5であり、バナジウ
ム分の濃度は80 ppm (従って、溶出液から抽出
液相中へのバナジウムの抽出率は99.1%である。)
であった。また、抽出液からメタバナジン酸アンモニウ
ムの回収率はバナジウムとして99チであった。 特許出願人 宇部興産株式会社
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new method for recovering sodium from combustion ash or unburned carbon. In this specification, combustion ash and unburned carbon are collectively referred to as Sometimes called residue. During the combustion or gasification of petroleum, coal, etc. The combustion residue that is generated in large quantities usually contains
Contains many metals such as nickel, calcium, and iron. For example, combustion ash highly concentrated in vanadium and other metals is fused to high-temperature parts such as boilers, gasifiers, or heat exchangers, and fused to low-temperature parts such as flues and electrostatic precipitators.
The content of metals such as vanadium is relatively small, but on the other hand, combustion ash that contains large amounts of unburned carbon and sulfuric acid accumulates. Furthermore, a large amount of unburned carbon containing metals such as vanadium is discharged from the gasifier. In recent years, due to the depletion of high-quality fuels and soaring prices, inferior fuels with high metal contents such as vanadium have been used, and the amount of various metals contained in combustion residues has also increased. There is. Disposal of combustion residues containing such metals is
This causes pollution and also causes loss of valuable metals. For these reasons, various proposals have been made for methods of recovering metals contained in combustion residues. Among these, representative methods for recovering vanadium include the acid leaching method and the roasting method. The acid leaching method is a method in which combustion residue is brought into contact with a strong acid aqueous solution such as sulfuric acid, and vanadium is eluted into the acid aqueous solution. In this method, vanadium can be easily eluted as vanadium sulfate when sulfuric acid is used as a strong acid. However, since many metals other than vanadium are also eluted into the acid aqueous solution, extremely complicated operations are required to selectively recover only vanadium from the acid aqueous solution. Furthermore, the use of a strong acid requires equipment made of special materials, and a large amount of base is required for neutralization in the post-process. It also has drawbacks such as: In the soda roasting method, after adding soda to the combustion ash and roasting it,
This is a method in which vanadium is eluted as sodium vanadate in hot water. In this method, since most metals other than vanadium precipitate as hydroxides, it is relatively easy to selectively recover vanadium;
It is not economical because the roasting operation is carried out at such high temperatures. Also. If the vanadium concentration is low and the combustion residue contains unburned carbon or sulfuric acid, the recovery rate of vanadium is low because the reaction efficiency with soda is low. In addition, toxic gases such as sulfur dioxide and sulfur dioxide gas are generated due to the decomposition of sulfuric acid. It is difficult to apply to such combustion residues due to the following drawbacks. As described above, all of the conventionally proposed methods for recovering vanadium from combustion residue have advantages and disadvantages from an industrial perspective. In view of this situation, the present inventors conducted extensive research with the aim of developing a method for industrially advantageous recovery of vanadium in the combustion residue. the result. Combustion ash or unburned carbon containing vanadium is brought into contact with an aqueous alkaline solution to elute the vanadium into the aqueous alkaline solution, and then an extract that forms ion pairs with complex ions of vanadium is added to the aqueous alkaline solution. , if an operation is adopted in which the vanadium content is transferred into the extraction liquid phase,
The inventors have now completed the present invention by discovering that the objective can be achieved, that is, vanadium can be recovered from combustion residues extremely efficiently. The present invention can be effectively applied to combustion deviation of single heavy oil, crude oil, naphtha, residual oil, asphalt, petroleum coke, and even coal. Metals other than vanadium include nickel, calcium, iron, sodium,
Examples include zinc. That combustion residue is specifically a boiler. Combustion ash with a high content of metals such as vanadium, which is fused to gasifiers or heat exchangers, and unburned carbon and sulfuric acid, which have a low content of metals such as vanadium, which are deposited in flues and electrostatic precipitators. Examples include combustion ash containing carbon and unburned carbon discharged from gasifiers. In the present invention, such combustion residue is first brought into contact with an alkaline aqueous solution. Examples of the aqueous alkali solution that can be used include aqueous solutions of hydric soda, soda carbonate, ammonia, etc. Among these, hydric soda is particularly effective. There are no particular restrictions on its concentration and usage. Usually 20wtq or less, preferably o, i~10wtq6
is used so that the slurry concentration is 40wt9J or less, preferably 5 to 3wt%. Note that if the particle size of the combustion residue is too large, the elution rate of vanadium will decrease and handling as a slurry will become difficult. Contact treatment can be done using a mixer-settler type or plate column type9.
Using the equipment normally used for leaching facepieces, at room temperature or above,
Preferably, it can be carried out at a temperature of 80 to 20°C. Through this contact treatment, most of the metals contained in the combustion residue, such as vanadium and small amounts of calcium and iron, are eluted into the alkaline aqueous solution, and almost all of the nickel, iron, etc. are eluted into the alkaline aqueous solution.
Zinc and most of the iron remain in the combustion residue without being eluted. Next, the combustion residue and the alkaline aqueous solution are separated by appropriately employing operations such as filtration and decantation, and an extract that forms ion pairs with vanadium complex ions is added to the alkaline aqueous solution. Extract the vanadium component. Examples of extracts that form ion pairs with vanadium complex ions include Primene JM, which is a -class amine.
T (product name: manufactured by Rohm Antohaas), secondary amine Amberlite LA-1+Amber'1
ite LA-2 (both trade names: manufactured by Rohm Anthohaas), tertiary amine Alamin θ336 (
Product name: Henkel), tri-n-octylamine,
High molecular weight amines such as tri-iso-octylamine:
Quaternary ammonium salts such as A11quat 3ro6 (trade name; manufactured by Henkel); and neutral phosphorus compounds such as tributyl phosphate and trioctylphosphine oxide are useful. These extracts can be used alone, but
In order to prevent dissolution loss in water and maintain an appropriate viscosity, it is preferable to dilute with a solvent before use. The solvents include aromatic and aliphatic hydrocarbons, which are generally used as solvents for organic compounds and have low solubility in water;
alcohol. Examples include ethers, ketones, esters, halides, and hydrocarbon derivatives, but kerosene is particularly preferred from the viewpoint of its properties and toxicity. Dilution with these solvents can be carried out arbitrarily, but it is preferable to dilute the extract so that the concentration of the extract is about 1 to 10 volts. The amount of the extract used is usually 0.1 times or more, preferably 0.5 to 5 times the amount of vanadium dissolved in the aqueous alkali solution to be treated. The extraction operation is carried out within a temperature range in which the system remains in a liquid state9, but can usually be carried out at room temperature. Note that, prior to the extraction operation, the p of the alkali aqueous solution to be treated is
By adjusting H, vanadium can be extracted more efficiently. The adjustment is based on the raffinate aqueous phase liquid p
It is preferable to conduct the reaction so that H is 1 to 4. Also pH
As a regulator, mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid can be mentioned, but among these, when considering the separation of calcium, it is preferable to use sulfuric acid. Calcium dissolved in the alkaline solution precipitates out as ceracola, making it easy to separate from the raffinate aqueous phase. Through this extraction operation, only vanadium is extracted from the extracted metal among the metals dissolved in the aqueous alkali solution to be treated. and other metals such as calcium remain in the raffinate aqueous phase.Therefore, by performing a liquid separation operation on both of them, ultimately, they are transferred into the combustion residue. Among the various metals included,
Only the vanadium component with the highest utility value can be selectively recovered. The extract liquid phase contains vanadium. By contacting with an ammonia aqueous solution such as ammonia, ammonium chloride, ammonium sulfate, etc., the vanadium component can be back-extracted and recovered as a precipitate of ammonium metavanadate. At this time, the ammoniacal aqueous solution can be used such that the molar ratio of ammonia to vanadium is 2 times or more, preferably 4 to 10 times. Further, this operation is carried out using an alkaline aqueous solution other than an ammoniacal aqueous solution such as sodium hydroxide or sodium carbonate. After the vanadium component is back-extracted, a predetermined amount of the ammonia component can be added to the back-extracted solution to form a precipitate of ammonium metavanadate. Next, an example of the present invention will be described. Note that each part in each example represents 1 part by weight. In addition, the components of the combustion ash and unburned carbon used in each case are shown in Table 9. Table Example 1 Add 100 parts of combustion ash with a particle size of 74 μm or less shown in the table above to +
Add to 400 parts of 4wt% aqueous sodium hydroxide solution. After stirring at 160° C. for 1 hour, the mixture was cooled and the combustion ash and vanadium eluate were separated by F. P collected combustion ash, 20
The sample was washed three times with 0 parts of water, and the washing solution was added to the eluate of 1 PKi to make the aqueous solution amount 1000 parts. The results of measuring the metal concentration in the aqueous solution. Vanadium 13,000 ppm (elution rate: 82%). Calcium was 1,500 ppm, iron was 3 ppm, and nickel and zinc were not detected at all. To 1000 parts of this aqueous solution containing vanadium, add 5 parts of IN sulfuric acid.
After adding 00 parts, 2500 parts of a diluted solution of kerosene (5wt%) of Thor-n-octylamine was added. Liquid-liquid extraction was performed by shaking the mixture at room temperature for 30 minutes. The raffinate aqueous phase liquid and the produced Ceracola precipitate were removed. The pH of the raffinate aqueous phase is 2.5, and the concentration of vanadium is 60 ppm (therefore, the extraction rate of vanadium from the eluate into the extract phase is 99.
This is Section 3. )Met. Next, this extract was added with 0.8 mol/L ammonia and 2
.. 1000 parts of an alkaline aqueous solution containing 8 mol/l ammonium chloride was added, and the mixture was shaken at room temperature for 30 minutes to back-extract the vanadium content, and the precipitate of ammonium metavanadate was collected in F. The sodium content in the back extract was 10 ppm, and the calcium content was 1 ppm, and the recovery rate of ammonium metavanadate from the extract was extremely high at 99% as vanadium. Example 2 Unburnt carbon 2 with a particle size of 10'Oμm or less shown in the table above
00 parts to 400 parts of 4 wt% aqueous sodium hydroxide solution,
After stirring at 160° C. for 1 hour, it was cooled and the unburned carbon and vanadium eluate were separated in a furnace. Add 100 parts of combustion ash with a particle size of 74 μm or less shown in the table above to the eluate,
After stirring at 160° C. for 1 hour, the mixture was cooled and the combustion ash and vanadium eluate were separated in a furnace. A cleaning solution of unburned carbon and combustion ash was added to this eluate to make the amount of the aqueous solution 1000 parts. As a result of measuring the metal concentration in the aqueous solution, vanadium was 13,800 ppm, (
Elution rate from unburned carbon: 70%, elution rate from combustion ash: 82%), calcium 1600 ppm, iron 3 ppm
m, and nickel and zinc were not detected at all. The subsequent operations were carried out in the same manner as in Example 1, and as a result, almost the same results as in Example 1 could be obtained. Example 3 An experiment was carried out in the same manner as in Example 1, except that a kerosene diluted solution of 5 wt % triiso-octylamine was used as the extract. As a result, the pH of the raffinate aqueous phase was 2.5, and the concentration of vanadium was 80 ppm (therefore, the extraction rate of vanadium from the eluate into the extract phase was 99.1%).
Met. Further, the recovery rate of ammonium metavanadate from the extract was 99% as vanadium. Patent applicant: Ube Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] バナジウムを含有している燃焼灰または未燃カーボンを
、アルカリ水溶液に接触させ、ノくナジウム分をアルカ
リ水溶液中に溶出させた後、該アルヵり水溶液にバナジ
ウムの錯イオンとイオン対を形成する抽出液を加え、ノ
クナジウム分を抽出液相中に移行させることを特徴とす
る。燃焼灰または未燃カーボン中のバナジウムを回収す
る方法。
Extraction in which combustion ash or unburned carbon containing vanadium is brought into contact with an aqueous alkaline solution, the sodium content is eluted into the aqueous alkali solution, and then ion pairs are formed with complex ions of vanadium in the aqueous alkali solution. It is characterized by adding a liquid and transferring the Nocunadium content into the extraction liquid phase. A method for recovering vanadium in combustion ash or unburned carbon.
JP58179305A 1983-09-29 1983-09-29 Method for recovering vanadium from ash after burning or unburned carbon Pending JPS6071527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58179305A JPS6071527A (en) 1983-09-29 1983-09-29 Method for recovering vanadium from ash after burning or unburned carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58179305A JPS6071527A (en) 1983-09-29 1983-09-29 Method for recovering vanadium from ash after burning or unburned carbon

Publications (1)

Publication Number Publication Date
JPS6071527A true JPS6071527A (en) 1985-04-23

Family

ID=16063501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58179305A Pending JPS6071527A (en) 1983-09-29 1983-09-29 Method for recovering vanadium from ash after burning or unburned carbon

Country Status (1)

Country Link
JP (1) JPS6071527A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798709A (en) * 1986-09-08 1989-01-17 Carbovan Inc. Process for treatment of flyash
KR100843953B1 (en) 2006-09-20 2008-07-03 박재호 Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum
CN103555972A (en) * 2013-10-23 2014-02-05 北京矿冶研究总院 Method for leaching vanadium from stone coal vanadium ore by sulfuric acid curing
CN104532017A (en) * 2014-12-22 2015-04-22 武汉科技大学 Method for leaching and extracting vanadium from vanadium-containing stone coal
JP2020104059A (en) * 2018-12-27 2020-07-09 昭和電工株式会社 Processing method of combustion fly ashes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798709A (en) * 1986-09-08 1989-01-17 Carbovan Inc. Process for treatment of flyash
KR100843953B1 (en) 2006-09-20 2008-07-03 박재호 Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum
CN103555972A (en) * 2013-10-23 2014-02-05 北京矿冶研究总院 Method for leaching vanadium from stone coal vanadium ore by sulfuric acid curing
CN104532017A (en) * 2014-12-22 2015-04-22 武汉科技大学 Method for leaching and extracting vanadium from vanadium-containing stone coal
JP2020104059A (en) * 2018-12-27 2020-07-09 昭和電工株式会社 Processing method of combustion fly ashes

Similar Documents

Publication Publication Date Title
US7498007B2 (en) Process to recover vanadium contained in acid solutions
US4816236A (en) Recovery of vanadium and nickel from petroleum residues
US3083085A (en) Liquid-liquid extraction recovery of vanadium and molybdenum values using a quaternary ammonium extractant
JP4339647B2 (en) Method for producing tetravalent vanadyl sulfate aqueous solution
US20170218477A1 (en) Processes for the selective separation of iron and aluminium
US4539186A (en) Method for leaching and recovering vanadium from vanadium bearing by-product materials
US4100251A (en) Method of recovering metals out of soot originating from the combustion of oil
JPS6071527A (en) Method for recovering vanadium from ash after burning or unburned carbon
US4126663A (en) Process for recovering vanadium values from acidic sulfate solution
JPS63117095A (en) Chemical refining of coal
CA1169661A (en) Process using carbonate reagent for recovering vanadium from cokes derived from heavy oils
US4536374A (en) Process using carbonate reagent for recovering vanadium from cokes and ashes derived from heavy oils
JP2023113875A (en) Process for removal of iron and phosphate ions from chlorinated hydrocarbon waste stream
US4386057A (en) Recovery of iron oxide from coal fly ash
US2372109A (en) Recovery of vanadium
JPS6077938A (en) Method for separating and recovering metal from carbon
CA1221243A (en) Vanadium recovery from ash from oil sands
US20030165413A1 (en) Process to recover vanadium contained in acid solutions
Steel et al. Re-generation of hydrofluoric acid and selective separation of Si (IV) in a process for producing ultra-clean coal
CN103334019A (en) Method for gas-phase vanadium extraction by utilizing combustion of stone coals in cyclone furnace
US5624650A (en) Nitric acid process for ferric sulfate production
JP4013171B2 (en) Processing method for heavy oil combustion ash
JP3991171B2 (en) Processing method for heavy oil combustion ash
JP2002166244A (en) Method for treating petroleum combustion ash
Sheng et al. Some recent results in the separation of metal chlorides by solvent extraction