JPS6070192A - Method and installation for electrolyzing sea water or aqueous salt solution - Google Patents

Method and installation for electrolyzing sea water or aqueous salt solution

Info

Publication number
JPS6070192A
JPS6070192A JP58176354A JP17635483A JPS6070192A JP S6070192 A JPS6070192 A JP S6070192A JP 58176354 A JP58176354 A JP 58176354A JP 17635483 A JP17635483 A JP 17635483A JP S6070192 A JPS6070192 A JP S6070192A
Authority
JP
Japan
Prior art keywords
seawater
electrolysis
electrolytic cell
salt
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58176354A
Other languages
Japanese (ja)
Inventor
Shigeoki Nakamura
成興 中村
Shigekimi Motohashi
本橋 成公
Yoshio Kawamata
川俣 喜男
Takuo Tsukamoto
塚本 拓男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Gomme Kogyo Kk
Daiki Engineering Co Ltd
Original Assignee
Daiki Gomme Kogyo Kk
Daiki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Gomme Kogyo Kk, Daiki Engineering Co Ltd filed Critical Daiki Gomme Kogyo Kk
Priority to JP58176354A priority Critical patent/JPS6070192A/en
Publication of JPS6070192A publication Critical patent/JPS6070192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To enable stable production of NaClO water having high concn. in the stage of electrolyzing sea water and salt water by providing a gas vent tank and a separator tank in the mid-way of plural electrolytic cells and attaching degassing valves having a specific construction thereto. CONSTITUTION:A gas vent tank G and a separator S provided with degassing valves in the mid-way of an electrolytic cell array are disposed in the stage of disposing plural electrolytic cells EC for sea water or salt water in series and producing NaClO by DC electrolysis. Float type valves are used for the valves V and are opened and closed by the ascending and descending of the electrolyte contg. the gaseous H2 generated by the electrolysis as foam. The diameter d(cm) of the discharge port thereof is set at the value expressed by the equation ( I ) and the electrolytic cell pressure for drawing the NaClO soln. having a high concn. is set at <=(0.1-10)kg/cm<2>G in the value expressed by the equation (II). There is no increase in the electric resistance of the electrolyte owing to the presence of foamy H2 and the electrolytic operation is continued with the stable voltage.

Description

【発明の詳細な説明】 本発明は海水又は塩水の電解法及びその電解設備の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electrolyzing seawater or salt water and improvements to electrolysis equipment thereof.

海水又は塩水の電気分解による有効塩素(NaCWにて
代表されるct2相当分)の製造は大気圧下で行うこと
が普通であシ、無隔膜置駒において単独あるいは直列に
電解槽を配設した電解設備においても例外ではなく強制
的加圧を行なわないことが知られている。
The production of available chlorine (equivalent to ct2 represented by NaCW) by electrolysis of seawater or salt water is normally carried out under atmospheric pressure, and electrolytic cells are installed singly or in series in a non-diaphragm installation piece. Electrolysis equipment is no exception, and it is known that forced pressurization is not performed.

特に単独の大型電解槽や、直列に配設した電解槽の運転
において、有効塩素濃度を上げるためにはこの濃度に比
例して水素ガス濃度も上昇する。
Particularly in the operation of a single large electrolytic cell or electrolytic cells arranged in series, in order to increase the effective chlorine concentration, the hydrogen gas concentration also increases in proportion to this concentration.

従って電解液中の水素ガス容量が増加し、水素ガスの容
量が増加するほどガスを含む電解液の電気抵抗が増大す
ると共に、電解液中に多量の気泡を含有するため電極間
の電解液の流れも不安定となり、電圧増減のゆれを生じ
安定した電解操業かできないものとなる。
Therefore, the hydrogen gas capacity in the electrolyte increases, and as the hydrogen gas capacity increases, the electrical resistance of the electrolyte containing gas increases. The flow also becomes unstable, causing fluctuations in voltage increases and decreases, making stable electrolysis operation impossible.

この種不安定な電解操作を安定化しかつ効率のよい電解
を行なうためには、電解設備の中間において脱ガスを行
なう必要がある。例えば、有効塩素濃度0.5f/を以
上を生成させる場合、有効塩素濃度を上げるほど電解槽
内の圧力を高くしなければ、水素ガス気泡を同伴する電
解液を電解するために気泡を小さくして電解液の電気抵
抗を小さくし、能力を上げかつ安定した運転を行なう必
要がある。
In order to stabilize this type of unstable electrolytic operation and perform efficient electrolysis, it is necessary to perform degassing in the middle of the electrolytic equipment. For example, when generating an effective chlorine concentration of 0.5 f/ or more, the pressure inside the electrolytic cell must be increased to increase the effective chlorine concentration, otherwise the bubbles will be smaller in order to electrolyze the electrolyte that encloses hydrogen gas bubbles. It is necessary to reduce the electrical resistance of the electrolyte, increase capacity, and perform stable operation.

従って、従来からの方法として第1図に示す如く、電解
設備の中間あるいは最終部に5 m〜10m等の高さの
ヘッドタンクH,T を設けて箱1解液の脱ガスを行な
うことによって安定した電解操作を行なう方法とか、又
は第2図に示す如く、最終電解槽の電解液送液先に5〜
10tn高さの電解液受槽を設け、各電解槽E、Cの電
解液を加圧して安定した電解操作を行っているが、か\
る従来方式では電解設備の一部に高い構造物を設けかつ
多数の配管系を必要とし、設備及び保守管理が煩雑とな
ることを免れない現状である。
Therefore, as shown in Figure 1, the conventional method is to provide head tanks H, T with a height of 5 m to 10 m in the middle or final part of the electrolytic equipment to degas the decomposed liquid in box 1. How to perform stable electrolytic operation, or as shown in Figure 2, 5~
An electrolyte receiving tank with a height of 10 tn is installed, and the electrolyte in each electrolytic tank E and C is pressurized to perform stable electrolysis operation, but...
In the conventional method, a part of the electrolysis equipment requires a high structure and a large number of piping systems, which inevitably complicates equipment and maintenance management.

これに対し、電解液への強制的な加圧を1Kf10n2
G 、2 Ky/cm2G 、 5 K17cm”G及
び4Ky/1yn2G等にすれば、電解液中のガス容積
は夫々”S’ X+21オ+3及びXや、と減少するた
めに、電解電圧の不安定、即ち電圧増減のゆれは、夫々
2倍、3倍。
On the other hand, forcibly pressurizing the electrolyte by 1Kf10n2
G, 2 Ky/cm2G, 5K17cm"G and 4Ky/1yn2G, etc., the gas volume in the electrolyte decreases to "S' In other words, the fluctuations in voltage increases and decreases are two times and three times, respectively.

4倍、5倍の有効塩素濃度に達するまで安定した電解操
作を行なうことができる。
Stable electrolytic operation can be performed until an effective chlorine concentration of 4 or 5 times is reached.

本発明者はか\る従来方式の諸欠陥を排除すべく種々検
討、実験の結果、本発明の開発に成功したものであシ、
本発明の技術的構成は前記特許請求の範囲各項に明記し
たとおシであるが、本発明の一具体例を示す第3図に基
いて詳述する。
The present inventor has successfully developed the present invention as a result of various studies and experiments to eliminate the various defects of the conventional method.
The technical structure of the present invention is specified in each claim, and will be explained in detail with reference to FIG. 3, which shows a specific example of the present invention.

第3図及び第4図は本発明電解法を実施するに好適な例
を示すフローシートであシ、E、Cは直列に配設した電
解槽であシ、所定数の電解槽毎に電解槽とはソ同列の高
さにガス液槽G及びセパレーターSが設けてあシ、これ
らガス液槽G及びセパレーターSには脱ガス弁Vが設け
である。該脱ガス弁Vは電解槽群の中間及び出口等の圧
力を所定の圧力、即ち、0.1〜10Ky/crn2G
の加圧状態に維持する機能を具えておシ、それによって
電解効率を所望の値に保持するものである。
Figures 3 and 4 are flow sheets showing preferred examples for carrying out the electrolytic method of the present invention, and E and C are electrolytic cells arranged in series. A gas liquid tank G and a separator S are provided at the same height as the tank, and a degassing valve V is provided in these gas liquid tank G and separator S. The degassing valve V controls the pressure at the middle and outlet of the electrolytic cell group to a predetermined pressure, that is, 0.1 to 10 Ky/crn2G.
The electrolytic efficiency is maintained at a desired value.

前記脱ガス弁Vは第5図図示の如きフロート式弁が好適
である。この種フロート式弁は電解により生成した水素
ガスを気泡として含む電解液の上昇、下降により開閉す
る弁機構であるから、ガス排出口径dを後述する条件に
選定することによシ、電解槽内の圧力を前述した0、1
〜10Kg/Cm2Gの加圧下に保持することができる
。尚、第5図図示の弁機構に限定するものでなく、ガス
排出口の平面形状は円形の外に多角形等からなシ、電解
液の上昇、下降によシ開閉する弁部を有するものも使用
することができる。
The degassing valve V is preferably a float type valve as shown in FIG. This type of float valve is a valve mechanism that opens and closes as the electrolytic solution containing bubbles of hydrogen gas generated by electrolysis rises and falls. The pressure of 0, 1
It can be held under pressure of ~10Kg/Cm2G. Note that the valve mechanism is not limited to the one shown in FIG. 5, and the planar shape of the gas outlet may not be circular or polygonal, and may have a valve portion that opens and closes as the electrolyte rises and falls. can also be used.

前記ガス排出口径dは、表1に示す如く実験の結果、 d≦0.4×電解槽数X[KA、H] とすることにより、前記の加圧状態に維持することがで
きることを知見した。
As a result of experiments as shown in Table 1, it was found that the pressurized state can be maintained by setting the gas discharge port diameter d to d≦0.4×number of electrolytic cells X [KA, H]. .

表 1 (運転圧力0.1〜4.5販4−〇)電解電流
 電解槽数 係 数 脱気弁における(KA) (槽)
 蔽もれ 6.3 8 0.496 あシ ロ、3 8 0.397 なし 3.5 13 0.3!10 なし 3.5 13 0.440 あシ 2−0 13 0.30B なし 5.5 12 0.190 なし 以上の実験結果から係数を0.4以下とすることにより
、強制加圧によシミ解槽群の安定した運転を行うことが
できる。
Table 1 (Operating pressure 0.1 to 4.5 sales 4-〇) Electrolysis current Number of electrolytic cells Coefficient (KA) at degassing valve (tank)
Coverage 6.3 8 0.496 Ashiro, 3 8 0.397 None 3.5 13 0.3!10 None 3.5 13 0.440 Ash 2-0 13 0.30B None 5.5 12 By setting the coefficient to 0.4 or less based on the experimental results of 0.190 or more, stable operation of the stain removal tank group can be performed by forced pressurization.

また、流量制御による有効塩素濃度を変化させる実験を
8積石列型の電解槽群で、電解電流520Aで行なった 表 2 0.505 1.55 なし 0.505 1.02 なし 0.7221.30 あり 0.730 1.75 なし 0.750 2.18 なし 1.022 1.75 あジ 1.0222.15 なし 1.499 2.75 あり 1.504 2.90 なし 1.7953.10 あυ 1.805 3.59 なし 2.044 3.55 あp 2.0563.90 なし 上記表2の実験結果をプロットしたところ第6図の如き
グラフが得られた。
In addition, an experiment in which the effective chlorine concentration was varied by controlling the flow rate was conducted in a group of 8 stone row type electrolytic cells at an electrolytic current of 520A. 30 Yes 0.730 1.75 No 0.750 2.18 No 1.022 1.75 Horse mackerel 1.0222.15 No 1.499 2.75 Yes 1.504 2.90 No 1.7953.10 A υ 1.805 3.59 None 2.044 3.55 Ap 2.0563.90 None When the experimental results in Table 2 above were plotted, a graph as shown in FIG. 6 was obtained.

以上の結果から0.6t/を以上の高濃度に有効塩素濃
度を保持させる電解において第6図の直線よシ更に加圧
した領域、即ち、該直線の上方領域になるように強制的
に加圧させる方式により、脱気弁を有するセパレーター
を設けることによシミ解槽の安定した運転を行なうこと
ができる。
From the above results, in electrolysis to maintain the effective chlorine concentration at a high concentration of 0.6 t/ or more, the pressure is forced to be in a region that is further pressurized from the straight line in Figure 6, that is, in the region above the straight line. By using the pressurizing method and providing a separator with a degassing valve, the stain removal tank can be operated stably.

第6図に示す限界直線は、有効塩素濃度Ct/l)をC
1絶対圧力(1’#/−2)をPとすると:C= 0.
52 + 0.53 (P−1)の式で表わすことがで
きる。
The limit straight line shown in Figure 6 shows the effective chlorine concentration (Ct/l)
If 1 absolute pressure (1'#/-2) is P: C= 0.
52 + 0.53 (P-1).

以上詳記したとおシ、本発明の構成とすることにより、
電解設備に従来方式の如き高い構造物及び多数の配管系
を付設することなく、安定したかつ効率のよい電解操作
も行うことができ、更に設備に伴う保守管理も容易であ
る等すぐれた作用、効果を達成し得ることに成功したも
のである。
As detailed above, by the configuration of the present invention,
Stable and efficient electrolyzing operation can be performed without adding high structures and numerous piping systems to electrolysis equipment as in conventional methods, and the equipment has excellent effects such as easy maintenance and management. It was successful in achieving the desired effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来方式の電解設備のフローシート
、第3図及び第4図は本発明の数例を示すフローシート
、第5図は本発明に用いるフロー弁の一例を示す断面図
、第6図は本発明の圧力と有効塩素との関係を示すグラ
フであシ、図中、E、Cは電解槽、)1.Tはヘッドタ
ンク、 ■は脱ガス弁、 Gはガス抜き槽、 Sはセパ
レーター。 dは脱ガス弁のガス排出口径を示す。
Figures 1 and 2 are flow sheets of conventional electrolysis equipment, Figures 3 and 4 are flow sheets showing several examples of the present invention, and Figure 5 is a cross section showing an example of a flow valve used in the present invention. 6 is a graph showing the relationship between pressure and available chlorine according to the present invention. In the figure, E and C are electrolytic cells.)1. T is the head tank, ■ is the degassing valve, G is the degassing tank, and S is the separator. d indicates the gas outlet diameter of the degassing valve.

Claims (1)

【特許請求の範囲】 (1) 海水又は塩水溶液の電解において、単独の電解
槽又は直列電解槽を所定の圧力に加圧、維持したま\脱
気し得る脱気機構を設けることによル、少なくとも0.
6t/L以上の高濃度有効塩素電解液を生成させること
を特徴とする海水又は塩水溶液の電解法。 (2)前記所定の圧力が0.1〜101Ly/cm2G
 J、)下である特許請求の範囲第1項記載の海水又は
J塩水溶液の電解法。 (3)前記加圧が式: %式%) 〔上式において、Cは有効塩素濃度、Pは絶対圧力〕で
示す必要な有効塩素濃度を得る圧力以上として、電解槽
の安定した運転を行なう特許請求の範囲第1項記載の海
水又は塩水溶液の電解法。 (4)海水又は塩水溶液の電解設備において、単独電解
槽又は直列電解槽に設けた脱気機構のガス排出口径dc
lnを: d≦0.4×電解槽数x(KAHI とすることを特徴とする海水又は塩水溶液電解設備。 (5)前記ガス排出口の平面形状が円形、多角形等から
彦る特許請求の範囲第4項記載の海水又は塩水溶液電解
設備。 (61前記ガス排出口が弁機構である特許請求の範囲第
4項記載の海水又は塩水浴液電解設備。 (7)ガス排出口弁機構において、排出口形状に対応す
るバルブを具備する特許請求の範囲第4項記載の海水又
は塩水溶液電解設備。 (8)前記ガス排出口弁機禍がフロート式弁である特許
請求の範囲第4項記載の海水又は塩水溶液電解設備。
[Scope of Claims] (1) In the electrolysis of seawater or salt aqueous solutions, a single electrolytic cell or a series electrolytic cell is pressurized and maintained at a predetermined pressure by providing a degassing mechanism that can degas it. , at least 0.
An electrolysis method for seawater or salt aqueous solution, characterized by producing a highly concentrated effective chlorine electrolyte of 6 t/L or more. (2) The predetermined pressure is 0.1 to 101Ly/cm2G
J.) The method for electrolyzing seawater or J salt aqueous solution according to claim 1 below. (3) The electrolytic cell is operated stably by setting the pressure above the pressure to obtain the necessary effective chlorine concentration as shown in the formula: % formula %) [In the above formula, C is the effective chlorine concentration and P is the absolute pressure] The method for electrolyzing seawater or salt aqueous solution according to claim 1. (4) In electrolysis equipment for seawater or salt aqueous solutions, the gas discharge port diameter dc of the degassing mechanism installed in a single electrolytic cell or a series electrolytic cell
Seawater or salt solution electrolysis equipment characterized in that ln is: d≦0.4 x number of electrolytic cells x (KAHI). (5) A patent claim in which the planar shape of the gas outlet is circular, polygonal, etc. Seawater or salt water solution electrolysis equipment according to claim 4. (61) Seawater or salt water bath liquid electrolysis equipment according to claim 4, wherein the gas outlet is a valve mechanism. (7) Gas outlet valve mechanism Seawater or salt water solution electrolysis equipment according to claim 4, comprising a valve corresponding to the shape of the outlet. (8) Claim 4, wherein the gas outlet valve mechanism is a float type valve. Seawater or salt water solution electrolysis equipment as described in Section 1.
JP58176354A 1983-09-26 1983-09-26 Method and installation for electrolyzing sea water or aqueous salt solution Pending JPS6070192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58176354A JPS6070192A (en) 1983-09-26 1983-09-26 Method and installation for electrolyzing sea water or aqueous salt solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58176354A JPS6070192A (en) 1983-09-26 1983-09-26 Method and installation for electrolyzing sea water or aqueous salt solution

Publications (1)

Publication Number Publication Date
JPS6070192A true JPS6070192A (en) 1985-04-20

Family

ID=16012135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58176354A Pending JPS6070192A (en) 1983-09-26 1983-09-26 Method and installation for electrolyzing sea water or aqueous salt solution

Country Status (1)

Country Link
JP (1) JPS6070192A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111990A (en) * 2010-11-22 2012-06-14 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Apparatus, system and method for electrolyzing seawater
CN103201412A (en) * 2010-11-22 2013-07-10 三菱重工环境·化学工程株式会社 Seawater electrolysis system and seawater electrolysis method
JP2015172251A (en) * 2015-05-20 2015-10-01 三菱重工環境・化学エンジニアリング株式会社 Seawater electrolysis system and seawater electrolysis method
CN111826675A (en) * 2020-07-22 2020-10-27 湖南广盛源医药科技有限公司 Antiseptic solution preparation facilities with safety structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111990A (en) * 2010-11-22 2012-06-14 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Apparatus, system and method for electrolyzing seawater
CN103201412A (en) * 2010-11-22 2013-07-10 三菱重工环境·化学工程株式会社 Seawater electrolysis system and seawater electrolysis method
CN105239090A (en) * 2010-11-22 2016-01-13 三菱重工环境·化学工程株式会社 Seawater electrolysis system and seawater electrolysis method
JP2015172251A (en) * 2015-05-20 2015-10-01 三菱重工環境・化学エンジニアリング株式会社 Seawater electrolysis system and seawater electrolysis method
CN111826675A (en) * 2020-07-22 2020-10-27 湖南广盛源医药科技有限公司 Antiseptic solution preparation facilities with safety structure
CN111826675B (en) * 2020-07-22 2021-06-01 湖南广盛源医药科技有限公司 Antiseptic solution preparation facilities with safety structure

Similar Documents

Publication Publication Date Title
EP0368812B1 (en) Method and apparatus for electrolyzing water
US4432856A (en) Apparatus for manufacturing chlorine dioxide
US5205994A (en) Electrolytic ozone generator
US3928150A (en) Method of operating an electrolytic cell having hydrogen gas disengaging means
JPH09512861A (en) Electrolytic cell producing mixed oxidant gas
EP0507862A4 (en) Electrochemical chlorine dioxide generator
EP0099693B1 (en) Electrolytic cell with ion exchange membrane
CA1125228A (en) Process for electrowinning nickel or cobalt
JP2001271193A (en) Synthesis of tetramethylammonium hydroxide
JPH0474879A (en) Electrolytic device for producing hypochlorite
JPS6070192A (en) Method and installation for electrolyzing sea water or aqueous salt solution
US4046653A (en) Novel electrolysis method and apparatus
US3968021A (en) Electrolytic cell having hydrogen gas disengaging apparatus
KR20160000955A (en) An electrolysis apparatus
JP2926272B2 (en) Target electrode for corrosion prevention of electrochemical tank
AU652426B2 (en) Device for removal of gas-liquid mixtures from electrolysis cells
US4568433A (en) Electrolytic process of an aqueous alkali metal halide solution
US4341606A (en) Method of operating electrolytic cells having massive dual porosity gas electrodes
CA1314836C (en) Process for the electrolysis of alkali metal chloride solutions
US4919791A (en) Controlled operation of high current density oxygen consuming cathode cells to prevent hydrogen formation
US3923614A (en) Method of converting mercury cathode chlor-alkali electrolysis cells into diaphragm cells and cells produced thereby
US4101406A (en) Simplified electrolytic system
US4586994A (en) Electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor
JPS6118495A (en) Preparation of water treating chemicals
EP0538474B1 (en) Electrolytic vessel for producing hypochlorite