JPS6070167A - Running in trial method of shape memory alloy - Google Patents

Running in trial method of shape memory alloy

Info

Publication number
JPS6070167A
JPS6070167A JP17651583A JP17651583A JPS6070167A JP S6070167 A JPS6070167 A JP S6070167A JP 17651583 A JP17651583 A JP 17651583A JP 17651583 A JP17651583 A JP 17651583A JP S6070167 A JPS6070167 A JP S6070167A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
alloy
shape
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17651583A
Other languages
Japanese (ja)
Other versions
JPH045747B2 (en
Inventor
Masaru Honma
大 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WASEDA DAIGAKU
Original Assignee
WASEDA DAIGAKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WASEDA DAIGAKU filed Critical WASEDA DAIGAKU
Priority to JP17651583A priority Critical patent/JPS6070167A/en
Publication of JPS6070167A publication Critical patent/JPS6070167A/en
Publication of JPH045747B2 publication Critical patent/JPH045747B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To maintain the characteristic of a shape memory alloy for repetitive operation in a stable state by heating periodically the shape memory alloy to which specified load is acted via a spring. CONSTITUTION:Such current as indicated by (A) half-wave rectified from the 50Hz output current of an AC phase control device 8 is conducted to a shape memory alloy 3 in which a prescribed shape is memorized. The alloy 3 is therefore heated at 50Hz period by Joule heat and on the other hand the alloy is subjected to air cooling by a fan 7. The alloy 3 is thus subjected repeatedly to heating-cooling at 50Hz period like (b). Nearly specified tensile load is applied to the alloy 3 via a lower chuck 4 and a spring 5 by a weight 6 and therefore the alloy is deformed by elongation when cooled and shrinks by trying to restore the memorized shape when heated. The alloy 3 repeats consequently the deformation by elongation-the restoration of the shape at 50Hz period by the repetition of heating-cooling by which the stable operating performance is obtd.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、変形−形状回復動作の繰り返しに対する回復
応力や回復ひずみ等の特性が安定な状態に達するまで、
形状記憶合金に変形−形状回復動作を繰り返し行わせる
形状記憶合金の慣し運転方法に関する。
[Detailed Description of the Invention] [Technical Field] The present invention is directed to a method of deformation and shape recovery until the characteristics such as recovery stress and recovery strain reach a stable state with respect to repeated deformation-shape recovery operations.
The present invention relates to a break-in method for a shape memory alloy, in which the shape memory alloy is repeatedly subjected to deformation and shape recovery operations.

〔発明の背景〕[Background of the invention]

形状記憶合金をアクチュエータとして使用する場合には
、変形−形状回復動作の繰り返しに対する形状記憶合金
の回復応力や回復ひずみ等の力学的安定性が特に重要な
問題となる。すなわち、形状記憶合金は、形状記憶熱処
理を行った後、変形−形状回復動作を多数回繰り返させ
ないと、安定な動作性能を1qられない。
When a shape memory alloy is used as an actuator, mechanical stability such as recovery stress and recovery strain of the shape memory alloy against repeated deformation-shape recovery operations is a particularly important issue. That is, a shape memory alloy cannot achieve stable operating performance 1q unless the deformation-shape recovery operation is repeated many times after shape memory heat treatment.

例えば、第1図は、形状記憶合金に引張り力を作用させ
、該合金に、前記引張り力による伸び変形およびその伸
び変形からの形状回復動作を繰り返し行わせた場合にお
ける繰り返し動作回数と形状記憶合金の伸びとの関係を
示し、ある繰り返し動作回数に達するまでは、かなりの
伸びの増加が見られる。そして、このような伸びの増加
のため、従来においては、形状記憶合金をアクチュエー
タとする装置の連続動作が不能となったり、形状記憶合
金を頻繁に増し締めする必要が生じるという不都合が生
じていた。
For example, Figure 1 shows the number of repeated operations and the shape memory alloy when a tensile force is applied to the shape memory alloy and the alloy is repeatedly subjected to elongation deformation due to the tensile force and shape recovery operation from the elongation deformation. shows a relationship with elongation, and a considerable increase in elongation is seen until a certain number of repetitions is reached. In addition, due to this increase in elongation, in the past, devices using shape memory alloys as actuators were unable to operate continuously, and the shape memory alloys had to be retightened frequently. .

〔発明の目的〕[Purpose of the invention]

本発明は、上述のような事情に鑑みてなされたもので、
形状記憶合金に、破断を生じさせたりすることなく、変
形−形状回復動作を高速に繰り返させ、比較的に短時間
のうちに、繰り返し動作に対する形状記憶合金の特性を
安定な状態にすることができる形状記憶合金の慣し運転
方法を提供することを目的とする。
The present invention was made in view of the above circumstances, and
It is possible to cause a shape memory alloy to repeat deformation and shape recovery operations at high speed without causing breakage, and to stabilize the properties of the shape memory alloy against repeated operations in a relatively short time. The purpose of the present invention is to provide a method for breaking-in a shape memory alloy.

〔発明の構成〕[Structure of the invention]

本発明による形状記憶合金の慣し運転方法は、慣し運転
すべき形状記憶合金にばねの一端側を接続するとともに
前記ばねの他端側に実質的に一定な荷重を作用させるこ
とにより、前記形状記憶合金に前記ばねを介して前記荷
重を作用させた状態で、前記形状記憶合金を周期的に加
熱するものである。
The breaking-in method for a shape memory alloy according to the present invention includes connecting one end of a spring to the shape memory alloy to be broken in and applying a substantially constant load to the other end of the spring. The shape memory alloy is periodically heated while the load is applied to the shape memory alloy via the spring.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

第2図は、形状記憶合金を引張りで利用する場合の慣し
運転方法の実施例を示す。慣し運転装置本体1の上部に
は、上部チャック2が取り付けられている。この上部チ
ャック2には、慣し運転すべき線状の形状記憶合金3の
上端部が着脱自在に装着される一方、この形状記憶合金
3の下端部には、下部チャック4が着脱自在に装着され
ている。
FIG. 2 shows an example of a running-in method when a shape memory alloy is used in tension. An upper chuck 2 is attached to the upper part of the break-in device main body 1. The upper end of a linear shape memory alloy 3 to be run-in is removably attached to the upper chuck 2, while the lower chuck 4 is detachably attached to the lower end of the shape memory alloy 3. has been done.

前記下部チャック4には、コイルばね5を介して鍾6が
吊り下げられている。
A peg 6 is suspended from the lower chuck 4 via a coil spring 5.

なお、本実施例では、形状記憶合金3は真直ぐな形状を
記憶しているが、形状記憶合金3が湾曲した形状を記憶
していても差し支えない。
In this example, the shape memory alloy 3 memorizes a straight shape, but the shape memory alloy 3 may memorize a curved shape.

7は送風機であり、形状記憶合金3を空冷するようにな
っている。8は商用電源の位相を制御する交流位相制御
装置であり、この交流位相制御装置8の一方の出力端子
はダイオード9および上部チャック2を介して形状記憶
合金3の上端部に接続され、他方の出力端子は下部チャ
ック4を介して形状記憶合金3の下端部に接続されてい
る。
7 is a blower, which cools the shape memory alloy 3 with air. 8 is an AC phase control device that controls the phase of the commercial power supply; one output terminal of this AC phase control device 8 is connected to the upper end of the shape memory alloy 3 via the diode 9 and the upper chuck 2; The output terminal is connected to the lower end of the shape memory alloy 3 via the lower chuck 4.

本実施例においては、第3図(a)に示されるような、
交流位相制御装置8の50H2の出力電流を半波整流し
た電流が形状記憶合金3に通電される。したがって、形
状記憶合金3は、ジュール熱により50Hz周期で加熱
される。また、その一方で、形状記憶合金3は、送風機
よって空冷さ3− れる。このため、形状記憶合金3は、第3図(b)のよ
うに50Hzの周期で加熱−冷却を繰り返される。
In this example, as shown in FIG. 3(a),
A current obtained by half-wave rectifying the output current of 50H2 of the AC phase control device 8 is applied to the shape memory alloy 3. Therefore, the shape memory alloy 3 is heated by Joule heat at a frequency of 50 Hz. On the other hand, the shape memory alloy 3 is air-cooled by a blower. For this reason, the shape memory alloy 3 is repeatedly heated and cooled at a frequency of 50 Hz as shown in FIG. 3(b).

そして、形状記憶合金3は、下部チャックi’l 63
よびばね5を介して錘6によりほぼ一定の引張り荷重を
受けているため、冷却時には伸び変形する一方、加熱時
には形状記憶効果により記憶形状に戻ろうとして(すな
わち、記憶形状の長さに戻ろうとして)収縮する。
And the shape memory alloy 3 is the lower chuck i'l 63
Since the spring 5 receives an almost constant tensile load from the weight 6, it stretches and deforms during cooling, but when heated, it attempts to return to its memorized shape due to the shape memory effect (i.e., it attempts to return to its memorized shape length). ) to contract.

したがって、形状記憶合金3は、前記加熱−冷却の繰り
返しにより、50H2の周期で伸び変形−形状回復動作
を繰り返す。
Therefore, the shape memory alloy 3 repeats the elongation deformation and shape recovery operations at a cycle of 50H2 by repeating the heating and cooling.

ここで、前記第1図に示されるように、形状記憶合金の
繰り返し動作回数と伸びとの関係を示す曲線は、形状記
憶合金に作用される荷重の大きさによって異なる。した
がって、例えば、形状記憶合金を実際にアクチュエータ
として使用する際には、第1図における荷重値Bを作用
させるにもかかわらず、荷重値D (B>D)の下で、
該合金に、安定状態となるまで繰り返し動作を行わせる
と、4− 該合金を実際にアクチュエータとして使用したとき、該
合金は変形−形状回復動作を繰り返づ毎に伸びを増大さ
せてしまい、安定な動作性能が得られない。
Here, as shown in FIG. 1, the curve showing the relationship between the number of repeated operations and elongation of the shape memory alloy differs depending on the magnitude of the load applied to the shape memory alloy. Therefore, for example, when actually using a shape memory alloy as an actuator, even though the load value B in FIG. 1 is applied, under the load value D (B>D),
If the alloy is repeatedly operated until it reaches a stable state, 4- When the alloy is actually used as an actuator, the alloy will increase its elongation each time the deformation-recovery operation is repeated. Stable operating performance cannot be obtained.

しかるに、仮に第2図において、ばね5の下端部が本体
1に取り付けられており、ばね5の力によってのみ形状
記憶合金3に荷重が作用される構成となっているとする
と、繰り返し動作により形状記憶合金3の伸びが増加し
て来ると、ばね5が収縮して来て、該ばね5の力が弱(
なり、形状記憶合金3に作用する荷重は低下してしまう
。そのため、上述の理由により、前記変形−形状回復動
作が多数回繰り返されても安定な動作性能は得られない
However, in FIG. 2, if the lower end of the spring 5 is attached to the main body 1, and the load is applied to the shape memory alloy 3 only by the force of the spring 5, then the shape memory alloy 3 will be shaped by repeated operations. As the elongation of the memory alloy 3 increases, the spring 5 contracts and the force of the spring 5 becomes weak (
Therefore, the load acting on the shape memory alloy 3 decreases. Therefore, for the above-mentioned reason, stable operational performance cannot be obtained even if the deformation-shape recovery operation is repeated many times.

ところが、本方法においては、形状記憶合金3にばね5
を介して錘6の重量が作用するので、形状記憶合金3の
伸びが大きくなっても該合金3に作用する荷重が変動す
るようなことがなく、形状記憶合金3には常にほぼ一定
の荷重が作用するので、上述のような不都合を生じる虞
がない。
However, in this method, the spring 5 is attached to the shape memory alloy 3.
Since the weight of the weight 6 acts through the shape memory alloy 3, the load acting on the alloy 3 does not change even if the elongation of the shape memory alloy 3 becomes large, and the load on the shape memory alloy 3 is always almost constant. Therefore, there is no risk of the above-mentioned inconvenience occurring.

また、ばね5を設けず、@6の重量が直接形状記憶合金
3に作用するような構成とすると、本実施例のように速
い周期で形状記憶合金を加熱−冷却する場合には、 (イ)錘6の慣性により、形状記憶合金3の両端がほぼ
固定された状態となり、形状記憶合金3が形状回復を十
分を行えない。このため、加熱−冷却が多数回繰り返さ
れても、変形−形状回復動作が十分性なわれず、したが
って、繰り返し動作に対する安定な動作特性は得られな
い。
Moreover, if the spring 5 is not provided and the weight of @6 acts directly on the shape memory alloy 3, when the shape memory alloy is heated and cooled at a fast cycle as in this example, (I) ) Due to the inertia of the weight 6, both ends of the shape memory alloy 3 are substantially fixed, and the shape memory alloy 3 cannot recover its shape sufficiently. For this reason, even if heating and cooling are repeated many times, the deformation and shape recovery operations are not sufficient, and therefore stable operating characteristics against repeated operations cannot be obtained.

(ロ)形状記憶合金が形状回復しようとする度毎に、該
合金3に急激に大きな荷重が作用し、形状記憶合金3が
破断する虞がある。
(b) Every time the shape memory alloy tries to recover its shape, a large load is suddenly applied to the alloy 3, which may cause the shape memory alloy 3 to break.

等の不都合が生じる。Such inconveniences may occur.

しかるに、本方法では、速い周期で形状記憶合金3を加
熱−冷却する場合にも、ばね5が伸びることにより、形
状記憶合金3が十分に形状回復を行えるし、形状記憶合
金3が形状回復を開始する際に&I6の慣性により形状
記憶合金3に急激に大きな荷重が作用することもないの
で、上述のよう 7− な不都合を生じることがない。
However, in this method, even when the shape memory alloy 3 is heated and cooled in a fast cycle, the shape memory alloy 3 can sufficiently recover its shape due to the extension of the spring 5, and the shape memory alloy 3 can sufficiently recover its shape. Since a large load is not suddenly applied to the shape memory alloy 3 due to the inertia of the &I 6 at the time of starting, the above-mentioned inconvenience does not occur.

したがって、本方法によれば、加熱−冷却の周期を速く
し、慣し運転に要する時間を比較的に短時間とすること
ができる。
Therefore, according to this method, the heating-cooling cycle can be made faster, and the time required for the break-in operation can be made relatively short.

第4図は、本発明の他の実施例を示す。横型の本体11
の一端部には、第一のチャック12が取り付けられてお
り、この第一のチャック12には、慣し運転すべき線状
の記憶合金3の一端部が取り付けられている。なお、こ
の形状記憶合金3は真直ぐな形状を記憶している(この
場合も形状記憶合金3が湾曲した形状を記憶していても
差し支えない)。
FIG. 4 shows another embodiment of the invention. Horizontal main body 11
A first chuck 12 is attached to one end, and one end of a linear memory alloy 3 to be run-in is attached to the first chuck 12. Note that this shape memory alloy 3 remembers a straight shape (also in this case, there is no problem even if the shape memory alloy 3 memorizes a curved shape).

前記形状記憶合金3の他端部には、第二のチャック13
が着脱自在に取り付けられている。前記第二のチャック
13には、ワイヤ14の上端部が取り付けられており、
このワイヤ14の下端部には、第三のチャック15を介
してばね16の上端部が取り付けられている。そして、
このばね16の下端部には、&117が吊り下げられて
いる。また、前記ワイヤ14の中間部は、本体11に回
転自在に支持された滑車18に巻き掛けられており、こ
れにより、形状記憶合金3は水平方向にセットされた状
態となっている。
A second chuck 13 is provided at the other end of the shape memory alloy 3.
is attached removably. The upper end of the wire 14 is attached to the second chuck 13,
The upper end of a spring 16 is attached to the lower end of this wire 14 via a third chuck 15. and,
&117 is suspended from the lower end of this spring 16. Further, the intermediate portion of the wire 14 is wound around a pulley 18 rotatably supported by the main body 11, so that the shape memory alloy 3 is set in a horizontal direction.

8.9はそれぞれ前記実施例と同様の交流位相制御装置
、ダイオードである。
Reference numerals 8 and 9 designate an AC phase control device and a diode, respectively, similar to those in the previous embodiment.

本実施例においても、前記実施例と同様の動作が行われ
る。また、前記実施例では、形状記憶合金3が鉛直方向
にセットされるので、該合金3の伸びが大きくなる場合
には、装置の高さを非常に高くしなければならないが、
本実施例の場合には、形状記憶合金3が横方向にセット
されるので、装置の高さを低(することができる。
In this embodiment as well, the same operation as in the previous embodiment is performed. In addition, in the above embodiment, the shape memory alloy 3 is set in the vertical direction, so if the elongation of the alloy 3 becomes large, the height of the device must be made very high.
In the case of this embodiment, since the shape memory alloy 3 is set laterally, the height of the device can be reduced.

なお、前記各実施例では、錘を用いているが、本発明に
おいては、磁力、油圧、空気圧等の他の手段により、ば
ねの一端に実質的に一定の荷重を作用させてもよい。
Although a weight is used in each of the embodiments described above, in the present invention, a substantially constant load may be applied to one end of the spring by other means such as magnetic force, oil pressure, or air pressure.

さらに、前記各実施例では、形状記憶合金に引張り荷重
を作用させているが、本発明は、形状記憶合金に曲げ荷
重、ねじり荷重および圧縮荷重を作用させる場合にも適
用できるものである。
Further, in each of the above embodiments, a tensile load is applied to the shape memory alloy, but the present invention can also be applied to cases where a bending load, a torsional load, and a compressive load are applied to the shape memory alloy.

8− 〔発明の効果〕 以上のように本発明による形状記憶合金の慣し運転方法
は、形状記憶合金に、破断を生じさせたりすることなく
、変形−形状回復動作を高速に繰り返させ、比較的に短
時間のうちに、変形−形状回復の繰り返し動作に対する
形状記憶合金の特性を安定な状態にすることができると
いう優れた効果を得られるものである。
8- [Effects of the Invention] As described above, the breaking-in method for a shape memory alloy according to the present invention allows the shape memory alloy to repeat the deformation-shape recovery operation at high speed without causing any breakage. This provides an excellent effect of stabilizing the properties of the shape memory alloy against repeated deformation and shape recovery operations in a relatively short period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は形状記憶合金の繰り返し動作回数と伸びとの関
係を示す特性図、第2図は本発明による形状記憶合金の
慣し運転方法による一実施例を示す側面図、第2図は該
実施例において形状記憶合金に通電される電流の波形お
よび形状記憶合金の温度変化を示すグラフ、第4図は本
発明の他の実施例を示す側面図である。 3・・・形状記憶合金、5・・・ばね、6・・・錘、1
6・・・ばね、17・・・錘。 第1図 繰シ返し動作回数 第2図 第3図 手続補正型 昭和59年2月6日 特許庁長官 若 杉 和 夫 殿 、事件の表示 昭和58年特許願第176515号 、発明の名称 形状記憶合金の慣し運転方法 、補正をする者 事件との関係 特許出願人 住 所 東京都新宿区西早稲田1丁目6番1号氏 名(
名称) 学校法人 畢i66’、代理人 、補正により増加する発明の数 なし 、補正の対象 明細書の図面の簡単な説明の欄 、補正の内容 1)明細書第10頁第13行の「第2図」を「第3図」
と補正する。 2)明細書第10頁第15行の「グラフ」を「波形図」
と補正する。
FIG. 1 is a characteristic diagram showing the relationship between the number of repeated operations and elongation of a shape memory alloy, FIG. 2 is a side view showing an example of the breaking-in method for a shape memory alloy according to the present invention, and FIG. FIG. 4 is a graph showing the waveform of the current applied to the shape memory alloy and the temperature change of the shape memory alloy in the example, and FIG. 4 is a side view showing another example of the present invention. 3... Shape memory alloy, 5... Spring, 6... Weight, 1
6... Spring, 17... Weight. Figure 1 Number of repetitions Figure 2 Figure 3 Procedural correction type February 6, 1980 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office, Display of the incident 1982 Patent Application No. 176515, Name of the invention Shape memory How to run-in alloys, and its relationship to the amendment person case Patent applicant Address: 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo Name (
Name) Educational Corporation Bi66', Agent, Number of inventions increased by amendment None, Brief description of drawings in the specification subject to amendment, Contents of amendment 1) ``No. Figure 2” to “Figure 3”
and correct it. 2) Change the “graph” on page 10, line 15 of the specification to “waveform diagram”
and correct it.

Claims (1)

【特許請求の範囲】[Claims] 慣し運転すべき形状記憶合金にばねの一端側を接続する
とともに前記ばねの他端側に実質的に一定な荷重を作用
させることにより、前記形状記憶合金に前記ばねを介し
て前記向重を作用させた状態で、前記形状記憶合金を周
期的に加熱することを特徴とする形状記憶合金の慣し運
転方法。
By connecting one end of a spring to the shape memory alloy to be run-in and applying a substantially constant load to the other end of the spring, the force is applied to the shape memory alloy through the spring. A method for breaking-in a shape memory alloy, comprising periodically heating the shape memory alloy while the shape memory alloy is being acted on.
JP17651583A 1983-09-26 1983-09-26 Running in trial method of shape memory alloy Granted JPS6070167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17651583A JPS6070167A (en) 1983-09-26 1983-09-26 Running in trial method of shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17651583A JPS6070167A (en) 1983-09-26 1983-09-26 Running in trial method of shape memory alloy

Publications (2)

Publication Number Publication Date
JPS6070167A true JPS6070167A (en) 1985-04-20
JPH045747B2 JPH045747B2 (en) 1992-02-03

Family

ID=16014968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17651583A Granted JPS6070167A (en) 1983-09-26 1983-09-26 Running in trial method of shape memory alloy

Country Status (1)

Country Link
JP (1) JPS6070167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412077A (en) * 1987-07-06 1989-01-17 Furukawa Electric Co Ltd Actuator
JPS6415470A (en) * 1987-07-08 1989-01-19 Furukawa Electric Co Ltd Actuator
JP2016104893A (en) * 2013-02-26 2016-06-09 ザ・ボーイング・カンパニーThe Boeing Company Systems and methods for shape memory alloy structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179767A (en) * 1983-03-30 1984-10-12 Sumitomo Special Metals Co Ltd Production of reversible shape memory element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179767A (en) * 1983-03-30 1984-10-12 Sumitomo Special Metals Co Ltd Production of reversible shape memory element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412077A (en) * 1987-07-06 1989-01-17 Furukawa Electric Co Ltd Actuator
JPS6415470A (en) * 1987-07-08 1989-01-19 Furukawa Electric Co Ltd Actuator
JP2016104893A (en) * 2013-02-26 2016-06-09 ザ・ボーイング・カンパニーThe Boeing Company Systems and methods for shape memory alloy structures

Also Published As

Publication number Publication date
JPH045747B2 (en) 1992-02-03

Similar Documents

Publication Publication Date Title
US3948688A (en) Martensitic alloy conditioning
JP2017118811A (en) Actuator, actuator set and shrinkable belt
WO1999061668A1 (en) Process for conditioning shape memory alloys
JP3956613B2 (en) NiTiCu shape memory alloy conducting actuator element
US9325231B2 (en) Method and apparatus for storing energy
KR102311763B1 (en) Torsional actuators by temperature gradient and energy harvesting device using the same
JPS6070167A (en) Running in trial method of shape memory alloy
JPWO2019102714A1 (en) Actuator device
US4747887A (en) Method and device for actuating shape memory alloy member
CN111702751A (en) Device and method for manufacturing nylon winding type artificial muscle
Wang et al. Characteristics of two-way shape memory TiNi springs driven by electrical current
KR20160047212A (en) Torsional actuators of temperature fluctuations, device for harvesting energy comprising the same
JPS6321367A (en) Shape memory alloy device
WO2019106944A1 (en) Actuator, actuator apparatus, and massage device
CN109563818B (en) Method of driving actuator, and method of manufacturing actuator
KR20210114180A (en) Method of manufacturing shape memory alloy spring
JPS6146475A (en) Shape memory alloy device
JPH0660628B2 (en) Thermo-mechanical energy converter
Wang et al. Design of a knee and leg muscle exerciser for paraplegics using a shape memory alloy rotary joint actuator
JPS5862445A (en) Louver device
JPH031459A (en) Wiring connector using shape memory alloy
JPH0236955Y2 (en)
JP6904558B2 (en) Joint mechanism, articulated manipulator using this, and manufacturing method of these
JPH0864413A (en) Winding device for superconductive coil
JP2004162703A (en) Actuator